Properties

Label 2156.2.a.g.1.1
Level $2156$
Weight $2$
Character 2156.1
Self dual yes
Analytic conductor $17.216$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2156,2,Mod(1,2156)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2156, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2156.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2156 = 2^{2} \cdot 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2156.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(17.2157466758\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.257.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 4x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 308)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(2.19869\) of defining polynomial
Character \(\chi\) \(=\) 2156.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.83424 q^{3} +1.19869 q^{5} +5.03293 q^{9} +1.00000 q^{11} +0.834243 q^{13} -3.39738 q^{15} -4.03293 q^{17} -6.76183 q^{19} -0.0933442 q^{23} -3.56314 q^{25} -5.76183 q^{27} +3.46980 q^{29} +2.59607 q^{31} -2.83424 q^{33} +10.3974 q^{37} -2.36445 q^{39} +7.62901 q^{41} +0.894653 q^{43} +6.03293 q^{45} -0.906656 q^{47} +11.4303 q^{51} -3.16576 q^{53} +1.19869 q^{55} +19.1647 q^{57} -12.6290 q^{59} -10.0659 q^{61} +1.00000 q^{65} +8.46325 q^{67} +0.264560 q^{69} -13.7673 q^{71} +13.1712 q^{73} +10.0988 q^{75} -14.3304 q^{79} +1.23163 q^{81} -4.69596 q^{83} -4.83424 q^{85} -9.83424 q^{87} -14.5961 q^{89} -7.35790 q^{93} -8.10535 q^{95} -12.9001 q^{97} +5.03293 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{3} - 2 q^{5} + 4 q^{9} + 3 q^{11} - 3 q^{13} + q^{15} - q^{17} - 9 q^{19} - 5 q^{25} - 6 q^{27} + 5 q^{29} - 9 q^{31} - 3 q^{33} + 20 q^{37} - 7 q^{39} - 5 q^{41} + 8 q^{43} + 7 q^{45} - 3 q^{47}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.83424 −1.63635 −0.818176 0.574969i \(-0.805014\pi\)
−0.818176 + 0.574969i \(0.805014\pi\)
\(4\) 0 0
\(5\) 1.19869 0.536071 0.268036 0.963409i \(-0.413626\pi\)
0.268036 + 0.963409i \(0.413626\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 5.03293 1.67764
\(10\) 0 0
\(11\) 1.00000 0.301511
\(12\) 0 0
\(13\) 0.834243 0.231377 0.115689 0.993286i \(-0.463092\pi\)
0.115689 + 0.993286i \(0.463092\pi\)
\(14\) 0 0
\(15\) −3.39738 −0.877200
\(16\) 0 0
\(17\) −4.03293 −0.978130 −0.489065 0.872247i \(-0.662662\pi\)
−0.489065 + 0.872247i \(0.662662\pi\)
\(18\) 0 0
\(19\) −6.76183 −1.55127 −0.775635 0.631182i \(-0.782570\pi\)
−0.775635 + 0.631182i \(0.782570\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −0.0933442 −0.0194636 −0.00973180 0.999953i \(-0.503098\pi\)
−0.00973180 + 0.999953i \(0.503098\pi\)
\(24\) 0 0
\(25\) −3.56314 −0.712628
\(26\) 0 0
\(27\) −5.76183 −1.10886
\(28\) 0 0
\(29\) 3.46980 0.644325 0.322162 0.946684i \(-0.395590\pi\)
0.322162 + 0.946684i \(0.395590\pi\)
\(30\) 0 0
\(31\) 2.59607 0.466269 0.233134 0.972445i \(-0.425102\pi\)
0.233134 + 0.972445i \(0.425102\pi\)
\(32\) 0 0
\(33\) −2.83424 −0.493378
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 10.3974 1.70932 0.854660 0.519189i \(-0.173766\pi\)
0.854660 + 0.519189i \(0.173766\pi\)
\(38\) 0 0
\(39\) −2.36445 −0.378615
\(40\) 0 0
\(41\) 7.62901 1.19145 0.595725 0.803188i \(-0.296865\pi\)
0.595725 + 0.803188i \(0.296865\pi\)
\(42\) 0 0
\(43\) 0.894653 0.136433 0.0682166 0.997671i \(-0.478269\pi\)
0.0682166 + 0.997671i \(0.478269\pi\)
\(44\) 0 0
\(45\) 6.03293 0.899337
\(46\) 0 0
\(47\) −0.906656 −0.132249 −0.0661247 0.997811i \(-0.521064\pi\)
−0.0661247 + 0.997811i \(0.521064\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 11.4303 1.60056
\(52\) 0 0
\(53\) −3.16576 −0.434850 −0.217425 0.976077i \(-0.569766\pi\)
−0.217425 + 0.976077i \(0.569766\pi\)
\(54\) 0 0
\(55\) 1.19869 0.161631
\(56\) 0 0
\(57\) 19.1647 2.53842
\(58\) 0 0
\(59\) −12.6290 −1.64416 −0.822078 0.569374i \(-0.807186\pi\)
−0.822078 + 0.569374i \(0.807186\pi\)
\(60\) 0 0
\(61\) −10.0659 −1.28880 −0.644401 0.764688i \(-0.722893\pi\)
−0.644401 + 0.764688i \(0.722893\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 1.00000 0.124035
\(66\) 0 0
\(67\) 8.46325 1.03395 0.516975 0.856000i \(-0.327058\pi\)
0.516975 + 0.856000i \(0.327058\pi\)
\(68\) 0 0
\(69\) 0.264560 0.0318493
\(70\) 0 0
\(71\) −13.7673 −1.63388 −0.816938 0.576725i \(-0.804330\pi\)
−0.816938 + 0.576725i \(0.804330\pi\)
\(72\) 0 0
\(73\) 13.1712 1.54157 0.770787 0.637093i \(-0.219863\pi\)
0.770787 + 0.637093i \(0.219863\pi\)
\(74\) 0 0
\(75\) 10.0988 1.16611
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −14.3304 −1.61230 −0.806150 0.591712i \(-0.798452\pi\)
−0.806150 + 0.591712i \(0.798452\pi\)
\(80\) 0 0
\(81\) 1.23163 0.136847
\(82\) 0 0
\(83\) −4.69596 −0.515449 −0.257724 0.966218i \(-0.582973\pi\)
−0.257724 + 0.966218i \(0.582973\pi\)
\(84\) 0 0
\(85\) −4.83424 −0.524347
\(86\) 0 0
\(87\) −9.83424 −1.05434
\(88\) 0 0
\(89\) −14.5961 −1.54718 −0.773590 0.633686i \(-0.781541\pi\)
−0.773590 + 0.633686i \(0.781541\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −7.35790 −0.762979
\(94\) 0 0
\(95\) −8.10535 −0.831591
\(96\) 0 0
\(97\) −12.9001 −1.30981 −0.654904 0.755712i \(-0.727291\pi\)
−0.654904 + 0.755712i \(0.727291\pi\)
\(98\) 0 0
\(99\) 5.03293 0.505829
\(100\) 0 0
\(101\) 4.23817 0.421714 0.210857 0.977517i \(-0.432375\pi\)
0.210857 + 0.977517i \(0.432375\pi\)
\(102\) 0 0
\(103\) −11.0329 −1.08711 −0.543554 0.839374i \(-0.682922\pi\)
−0.543554 + 0.839374i \(0.682922\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0.656483 0.0634647 0.0317323 0.999496i \(-0.489898\pi\)
0.0317323 + 0.999496i \(0.489898\pi\)
\(108\) 0 0
\(109\) 2.32497 0.222692 0.111346 0.993782i \(-0.464484\pi\)
0.111346 + 0.993782i \(0.464484\pi\)
\(110\) 0 0
\(111\) −29.4687 −2.79705
\(112\) 0 0
\(113\) 19.7673 1.85955 0.929775 0.368128i \(-0.120001\pi\)
0.929775 + 0.368128i \(0.120001\pi\)
\(114\) 0 0
\(115\) −0.111891 −0.0104339
\(116\) 0 0
\(117\) 4.19869 0.388169
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 0 0
\(123\) −21.6225 −1.94963
\(124\) 0 0
\(125\) −10.2646 −0.918090
\(126\) 0 0
\(127\) −14.7738 −1.31097 −0.655483 0.755210i \(-0.727535\pi\)
−0.655483 + 0.755210i \(0.727535\pi\)
\(128\) 0 0
\(129\) −2.53566 −0.223253
\(130\) 0 0
\(131\) 9.20415 0.804170 0.402085 0.915602i \(-0.368286\pi\)
0.402085 + 0.915602i \(0.368286\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −6.90666 −0.594430
\(136\) 0 0
\(137\) −20.2975 −1.73413 −0.867066 0.498193i \(-0.833997\pi\)
−0.867066 + 0.498193i \(0.833997\pi\)
\(138\) 0 0
\(139\) −6.27110 −0.531908 −0.265954 0.963986i \(-0.585687\pi\)
−0.265954 + 0.963986i \(0.585687\pi\)
\(140\) 0 0
\(141\) 2.56968 0.216406
\(142\) 0 0
\(143\) 0.834243 0.0697629
\(144\) 0 0
\(145\) 4.15921 0.345404
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −7.21069 −0.590723 −0.295362 0.955386i \(-0.595440\pi\)
−0.295362 + 0.955386i \(0.595440\pi\)
\(150\) 0 0
\(151\) −4.03948 −0.328728 −0.164364 0.986400i \(-0.552557\pi\)
−0.164364 + 0.986400i \(0.552557\pi\)
\(152\) 0 0
\(153\) −20.2975 −1.64096
\(154\) 0 0
\(155\) 3.11189 0.249953
\(156\) 0 0
\(157\) −5.58407 −0.445657 −0.222829 0.974858i \(-0.571529\pi\)
−0.222829 + 0.974858i \(0.571529\pi\)
\(158\) 0 0
\(159\) 8.97252 0.711567
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −9.00000 −0.704934 −0.352467 0.935824i \(-0.614657\pi\)
−0.352467 + 0.935824i \(0.614657\pi\)
\(164\) 0 0
\(165\) −3.39738 −0.264486
\(166\) 0 0
\(167\) 15.6015 1.20728 0.603641 0.797256i \(-0.293716\pi\)
0.603641 + 0.797256i \(0.293716\pi\)
\(168\) 0 0
\(169\) −12.3040 −0.946464
\(170\) 0 0
\(171\) −34.0318 −2.60248
\(172\) 0 0
\(173\) 22.7553 1.73005 0.865026 0.501727i \(-0.167302\pi\)
0.865026 + 0.501727i \(0.167302\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 35.7937 2.69042
\(178\) 0 0
\(179\) −3.17122 −0.237028 −0.118514 0.992952i \(-0.537813\pi\)
−0.118514 + 0.992952i \(0.537813\pi\)
\(180\) 0 0
\(181\) −5.56860 −0.413911 −0.206955 0.978350i \(-0.566355\pi\)
−0.206955 + 0.978350i \(0.566355\pi\)
\(182\) 0 0
\(183\) 28.5291 2.10893
\(184\) 0 0
\(185\) 12.4633 0.916316
\(186\) 0 0
\(187\) −4.03293 −0.294917
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −10.5237 −0.761465 −0.380733 0.924685i \(-0.624328\pi\)
−0.380733 + 0.924685i \(0.624328\pi\)
\(192\) 0 0
\(193\) 1.02093 0.0734883 0.0367441 0.999325i \(-0.488301\pi\)
0.0367441 + 0.999325i \(0.488301\pi\)
\(194\) 0 0
\(195\) −2.83424 −0.202964
\(196\) 0 0
\(197\) −22.2910 −1.58816 −0.794082 0.607810i \(-0.792048\pi\)
−0.794082 + 0.607810i \(0.792048\pi\)
\(198\) 0 0
\(199\) 13.2700 0.940687 0.470343 0.882483i \(-0.344130\pi\)
0.470343 + 0.882483i \(0.344130\pi\)
\(200\) 0 0
\(201\) −23.9869 −1.69191
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 9.14483 0.638702
\(206\) 0 0
\(207\) −0.469795 −0.0326530
\(208\) 0 0
\(209\) −6.76183 −0.467726
\(210\) 0 0
\(211\) −9.12628 −0.628279 −0.314139 0.949377i \(-0.601716\pi\)
−0.314139 + 0.949377i \(0.601716\pi\)
\(212\) 0 0
\(213\) 39.0198 2.67360
\(214\) 0 0
\(215\) 1.07241 0.0731379
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −37.3304 −2.52256
\(220\) 0 0
\(221\) −3.36445 −0.226317
\(222\) 0 0
\(223\) −0.139366 −0.00933265 −0.00466632 0.999989i \(-0.501485\pi\)
−0.00466632 + 0.999989i \(0.501485\pi\)
\(224\) 0 0
\(225\) −17.9330 −1.19554
\(226\) 0 0
\(227\) 25.1987 1.67250 0.836248 0.548352i \(-0.184744\pi\)
0.836248 + 0.548352i \(0.184744\pi\)
\(228\) 0 0
\(229\) 1.21069 0.0800049 0.0400025 0.999200i \(-0.487263\pi\)
0.0400025 + 0.999200i \(0.487263\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 11.3315 0.742352 0.371176 0.928563i \(-0.378955\pi\)
0.371176 + 0.928563i \(0.378955\pi\)
\(234\) 0 0
\(235\) −1.08680 −0.0708950
\(236\) 0 0
\(237\) 40.6159 2.63829
\(238\) 0 0
\(239\) −11.6805 −0.755548 −0.377774 0.925898i \(-0.623310\pi\)
−0.377774 + 0.925898i \(0.623310\pi\)
\(240\) 0 0
\(241\) −8.31058 −0.535332 −0.267666 0.963512i \(-0.586252\pi\)
−0.267666 + 0.963512i \(0.586252\pi\)
\(242\) 0 0
\(243\) 13.7948 0.884935
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −5.64101 −0.358929
\(248\) 0 0
\(249\) 13.3095 0.843455
\(250\) 0 0
\(251\) 2.03293 0.128318 0.0641588 0.997940i \(-0.479564\pi\)
0.0641588 + 0.997940i \(0.479564\pi\)
\(252\) 0 0
\(253\) −0.0933442 −0.00586850
\(254\) 0 0
\(255\) 13.7014 0.858016
\(256\) 0 0
\(257\) −23.6674 −1.47633 −0.738166 0.674619i \(-0.764308\pi\)
−0.738166 + 0.674619i \(0.764308\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 17.4633 1.08095
\(262\) 0 0
\(263\) −14.2251 −0.877156 −0.438578 0.898693i \(-0.644518\pi\)
−0.438578 + 0.898693i \(0.644518\pi\)
\(264\) 0 0
\(265\) −3.79476 −0.233111
\(266\) 0 0
\(267\) 41.3688 2.53173
\(268\) 0 0
\(269\) −11.9330 −0.727571 −0.363785 0.931483i \(-0.618516\pi\)
−0.363785 + 0.931483i \(0.618516\pi\)
\(270\) 0 0
\(271\) −26.0713 −1.58372 −0.791860 0.610702i \(-0.790887\pi\)
−0.791860 + 0.610702i \(0.790887\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −3.56314 −0.214865
\(276\) 0 0
\(277\) −9.75529 −0.586138 −0.293069 0.956091i \(-0.594677\pi\)
−0.293069 + 0.956091i \(0.594677\pi\)
\(278\) 0 0
\(279\) 13.0659 0.782233
\(280\) 0 0
\(281\) −25.1437 −1.49995 −0.749975 0.661466i \(-0.769934\pi\)
−0.749975 + 0.661466i \(0.769934\pi\)
\(282\) 0 0
\(283\) −18.1592 −1.07945 −0.539727 0.841840i \(-0.681472\pi\)
−0.539727 + 0.841840i \(0.681472\pi\)
\(284\) 0 0
\(285\) 22.9725 1.36077
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −0.735440 −0.0432612
\(290\) 0 0
\(291\) 36.5621 2.14331
\(292\) 0 0
\(293\) 12.0604 0.704577 0.352288 0.935892i \(-0.385404\pi\)
0.352288 + 0.935892i \(0.385404\pi\)
\(294\) 0 0
\(295\) −15.1383 −0.881385
\(296\) 0 0
\(297\) −5.76183 −0.334335
\(298\) 0 0
\(299\) −0.0778717 −0.00450344
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −12.0120 −0.690072
\(304\) 0 0
\(305\) −12.0659 −0.690890
\(306\) 0 0
\(307\) 8.20415 0.468236 0.234118 0.972208i \(-0.424780\pi\)
0.234118 + 0.972208i \(0.424780\pi\)
\(308\) 0 0
\(309\) 31.2700 1.77889
\(310\) 0 0
\(311\) −9.86172 −0.559207 −0.279603 0.960116i \(-0.590203\pi\)
−0.279603 + 0.960116i \(0.590203\pi\)
\(312\) 0 0
\(313\) −1.23817 −0.0699855 −0.0349927 0.999388i \(-0.511141\pi\)
−0.0349927 + 0.999388i \(0.511141\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −30.2844 −1.70094 −0.850471 0.526022i \(-0.823683\pi\)
−0.850471 + 0.526022i \(0.823683\pi\)
\(318\) 0 0
\(319\) 3.46980 0.194271
\(320\) 0 0
\(321\) −1.86063 −0.103850
\(322\) 0 0
\(323\) 27.2700 1.51734
\(324\) 0 0
\(325\) −2.97252 −0.164886
\(326\) 0 0
\(327\) −6.58953 −0.364402
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 25.3424 1.39295 0.696473 0.717583i \(-0.254752\pi\)
0.696473 + 0.717583i \(0.254752\pi\)
\(332\) 0 0
\(333\) 52.3293 2.86763
\(334\) 0 0
\(335\) 10.1448 0.554271
\(336\) 0 0
\(337\) −5.35899 −0.291923 −0.145961 0.989290i \(-0.546628\pi\)
−0.145961 + 0.989290i \(0.546628\pi\)
\(338\) 0 0
\(339\) −56.0253 −3.04288
\(340\) 0 0
\(341\) 2.59607 0.140585
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0.317126 0.0170735
\(346\) 0 0
\(347\) 13.4698 0.723096 0.361548 0.932353i \(-0.382248\pi\)
0.361548 + 0.932353i \(0.382248\pi\)
\(348\) 0 0
\(349\) 26.5477 1.42106 0.710532 0.703665i \(-0.248454\pi\)
0.710532 + 0.703665i \(0.248454\pi\)
\(350\) 0 0
\(351\) −4.80677 −0.256566
\(352\) 0 0
\(353\) 19.4423 1.03481 0.517405 0.855741i \(-0.326898\pi\)
0.517405 + 0.855741i \(0.326898\pi\)
\(354\) 0 0
\(355\) −16.5027 −0.875874
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 33.2964 1.75732 0.878659 0.477450i \(-0.158439\pi\)
0.878659 + 0.477450i \(0.158439\pi\)
\(360\) 0 0
\(361\) 26.7224 1.40644
\(362\) 0 0
\(363\) −2.83424 −0.148759
\(364\) 0 0
\(365\) 15.7882 0.826393
\(366\) 0 0
\(367\) −6.33043 −0.330446 −0.165223 0.986256i \(-0.552834\pi\)
−0.165223 + 0.986256i \(0.552834\pi\)
\(368\) 0 0
\(369\) 38.3963 1.99883
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 5.92650 0.306863 0.153431 0.988159i \(-0.450968\pi\)
0.153431 + 0.988159i \(0.450968\pi\)
\(374\) 0 0
\(375\) 29.0923 1.50232
\(376\) 0 0
\(377\) 2.89465 0.149082
\(378\) 0 0
\(379\) −6.11189 −0.313947 −0.156973 0.987603i \(-0.550174\pi\)
−0.156973 + 0.987603i \(0.550174\pi\)
\(380\) 0 0
\(381\) 41.8726 2.14520
\(382\) 0 0
\(383\) −20.3030 −1.03743 −0.518716 0.854946i \(-0.673590\pi\)
−0.518716 + 0.854946i \(0.673590\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 4.50273 0.228887
\(388\) 0 0
\(389\) −17.1383 −0.868945 −0.434473 0.900685i \(-0.643065\pi\)
−0.434473 + 0.900685i \(0.643065\pi\)
\(390\) 0 0
\(391\) 0.376451 0.0190379
\(392\) 0 0
\(393\) −26.0868 −1.31591
\(394\) 0 0
\(395\) −17.1778 −0.864307
\(396\) 0 0
\(397\) −16.2766 −0.816897 −0.408449 0.912781i \(-0.633930\pi\)
−0.408449 + 0.912781i \(0.633930\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 7.17122 0.358113 0.179057 0.983839i \(-0.442695\pi\)
0.179057 + 0.983839i \(0.442695\pi\)
\(402\) 0 0
\(403\) 2.16576 0.107884
\(404\) 0 0
\(405\) 1.47634 0.0733599
\(406\) 0 0
\(407\) 10.3974 0.515379
\(408\) 0 0
\(409\) −6.22270 −0.307693 −0.153846 0.988095i \(-0.549166\pi\)
−0.153846 + 0.988095i \(0.549166\pi\)
\(410\) 0 0
\(411\) 57.5280 2.83765
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −5.62901 −0.276317
\(416\) 0 0
\(417\) 17.7738 0.870388
\(418\) 0 0
\(419\) 16.0473 0.783963 0.391981 0.919973i \(-0.371790\pi\)
0.391981 + 0.919973i \(0.371790\pi\)
\(420\) 0 0
\(421\) −9.49619 −0.462816 −0.231408 0.972857i \(-0.574333\pi\)
−0.231408 + 0.972857i \(0.574333\pi\)
\(422\) 0 0
\(423\) −4.56314 −0.221867
\(424\) 0 0
\(425\) 14.3699 0.697043
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −2.36445 −0.114157
\(430\) 0 0
\(431\) 34.9080 1.68146 0.840729 0.541457i \(-0.182127\pi\)
0.840729 + 0.541457i \(0.182127\pi\)
\(432\) 0 0
\(433\) 14.8737 0.714785 0.357393 0.933954i \(-0.383666\pi\)
0.357393 + 0.933954i \(0.383666\pi\)
\(434\) 0 0
\(435\) −11.7882 −0.565202
\(436\) 0 0
\(437\) 0.631178 0.0301933
\(438\) 0 0
\(439\) −24.5147 −1.17002 −0.585012 0.811025i \(-0.698910\pi\)
−0.585012 + 0.811025i \(0.698910\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 2.66740 0.126732 0.0633660 0.997990i \(-0.479816\pi\)
0.0633660 + 0.997990i \(0.479816\pi\)
\(444\) 0 0
\(445\) −17.4962 −0.829399
\(446\) 0 0
\(447\) 20.4369 0.966630
\(448\) 0 0
\(449\) −9.60808 −0.453433 −0.226717 0.973961i \(-0.572799\pi\)
−0.226717 + 0.973961i \(0.572799\pi\)
\(450\) 0 0
\(451\) 7.62901 0.359236
\(452\) 0 0
\(453\) 11.4489 0.537915
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −22.1647 −1.03682 −0.518410 0.855132i \(-0.673476\pi\)
−0.518410 + 0.855132i \(0.673476\pi\)
\(458\) 0 0
\(459\) 23.2371 1.08461
\(460\) 0 0
\(461\) 14.9725 0.697340 0.348670 0.937246i \(-0.386633\pi\)
0.348670 + 0.937246i \(0.386633\pi\)
\(462\) 0 0
\(463\) 31.8122 1.47844 0.739220 0.673464i \(-0.235194\pi\)
0.739220 + 0.673464i \(0.235194\pi\)
\(464\) 0 0
\(465\) −8.81986 −0.409011
\(466\) 0 0
\(467\) 28.1043 1.30051 0.650255 0.759716i \(-0.274662\pi\)
0.650255 + 0.759716i \(0.274662\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 15.8266 0.729252
\(472\) 0 0
\(473\) 0.894653 0.0411362
\(474\) 0 0
\(475\) 24.0933 1.10548
\(476\) 0 0
\(477\) −15.9330 −0.729524
\(478\) 0 0
\(479\) −11.2831 −0.515538 −0.257769 0.966207i \(-0.582987\pi\)
−0.257769 + 0.966207i \(0.582987\pi\)
\(480\) 0 0
\(481\) 8.67395 0.395498
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −15.4633 −0.702150
\(486\) 0 0
\(487\) −27.9529 −1.26667 −0.633333 0.773879i \(-0.718314\pi\)
−0.633333 + 0.773879i \(0.718314\pi\)
\(488\) 0 0
\(489\) 25.5082 1.15352
\(490\) 0 0
\(491\) −9.77076 −0.440948 −0.220474 0.975393i \(-0.570760\pi\)
−0.220474 + 0.975393i \(0.570760\pi\)
\(492\) 0 0
\(493\) −13.9935 −0.630234
\(494\) 0 0
\(495\) 6.03293 0.271160
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 31.3119 1.40171 0.700856 0.713303i \(-0.252801\pi\)
0.700856 + 0.713303i \(0.252801\pi\)
\(500\) 0 0
\(501\) −44.2185 −1.97554
\(502\) 0 0
\(503\) −0.779293 −0.0347469 −0.0173735 0.999849i \(-0.505530\pi\)
−0.0173735 + 0.999849i \(0.505530\pi\)
\(504\) 0 0
\(505\) 5.08026 0.226068
\(506\) 0 0
\(507\) 34.8726 1.54875
\(508\) 0 0
\(509\) 30.4118 1.34798 0.673989 0.738741i \(-0.264579\pi\)
0.673989 + 0.738741i \(0.264579\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 38.9605 1.72015
\(514\) 0 0
\(515\) −13.2251 −0.582767
\(516\) 0 0
\(517\) −0.906656 −0.0398747
\(518\) 0 0
\(519\) −64.4940 −2.83097
\(520\) 0 0
\(521\) 37.2545 1.63215 0.816076 0.577945i \(-0.196145\pi\)
0.816076 + 0.577945i \(0.196145\pi\)
\(522\) 0 0
\(523\) 14.3754 0.628591 0.314295 0.949325i \(-0.398232\pi\)
0.314295 + 0.949325i \(0.398232\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −10.4698 −0.456071
\(528\) 0 0
\(529\) −22.9913 −0.999621
\(530\) 0 0
\(531\) −63.5610 −2.75831
\(532\) 0 0
\(533\) 6.36445 0.275675
\(534\) 0 0
\(535\) 0.786921 0.0340216
\(536\) 0 0
\(537\) 8.98800 0.387861
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 30.3963 1.30684 0.653419 0.756996i \(-0.273334\pi\)
0.653419 + 0.756996i \(0.273334\pi\)
\(542\) 0 0
\(543\) 15.7828 0.677303
\(544\) 0 0
\(545\) 2.78692 0.119379
\(546\) 0 0
\(547\) −6.74744 −0.288500 −0.144250 0.989541i \(-0.546077\pi\)
−0.144250 + 0.989541i \(0.546077\pi\)
\(548\) 0 0
\(549\) −50.6609 −2.16215
\(550\) 0 0
\(551\) −23.4622 −0.999522
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −35.3239 −1.49942
\(556\) 0 0
\(557\) 22.5226 0.954312 0.477156 0.878819i \(-0.341668\pi\)
0.477156 + 0.878819i \(0.341668\pi\)
\(558\) 0 0
\(559\) 0.746358 0.0315676
\(560\) 0 0
\(561\) 11.4303 0.482588
\(562\) 0 0
\(563\) 16.3490 0.689027 0.344514 0.938781i \(-0.388044\pi\)
0.344514 + 0.938781i \(0.388044\pi\)
\(564\) 0 0
\(565\) 23.6949 0.996851
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −41.1097 −1.72341 −0.861705 0.507410i \(-0.830603\pi\)
−0.861705 + 0.507410i \(0.830603\pi\)
\(570\) 0 0
\(571\) 41.6225 1.74185 0.870923 0.491420i \(-0.163522\pi\)
0.870923 + 0.491420i \(0.163522\pi\)
\(572\) 0 0
\(573\) 29.8266 1.24602
\(574\) 0 0
\(575\) 0.332598 0.0138703
\(576\) 0 0
\(577\) −7.43578 −0.309555 −0.154778 0.987949i \(-0.549466\pi\)
−0.154778 + 0.987949i \(0.549466\pi\)
\(578\) 0 0
\(579\) −2.89357 −0.120253
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −3.16576 −0.131112
\(584\) 0 0
\(585\) 5.03293 0.208086
\(586\) 0 0
\(587\) 14.5631 0.601085 0.300543 0.953768i \(-0.402832\pi\)
0.300543 + 0.953768i \(0.402832\pi\)
\(588\) 0 0
\(589\) −17.5542 −0.723309
\(590\) 0 0
\(591\) 63.1780 2.59879
\(592\) 0 0
\(593\) −19.7882 −0.812605 −0.406302 0.913739i \(-0.633182\pi\)
−0.406302 + 0.913739i \(0.633182\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −37.6105 −1.53929
\(598\) 0 0
\(599\) −29.0923 −1.18868 −0.594339 0.804215i \(-0.702586\pi\)
−0.594339 + 0.804215i \(0.702586\pi\)
\(600\) 0 0
\(601\) −0.680489 −0.0277577 −0.0138789 0.999904i \(-0.504418\pi\)
−0.0138789 + 0.999904i \(0.504418\pi\)
\(602\) 0 0
\(603\) 42.5950 1.73460
\(604\) 0 0
\(605\) 1.19869 0.0487337
\(606\) 0 0
\(607\) −41.1527 −1.67034 −0.835168 0.549995i \(-0.814629\pi\)
−0.835168 + 0.549995i \(0.814629\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −0.756371 −0.0305995
\(612\) 0 0
\(613\) −11.9450 −0.482456 −0.241228 0.970468i \(-0.577550\pi\)
−0.241228 + 0.970468i \(0.577550\pi\)
\(614\) 0 0
\(615\) −25.9187 −1.04514
\(616\) 0 0
\(617\) 20.3952 0.821080 0.410540 0.911843i \(-0.365340\pi\)
0.410540 + 0.911843i \(0.365340\pi\)
\(618\) 0 0
\(619\) −25.5367 −1.02641 −0.513204 0.858266i \(-0.671542\pi\)
−0.513204 + 0.858266i \(0.671542\pi\)
\(620\) 0 0
\(621\) 0.537833 0.0215825
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 5.51166 0.220466
\(626\) 0 0
\(627\) 19.1647 0.765363
\(628\) 0 0
\(629\) −41.9320 −1.67194
\(630\) 0 0
\(631\) 11.0504 0.439909 0.219955 0.975510i \(-0.429409\pi\)
0.219955 + 0.975510i \(0.429409\pi\)
\(632\) 0 0
\(633\) 25.8661 1.02808
\(634\) 0 0
\(635\) −17.7093 −0.702771
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −69.2899 −2.74106
\(640\) 0 0
\(641\) 22.7278 0.897695 0.448847 0.893608i \(-0.351835\pi\)
0.448847 + 0.893608i \(0.351835\pi\)
\(642\) 0 0
\(643\) 4.31843 0.170302 0.0851510 0.996368i \(-0.472863\pi\)
0.0851510 + 0.996368i \(0.472863\pi\)
\(644\) 0 0
\(645\) −3.03948 −0.119679
\(646\) 0 0
\(647\) 49.1241 1.93127 0.965634 0.259906i \(-0.0836915\pi\)
0.965634 + 0.259906i \(0.0836915\pi\)
\(648\) 0 0
\(649\) −12.6290 −0.495732
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 8.81024 0.344771 0.172386 0.985030i \(-0.444852\pi\)
0.172386 + 0.985030i \(0.444852\pi\)
\(654\) 0 0
\(655\) 11.0329 0.431092
\(656\) 0 0
\(657\) 66.2899 2.58621
\(658\) 0 0
\(659\) −19.5621 −0.762029 −0.381015 0.924569i \(-0.624425\pi\)
−0.381015 + 0.924569i \(0.624425\pi\)
\(660\) 0 0
\(661\) −4.86718 −0.189311 −0.0946556 0.995510i \(-0.530175\pi\)
−0.0946556 + 0.995510i \(0.530175\pi\)
\(662\) 0 0
\(663\) 9.53566 0.370335
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −0.323885 −0.0125409
\(668\) 0 0
\(669\) 0.394998 0.0152715
\(670\) 0 0
\(671\) −10.0659 −0.388589
\(672\) 0 0
\(673\) −45.9080 −1.76962 −0.884811 0.465950i \(-0.845713\pi\)
−0.884811 + 0.465950i \(0.845713\pi\)
\(674\) 0 0
\(675\) 20.5302 0.790208
\(676\) 0 0
\(677\) 12.0460 0.462966 0.231483 0.972839i \(-0.425642\pi\)
0.231483 + 0.972839i \(0.425642\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −71.4192 −2.73679
\(682\) 0 0
\(683\) 7.79784 0.298376 0.149188 0.988809i \(-0.452334\pi\)
0.149188 + 0.988809i \(0.452334\pi\)
\(684\) 0 0
\(685\) −24.3304 −0.929618
\(686\) 0 0
\(687\) −3.43140 −0.130916
\(688\) 0 0
\(689\) −2.64101 −0.100615
\(690\) 0 0
\(691\) −4.95268 −0.188409 −0.0942044 0.995553i \(-0.530031\pi\)
−0.0942044 + 0.995553i \(0.530031\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −7.51712 −0.285141
\(696\) 0 0
\(697\) −30.7673 −1.16539
\(698\) 0 0
\(699\) −32.1163 −1.21475
\(700\) 0 0
\(701\) 11.0275 0.416502 0.208251 0.978075i \(-0.433223\pi\)
0.208251 + 0.978075i \(0.433223\pi\)
\(702\) 0 0
\(703\) −70.3053 −2.65162
\(704\) 0 0
\(705\) 3.08026 0.116009
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −39.3599 −1.47819 −0.739096 0.673600i \(-0.764747\pi\)
−0.739096 + 0.673600i \(0.764747\pi\)
\(710\) 0 0
\(711\) −72.1241 −2.70487
\(712\) 0 0
\(713\) −0.242328 −0.00907527
\(714\) 0 0
\(715\) 1.00000 0.0373979
\(716\) 0 0
\(717\) 33.1053 1.23634
\(718\) 0 0
\(719\) 37.8726 1.41241 0.706206 0.708007i \(-0.250405\pi\)
0.706206 + 0.708007i \(0.250405\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 23.5542 0.875991
\(724\) 0 0
\(725\) −12.3634 −0.459164
\(726\) 0 0
\(727\) −21.3250 −0.790899 −0.395450 0.918488i \(-0.629411\pi\)
−0.395450 + 0.918488i \(0.629411\pi\)
\(728\) 0 0
\(729\) −42.7926 −1.58491
\(730\) 0 0
\(731\) −3.60808 −0.133450
\(732\) 0 0
\(733\) −26.5621 −0.981092 −0.490546 0.871415i \(-0.663203\pi\)
−0.490546 + 0.871415i \(0.663203\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 8.46325 0.311748
\(738\) 0 0
\(739\) 15.8870 0.584414 0.292207 0.956355i \(-0.405610\pi\)
0.292207 + 0.956355i \(0.405610\pi\)
\(740\) 0 0
\(741\) 15.9880 0.587334
\(742\) 0 0
\(743\) 34.9385 1.28177 0.640885 0.767637i \(-0.278568\pi\)
0.640885 + 0.767637i \(0.278568\pi\)
\(744\) 0 0
\(745\) −8.64340 −0.316670
\(746\) 0 0
\(747\) −23.6345 −0.864740
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −12.9880 −0.473939 −0.236969 0.971517i \(-0.576154\pi\)
−0.236969 + 0.971517i \(0.576154\pi\)
\(752\) 0 0
\(753\) −5.76183 −0.209973
\(754\) 0 0
\(755\) −4.84209 −0.176222
\(756\) 0 0
\(757\) −27.0408 −0.982814 −0.491407 0.870930i \(-0.663517\pi\)
−0.491407 + 0.870930i \(0.663517\pi\)
\(758\) 0 0
\(759\) 0.264560 0.00960292
\(760\) 0 0
\(761\) 1.17776 0.0426938 0.0213469 0.999772i \(-0.493205\pi\)
0.0213469 + 0.999772i \(0.493205\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −24.3304 −0.879669
\(766\) 0 0
\(767\) −10.5357 −0.380421
\(768\) 0 0
\(769\) 32.8530 1.18471 0.592355 0.805677i \(-0.298198\pi\)
0.592355 + 0.805677i \(0.298198\pi\)
\(770\) 0 0
\(771\) 67.0792 2.41580
\(772\) 0 0
\(773\) −10.1668 −0.365676 −0.182838 0.983143i \(-0.558528\pi\)
−0.182838 + 0.983143i \(0.558528\pi\)
\(774\) 0 0
\(775\) −9.25017 −0.332276
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −51.5861 −1.84826
\(780\) 0 0
\(781\) −13.7673 −0.492632
\(782\) 0 0
\(783\) −19.9924 −0.714469
\(784\) 0 0
\(785\) −6.69358 −0.238904
\(786\) 0 0
\(787\) 8.63447 0.307786 0.153893 0.988088i \(-0.450819\pi\)
0.153893 + 0.988088i \(0.450819\pi\)
\(788\) 0 0
\(789\) 40.3173 1.43534
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −8.39738 −0.298200
\(794\) 0 0
\(795\) 10.7553 0.381451
\(796\) 0 0
\(797\) −20.9671 −0.742692 −0.371346 0.928495i \(-0.621104\pi\)
−0.371346 + 0.928495i \(0.621104\pi\)
\(798\) 0 0
\(799\) 3.65648 0.129357
\(800\) 0 0
\(801\) −73.4611 −2.59562
\(802\) 0 0
\(803\) 13.1712 0.464802
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 33.8212 1.19056
\(808\) 0 0
\(809\) 14.9629 0.526068 0.263034 0.964787i \(-0.415277\pi\)
0.263034 + 0.964787i \(0.415277\pi\)
\(810\) 0 0
\(811\) −53.1965 −1.86798 −0.933991 0.357296i \(-0.883699\pi\)
−0.933991 + 0.357296i \(0.883699\pi\)
\(812\) 0 0
\(813\) 73.8925 2.59152
\(814\) 0 0
\(815\) −10.7882 −0.377895
\(816\) 0 0
\(817\) −6.04949 −0.211645
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 35.8726 1.25196 0.625982 0.779838i \(-0.284698\pi\)
0.625982 + 0.779838i \(0.284698\pi\)
\(822\) 0 0
\(823\) −12.6859 −0.442204 −0.221102 0.975251i \(-0.570965\pi\)
−0.221102 + 0.975251i \(0.570965\pi\)
\(824\) 0 0
\(825\) 10.0988 0.351595
\(826\) 0 0
\(827\) −2.92412 −0.101682 −0.0508408 0.998707i \(-0.516190\pi\)
−0.0508408 + 0.998707i \(0.516190\pi\)
\(828\) 0 0
\(829\) −11.7793 −0.409112 −0.204556 0.978855i \(-0.565575\pi\)
−0.204556 + 0.978855i \(0.565575\pi\)
\(830\) 0 0
\(831\) 27.6489 0.959128
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 18.7014 0.647189
\(836\) 0 0
\(837\) −14.9581 −0.517029
\(838\) 0 0
\(839\) −18.5117 −0.639093 −0.319547 0.947571i \(-0.603531\pi\)
−0.319547 + 0.947571i \(0.603531\pi\)
\(840\) 0 0
\(841\) −16.9605 −0.584846
\(842\) 0 0
\(843\) 71.2635 2.45444
\(844\) 0 0
\(845\) −14.7487 −0.507372
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 51.4676 1.76636
\(850\) 0 0
\(851\) −0.970535 −0.0332695
\(852\) 0 0
\(853\) −37.0342 −1.26803 −0.634014 0.773322i \(-0.718594\pi\)
−0.634014 + 0.773322i \(0.718594\pi\)
\(854\) 0 0
\(855\) −40.7937 −1.39511
\(856\) 0 0
\(857\) −4.23817 −0.144773 −0.0723866 0.997377i \(-0.523062\pi\)
−0.0723866 + 0.997377i \(0.523062\pi\)
\(858\) 0 0
\(859\) −3.41831 −0.116631 −0.0583157 0.998298i \(-0.518573\pi\)
−0.0583157 + 0.998298i \(0.518573\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 38.7202 1.31805 0.659025 0.752121i \(-0.270969\pi\)
0.659025 + 0.752121i \(0.270969\pi\)
\(864\) 0 0
\(865\) 27.2766 0.927431
\(866\) 0 0
\(867\) 2.08442 0.0707905
\(868\) 0 0
\(869\) −14.3304 −0.486127
\(870\) 0 0
\(871\) 7.06041 0.239233
\(872\) 0 0
\(873\) −64.9254 −2.19739
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 46.7607 1.57900 0.789499 0.613752i \(-0.210340\pi\)
0.789499 + 0.613752i \(0.210340\pi\)
\(878\) 0 0
\(879\) −34.1821 −1.15293
\(880\) 0 0
\(881\) −19.6050 −0.660509 −0.330255 0.943892i \(-0.607135\pi\)
−0.330255 + 0.943892i \(0.607135\pi\)
\(882\) 0 0
\(883\) 10.0395 0.337855 0.168928 0.985628i \(-0.445970\pi\)
0.168928 + 0.985628i \(0.445970\pi\)
\(884\) 0 0
\(885\) 42.9056 1.44225
\(886\) 0 0
\(887\) 46.1934 1.55102 0.775512 0.631333i \(-0.217492\pi\)
0.775512 + 0.631333i \(0.217492\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 1.23163 0.0412610
\(892\) 0 0
\(893\) 6.13065 0.205154
\(894\) 0 0
\(895\) −3.80131 −0.127064
\(896\) 0 0
\(897\) 0.220707 0.00736921
\(898\) 0 0
\(899\) 9.00784 0.300428
\(900\) 0 0
\(901\) 12.7673 0.425340
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −6.67503 −0.221886
\(906\) 0 0
\(907\) 24.2580 0.805474 0.402737 0.915316i \(-0.368059\pi\)
0.402737 + 0.915316i \(0.368059\pi\)
\(908\) 0 0
\(909\) 21.3304 0.707486
\(910\) 0 0
\(911\) 22.7991 0.755369 0.377685 0.925934i \(-0.376720\pi\)
0.377685 + 0.925934i \(0.376720\pi\)
\(912\) 0 0
\(913\) −4.69596 −0.155414
\(914\) 0 0
\(915\) 34.1976 1.13054
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 17.6870 0.583441 0.291721 0.956504i \(-0.405772\pi\)
0.291721 + 0.956504i \(0.405772\pi\)
\(920\) 0 0
\(921\) −23.2526 −0.766198
\(922\) 0 0
\(923\) −11.4853 −0.378042
\(924\) 0 0
\(925\) −37.0473 −1.21811
\(926\) 0 0
\(927\) −55.5280 −1.82378
\(928\) 0 0
\(929\) −8.85626 −0.290564 −0.145282 0.989390i \(-0.546409\pi\)
−0.145282 + 0.989390i \(0.546409\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 27.9505 0.915059
\(934\) 0 0
\(935\) −4.83424 −0.158097
\(936\) 0 0
\(937\) 13.9880 0.456968 0.228484 0.973548i \(-0.426623\pi\)
0.228484 + 0.973548i \(0.426623\pi\)
\(938\) 0 0
\(939\) 3.50927 0.114521
\(940\) 0 0
\(941\) 33.7553 1.10039 0.550195 0.835036i \(-0.314553\pi\)
0.550195 + 0.835036i \(0.314553\pi\)
\(942\) 0 0
\(943\) −0.712123 −0.0231899
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 40.9090 1.32937 0.664683 0.747126i \(-0.268567\pi\)
0.664683 + 0.747126i \(0.268567\pi\)
\(948\) 0 0
\(949\) 10.9880 0.356685
\(950\) 0 0
\(951\) 85.8334 2.78334
\(952\) 0 0
\(953\) −16.5147 −0.534965 −0.267482 0.963563i \(-0.586192\pi\)
−0.267482 + 0.963563i \(0.586192\pi\)
\(954\) 0 0
\(955\) −12.6146 −0.408200
\(956\) 0 0
\(957\) −9.83424 −0.317896
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −24.2604 −0.782594
\(962\) 0 0
\(963\) 3.30404 0.106471
\(964\) 0 0
\(965\) 1.22378 0.0393949
\(966\) 0 0
\(967\) −15.0024 −0.482444 −0.241222 0.970470i \(-0.577548\pi\)
−0.241222 + 0.970470i \(0.577548\pi\)
\(968\) 0 0
\(969\) −77.2899 −2.48291
\(970\) 0 0
\(971\) 12.1832 0.390978 0.195489 0.980706i \(-0.437371\pi\)
0.195489 + 0.980706i \(0.437371\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 8.42486 0.269811
\(976\) 0 0
\(977\) 39.5730 1.26605 0.633026 0.774131i \(-0.281813\pi\)
0.633026 + 0.774131i \(0.281813\pi\)
\(978\) 0 0
\(979\) −14.5961 −0.466493
\(980\) 0 0
\(981\) 11.7014 0.373598
\(982\) 0 0
\(983\) 22.6840 0.723506 0.361753 0.932274i \(-0.382178\pi\)
0.361753 + 0.932274i \(0.382178\pi\)
\(984\) 0 0
\(985\) −26.7200 −0.851369
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −0.0835106 −0.00265548
\(990\) 0 0
\(991\) −18.8696 −0.599411 −0.299706 0.954032i \(-0.596888\pi\)
−0.299706 + 0.954032i \(0.596888\pi\)
\(992\) 0 0
\(993\) −71.8266 −2.27935
\(994\) 0 0
\(995\) 15.9067 0.504275
\(996\) 0 0
\(997\) 26.9420 0.853261 0.426630 0.904426i \(-0.359701\pi\)
0.426630 + 0.904426i \(0.359701\pi\)
\(998\) 0 0
\(999\) −59.9080 −1.89540
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2156.2.a.g.1.1 3
4.3 odd 2 8624.2.a.cp.1.3 3
7.2 even 3 308.2.i.b.221.3 yes 6
7.3 odd 6 2156.2.i.j.177.1 6
7.4 even 3 308.2.i.b.177.3 6
7.5 odd 6 2156.2.i.j.1145.1 6
7.6 odd 2 2156.2.a.k.1.3 3
21.2 odd 6 2772.2.s.e.2377.3 6
21.11 odd 6 2772.2.s.e.793.3 6
28.11 odd 6 1232.2.q.j.177.1 6
28.23 odd 6 1232.2.q.j.529.1 6
28.27 even 2 8624.2.a.cg.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
308.2.i.b.177.3 6 7.4 even 3
308.2.i.b.221.3 yes 6 7.2 even 3
1232.2.q.j.177.1 6 28.11 odd 6
1232.2.q.j.529.1 6 28.23 odd 6
2156.2.a.g.1.1 3 1.1 even 1 trivial
2156.2.a.k.1.3 3 7.6 odd 2
2156.2.i.j.177.1 6 7.3 odd 6
2156.2.i.j.1145.1 6 7.5 odd 6
2772.2.s.e.793.3 6 21.11 odd 6
2772.2.s.e.2377.3 6 21.2 odd 6
8624.2.a.cg.1.1 3 28.27 even 2
8624.2.a.cp.1.3 3 4.3 odd 2