Properties

Label 2156.2.a.j.1.3
Level $2156$
Weight $2$
Character 2156.1
Self dual yes
Analytic conductor $17.216$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2156,2,Mod(1,2156)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2156, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2156.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2156 = 2^{2} \cdot 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2156.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(17.2157466758\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.1016.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 6x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 308)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(2.85577\) of defining polynomial
Character \(\chi\) \(=\) 2156.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.85577 q^{3} +4.15544 q^{5} +5.15544 q^{9} +1.00000 q^{11} -5.29966 q^{13} +11.8670 q^{15} -4.41188 q^{17} +5.71155 q^{19} -3.55611 q^{23} +12.2677 q^{25} +6.15544 q^{27} -0.599328 q^{29} -4.56732 q^{31} +2.85577 q^{33} +6.15544 q^{37} -15.1346 q^{39} +4.41188 q^{41} +3.71155 q^{43} +21.4231 q^{45} -5.01121 q^{47} -12.5993 q^{51} +8.31087 q^{53} +4.15544 q^{55} +16.3109 q^{57} +5.14423 q^{59} -13.6105 q^{61} -22.0224 q^{65} -0.443892 q^{67} -10.1554 q^{69} +4.75476 q^{71} +8.41188 q^{73} +35.0336 q^{75} -8.02242 q^{79} +2.11222 q^{81} -8.82376 q^{83} -18.3333 q^{85} -1.71155 q^{87} -7.57853 q^{89} -13.0432 q^{93} +23.7340 q^{95} -13.8670 q^{97} +5.15544 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + q^{3} + q^{5} + 4 q^{9} + 3 q^{11} - 12 q^{13} + 9 q^{15} - 2 q^{17} + 2 q^{19} - 7 q^{23} + 18 q^{25} + 7 q^{27} + 6 q^{29} + 9 q^{31} + q^{33} + 7 q^{37} + 2 q^{41} - 4 q^{43} + 34 q^{45} + 4 q^{47}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.85577 1.64878 0.824391 0.566021i \(-0.191518\pi\)
0.824391 + 0.566021i \(0.191518\pi\)
\(4\) 0 0
\(5\) 4.15544 1.85837 0.929184 0.369618i \(-0.120511\pi\)
0.929184 + 0.369618i \(0.120511\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 5.15544 1.71848
\(10\) 0 0
\(11\) 1.00000 0.301511
\(12\) 0 0
\(13\) −5.29966 −1.46986 −0.734931 0.678142i \(-0.762786\pi\)
−0.734931 + 0.678142i \(0.762786\pi\)
\(14\) 0 0
\(15\) 11.8670 3.06404
\(16\) 0 0
\(17\) −4.41188 −1.07004 −0.535019 0.844840i \(-0.679696\pi\)
−0.535019 + 0.844840i \(0.679696\pi\)
\(18\) 0 0
\(19\) 5.71155 1.31032 0.655159 0.755491i \(-0.272602\pi\)
0.655159 + 0.755491i \(0.272602\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −3.55611 −0.741500 −0.370750 0.928733i \(-0.620899\pi\)
−0.370750 + 0.928733i \(0.620899\pi\)
\(24\) 0 0
\(25\) 12.2677 2.45353
\(26\) 0 0
\(27\) 6.15544 1.18461
\(28\) 0 0
\(29\) −0.599328 −0.111292 −0.0556462 0.998451i \(-0.517722\pi\)
−0.0556462 + 0.998451i \(0.517722\pi\)
\(30\) 0 0
\(31\) −4.56732 −0.820314 −0.410157 0.912015i \(-0.634526\pi\)
−0.410157 + 0.912015i \(0.634526\pi\)
\(32\) 0 0
\(33\) 2.85577 0.497126
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 6.15544 1.01195 0.505974 0.862549i \(-0.331133\pi\)
0.505974 + 0.862549i \(0.331133\pi\)
\(38\) 0 0
\(39\) −15.1346 −2.42348
\(40\) 0 0
\(41\) 4.41188 0.689020 0.344510 0.938783i \(-0.388045\pi\)
0.344510 + 0.938783i \(0.388045\pi\)
\(42\) 0 0
\(43\) 3.71155 0.566005 0.283003 0.959119i \(-0.408669\pi\)
0.283003 + 0.959119i \(0.408669\pi\)
\(44\) 0 0
\(45\) 21.4231 3.19357
\(46\) 0 0
\(47\) −5.01121 −0.730960 −0.365480 0.930819i \(-0.619095\pi\)
−0.365480 + 0.930819i \(0.619095\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −12.5993 −1.76426
\(52\) 0 0
\(53\) 8.31087 1.14159 0.570793 0.821094i \(-0.306636\pi\)
0.570793 + 0.821094i \(0.306636\pi\)
\(54\) 0 0
\(55\) 4.15544 0.560319
\(56\) 0 0
\(57\) 16.3109 2.16043
\(58\) 0 0
\(59\) 5.14423 0.669721 0.334861 0.942268i \(-0.391311\pi\)
0.334861 + 0.942268i \(0.391311\pi\)
\(60\) 0 0
\(61\) −13.6105 −1.74265 −0.871325 0.490706i \(-0.836739\pi\)
−0.871325 + 0.490706i \(0.836739\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −22.0224 −2.73154
\(66\) 0 0
\(67\) −0.443892 −0.0542300 −0.0271150 0.999632i \(-0.508632\pi\)
−0.0271150 + 0.999632i \(0.508632\pi\)
\(68\) 0 0
\(69\) −10.1554 −1.22257
\(70\) 0 0
\(71\) 4.75476 0.564287 0.282143 0.959372i \(-0.408955\pi\)
0.282143 + 0.959372i \(0.408955\pi\)
\(72\) 0 0
\(73\) 8.41188 0.984536 0.492268 0.870444i \(-0.336168\pi\)
0.492268 + 0.870444i \(0.336168\pi\)
\(74\) 0 0
\(75\) 35.0336 4.04533
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −8.02242 −0.902593 −0.451296 0.892374i \(-0.649038\pi\)
−0.451296 + 0.892374i \(0.649038\pi\)
\(80\) 0 0
\(81\) 2.11222 0.234691
\(82\) 0 0
\(83\) −8.82376 −0.968534 −0.484267 0.874920i \(-0.660914\pi\)
−0.484267 + 0.874920i \(0.660914\pi\)
\(84\) 0 0
\(85\) −18.3333 −1.98852
\(86\) 0 0
\(87\) −1.71155 −0.183497
\(88\) 0 0
\(89\) −7.57853 −0.803322 −0.401661 0.915788i \(-0.631567\pi\)
−0.401661 + 0.915788i \(0.631567\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −13.0432 −1.35252
\(94\) 0 0
\(95\) 23.7340 2.43505
\(96\) 0 0
\(97\) −13.8670 −1.40798 −0.703989 0.710211i \(-0.748600\pi\)
−0.703989 + 0.710211i \(0.748600\pi\)
\(98\) 0 0
\(99\) 5.15544 0.518141
\(100\) 0 0
\(101\) 2.70034 0.268693 0.134347 0.990934i \(-0.457106\pi\)
0.134347 + 0.990934i \(0.457106\pi\)
\(102\) 0 0
\(103\) −6.41188 −0.631781 −0.315891 0.948796i \(-0.602303\pi\)
−0.315891 + 0.948796i \(0.602303\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 8.31087 0.803442 0.401721 0.915762i \(-0.368412\pi\)
0.401721 + 0.915762i \(0.368412\pi\)
\(108\) 0 0
\(109\) −15.1346 −1.44964 −0.724818 0.688941i \(-0.758076\pi\)
−0.724818 + 0.688941i \(0.758076\pi\)
\(110\) 0 0
\(111\) 17.5785 1.66848
\(112\) 0 0
\(113\) −15.8894 −1.49475 −0.747375 0.664403i \(-0.768686\pi\)
−0.747375 + 0.664403i \(0.768686\pi\)
\(114\) 0 0
\(115\) −14.7772 −1.37798
\(116\) 0 0
\(117\) −27.3221 −2.52593
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 0 0
\(123\) 12.5993 1.13604
\(124\) 0 0
\(125\) 30.2003 2.70119
\(126\) 0 0
\(127\) 15.1122 1.34099 0.670496 0.741913i \(-0.266081\pi\)
0.670496 + 0.741913i \(0.266081\pi\)
\(128\) 0 0
\(129\) 10.5993 0.933219
\(130\) 0 0
\(131\) 3.68913 0.322321 0.161160 0.986928i \(-0.448476\pi\)
0.161160 + 0.986928i \(0.448476\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 25.5785 2.20145
\(136\) 0 0
\(137\) 3.04322 0.260000 0.130000 0.991514i \(-0.458502\pi\)
0.130000 + 0.991514i \(0.458502\pi\)
\(138\) 0 0
\(139\) −10.9102 −0.925391 −0.462696 0.886517i \(-0.653118\pi\)
−0.462696 + 0.886517i \(0.653118\pi\)
\(140\) 0 0
\(141\) −14.3109 −1.20519
\(142\) 0 0
\(143\) −5.29966 −0.443180
\(144\) 0 0
\(145\) −2.49047 −0.206822
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 7.19866 0.589737 0.294868 0.955538i \(-0.404724\pi\)
0.294868 + 0.955538i \(0.404724\pi\)
\(150\) 0 0
\(151\) −8.02242 −0.652855 −0.326428 0.945222i \(-0.605845\pi\)
−0.326428 + 0.945222i \(0.605845\pi\)
\(152\) 0 0
\(153\) −22.7452 −1.83884
\(154\) 0 0
\(155\) −18.9792 −1.52445
\(156\) 0 0
\(157\) −3.84456 −0.306830 −0.153415 0.988162i \(-0.549027\pi\)
−0.153415 + 0.988162i \(0.549027\pi\)
\(158\) 0 0
\(159\) 23.7340 1.88223
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −14.0224 −1.09832 −0.549160 0.835717i \(-0.685052\pi\)
−0.549160 + 0.835717i \(0.685052\pi\)
\(164\) 0 0
\(165\) 11.8670 0.923843
\(166\) 0 0
\(167\) −19.1122 −1.47895 −0.739474 0.673185i \(-0.764926\pi\)
−0.739474 + 0.673185i \(0.764926\pi\)
\(168\) 0 0
\(169\) 15.0864 1.16050
\(170\) 0 0
\(171\) 29.4455 2.25175
\(172\) 0 0
\(173\) −19.3221 −1.46903 −0.734515 0.678592i \(-0.762590\pi\)
−0.734515 + 0.678592i \(0.762590\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 14.6907 1.10422
\(178\) 0 0
\(179\) 6.73235 0.503199 0.251600 0.967831i \(-0.419043\pi\)
0.251600 + 0.967831i \(0.419043\pi\)
\(180\) 0 0
\(181\) 7.64255 0.568066 0.284033 0.958814i \(-0.408327\pi\)
0.284033 + 0.958814i \(0.408327\pi\)
\(182\) 0 0
\(183\) −38.8686 −2.87325
\(184\) 0 0
\(185\) 25.5785 1.88057
\(186\) 0 0
\(187\) −4.41188 −0.322629
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −1.84456 −0.133468 −0.0667340 0.997771i \(-0.521258\pi\)
−0.0667340 + 0.997771i \(0.521258\pi\)
\(192\) 0 0
\(193\) −14.6217 −1.05250 −0.526248 0.850331i \(-0.676402\pi\)
−0.526248 + 0.850331i \(0.676402\pi\)
\(194\) 0 0
\(195\) −62.8910 −4.50372
\(196\) 0 0
\(197\) −6.00000 −0.427482 −0.213741 0.976890i \(-0.568565\pi\)
−0.213741 + 0.976890i \(0.568565\pi\)
\(198\) 0 0
\(199\) 10.2099 0.723758 0.361879 0.932225i \(-0.382135\pi\)
0.361879 + 0.932225i \(0.382135\pi\)
\(200\) 0 0
\(201\) −1.26765 −0.0894134
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 18.3333 1.28045
\(206\) 0 0
\(207\) −18.3333 −1.27425
\(208\) 0 0
\(209\) 5.71155 0.395076
\(210\) 0 0
\(211\) 16.3109 1.12289 0.561443 0.827515i \(-0.310246\pi\)
0.561443 + 0.827515i \(0.310246\pi\)
\(212\) 0 0
\(213\) 13.5785 0.930385
\(214\) 0 0
\(215\) 15.4231 1.05185
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 24.0224 1.62328
\(220\) 0 0
\(221\) 23.3815 1.57281
\(222\) 0 0
\(223\) 13.0802 0.875915 0.437958 0.898996i \(-0.355702\pi\)
0.437958 + 0.898996i \(0.355702\pi\)
\(224\) 0 0
\(225\) 63.2451 4.21634
\(226\) 0 0
\(227\) 16.6217 1.10322 0.551612 0.834101i \(-0.314013\pi\)
0.551612 + 0.834101i \(0.314013\pi\)
\(228\) 0 0
\(229\) −22.1779 −1.46555 −0.732777 0.680469i \(-0.761776\pi\)
−0.732777 + 0.680469i \(0.761776\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −12.5993 −0.825409 −0.412705 0.910865i \(-0.635416\pi\)
−0.412705 + 0.910865i \(0.635416\pi\)
\(234\) 0 0
\(235\) −20.8238 −1.35839
\(236\) 0 0
\(237\) −22.9102 −1.48818
\(238\) 0 0
\(239\) 14.2244 0.920102 0.460051 0.887892i \(-0.347831\pi\)
0.460051 + 0.887892i \(0.347831\pi\)
\(240\) 0 0
\(241\) 0.101008 0.00650648 0.00325324 0.999995i \(-0.498964\pi\)
0.00325324 + 0.999995i \(0.498964\pi\)
\(242\) 0 0
\(243\) −12.4343 −0.797661
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −30.2693 −1.92599
\(248\) 0 0
\(249\) −25.1987 −1.59690
\(250\) 0 0
\(251\) 25.9680 1.63908 0.819542 0.573018i \(-0.194228\pi\)
0.819542 + 0.573018i \(0.194228\pi\)
\(252\) 0 0
\(253\) −3.55611 −0.223571
\(254\) 0 0
\(255\) −52.3557 −3.27864
\(256\) 0 0
\(257\) −2.57691 −0.160743 −0.0803716 0.996765i \(-0.525611\pi\)
−0.0803716 + 0.996765i \(0.525611\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −3.08980 −0.191254
\(262\) 0 0
\(263\) 20.3109 1.25242 0.626211 0.779654i \(-0.284605\pi\)
0.626211 + 0.779654i \(0.284605\pi\)
\(264\) 0 0
\(265\) 34.5353 2.12149
\(266\) 0 0
\(267\) −21.6425 −1.32450
\(268\) 0 0
\(269\) −2.82376 −0.172168 −0.0860839 0.996288i \(-0.527435\pi\)
−0.0860839 + 0.996288i \(0.527435\pi\)
\(270\) 0 0
\(271\) −4.82376 −0.293023 −0.146511 0.989209i \(-0.546804\pi\)
−0.146511 + 0.989209i \(0.546804\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 12.2677 0.739767
\(276\) 0 0
\(277\) 13.7340 0.825194 0.412597 0.910914i \(-0.364622\pi\)
0.412597 + 0.910914i \(0.364622\pi\)
\(278\) 0 0
\(279\) −23.5465 −1.40969
\(280\) 0 0
\(281\) −20.9102 −1.24740 −0.623699 0.781665i \(-0.714371\pi\)
−0.623699 + 0.781665i \(0.714371\pi\)
\(282\) 0 0
\(283\) 5.19866 0.309028 0.154514 0.987991i \(-0.450619\pi\)
0.154514 + 0.987991i \(0.450619\pi\)
\(284\) 0 0
\(285\) 67.7788 4.01487
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 2.46469 0.144982
\(290\) 0 0
\(291\) −39.6009 −2.32145
\(292\) 0 0
\(293\) 17.8574 1.04324 0.521620 0.853178i \(-0.325328\pi\)
0.521620 + 0.853178i \(0.325328\pi\)
\(294\) 0 0
\(295\) 21.3765 1.24459
\(296\) 0 0
\(297\) 6.15544 0.357175
\(298\) 0 0
\(299\) 18.8462 1.08990
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 7.71155 0.443017
\(304\) 0 0
\(305\) −56.5577 −3.23849
\(306\) 0 0
\(307\) 32.6217 1.86182 0.930911 0.365247i \(-0.119015\pi\)
0.930911 + 0.365247i \(0.119015\pi\)
\(308\) 0 0
\(309\) −18.3109 −1.04167
\(310\) 0 0
\(311\) 25.0560 1.42080 0.710399 0.703799i \(-0.248515\pi\)
0.710399 + 0.703799i \(0.248515\pi\)
\(312\) 0 0
\(313\) 19.8894 1.12422 0.562108 0.827064i \(-0.309991\pi\)
0.562108 + 0.827064i \(0.309991\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −9.04322 −0.507918 −0.253959 0.967215i \(-0.581733\pi\)
−0.253959 + 0.967215i \(0.581733\pi\)
\(318\) 0 0
\(319\) −0.599328 −0.0335559
\(320\) 0 0
\(321\) 23.7340 1.32470
\(322\) 0 0
\(323\) −25.1987 −1.40209
\(324\) 0 0
\(325\) −65.0144 −3.60635
\(326\) 0 0
\(327\) −43.2211 −2.39013
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 29.8894 1.64287 0.821435 0.570302i \(-0.193174\pi\)
0.821435 + 0.570302i \(0.193174\pi\)
\(332\) 0 0
\(333\) 31.7340 1.73901
\(334\) 0 0
\(335\) −1.84456 −0.100779
\(336\) 0 0
\(337\) 3.97758 0.216673 0.108336 0.994114i \(-0.465448\pi\)
0.108336 + 0.994114i \(0.465448\pi\)
\(338\) 0 0
\(339\) −45.3765 −2.46451
\(340\) 0 0
\(341\) −4.56732 −0.247334
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −42.2003 −2.27199
\(346\) 0 0
\(347\) −2.82376 −0.151587 −0.0757937 0.997124i \(-0.524149\pi\)
−0.0757937 + 0.997124i \(0.524149\pi\)
\(348\) 0 0
\(349\) 12.7868 0.684460 0.342230 0.939616i \(-0.388818\pi\)
0.342230 + 0.939616i \(0.388818\pi\)
\(350\) 0 0
\(351\) −32.6217 −1.74122
\(352\) 0 0
\(353\) −33.9758 −1.80835 −0.904176 0.427161i \(-0.859514\pi\)
−0.904176 + 0.427161i \(0.859514\pi\)
\(354\) 0 0
\(355\) 19.7581 1.04865
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −11.1346 −0.587664 −0.293832 0.955857i \(-0.594931\pi\)
−0.293832 + 0.955857i \(0.594931\pi\)
\(360\) 0 0
\(361\) 13.6217 0.716934
\(362\) 0 0
\(363\) 2.85577 0.149889
\(364\) 0 0
\(365\) 34.9550 1.82963
\(366\) 0 0
\(367\) −24.3653 −1.27186 −0.635929 0.771747i \(-0.719383\pi\)
−0.635929 + 0.771747i \(0.719383\pi\)
\(368\) 0 0
\(369\) 22.7452 1.18407
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 21.1122 1.09315 0.546575 0.837410i \(-0.315931\pi\)
0.546575 + 0.837410i \(0.315931\pi\)
\(374\) 0 0
\(375\) 86.2451 4.45368
\(376\) 0 0
\(377\) 3.17624 0.163585
\(378\) 0 0
\(379\) 10.0914 0.518361 0.259181 0.965829i \(-0.416548\pi\)
0.259181 + 0.965829i \(0.416548\pi\)
\(380\) 0 0
\(381\) 43.1571 2.21100
\(382\) 0 0
\(383\) −37.4359 −1.91289 −0.956443 0.291919i \(-0.905706\pi\)
−0.956443 + 0.291919i \(0.905706\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 19.1346 0.972668
\(388\) 0 0
\(389\) 17.3541 0.879887 0.439944 0.898025i \(-0.354998\pi\)
0.439944 + 0.898025i \(0.354998\pi\)
\(390\) 0 0
\(391\) 15.6891 0.793433
\(392\) 0 0
\(393\) 10.5353 0.531436
\(394\) 0 0
\(395\) −33.3367 −1.67735
\(396\) 0 0
\(397\) 18.0448 0.905644 0.452822 0.891601i \(-0.350417\pi\)
0.452822 + 0.891601i \(0.350417\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 2.57691 0.128685 0.0643424 0.997928i \(-0.479505\pi\)
0.0643424 + 0.997928i \(0.479505\pi\)
\(402\) 0 0
\(403\) 24.2052 1.20575
\(404\) 0 0
\(405\) 8.77718 0.436142
\(406\) 0 0
\(407\) 6.15544 0.305114
\(408\) 0 0
\(409\) 25.0336 1.23783 0.618917 0.785457i \(-0.287572\pi\)
0.618917 + 0.785457i \(0.287572\pi\)
\(410\) 0 0
\(411\) 8.69074 0.428683
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −36.6666 −1.79989
\(416\) 0 0
\(417\) −31.1571 −1.52577
\(418\) 0 0
\(419\) −3.56570 −0.174196 −0.0870979 0.996200i \(-0.527759\pi\)
−0.0870979 + 0.996200i \(0.527759\pi\)
\(420\) 0 0
\(421\) 4.31087 0.210099 0.105050 0.994467i \(-0.466500\pi\)
0.105050 + 0.994467i \(0.466500\pi\)
\(422\) 0 0
\(423\) −25.8350 −1.25614
\(424\) 0 0
\(425\) −54.1234 −2.62537
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −15.1346 −0.730707
\(430\) 0 0
\(431\) 14.5577 0.701221 0.350610 0.936521i \(-0.385974\pi\)
0.350610 + 0.936521i \(0.385974\pi\)
\(432\) 0 0
\(433\) 0.357452 0.0171780 0.00858902 0.999963i \(-0.497266\pi\)
0.00858902 + 0.999963i \(0.497266\pi\)
\(434\) 0 0
\(435\) −7.11222 −0.341005
\(436\) 0 0
\(437\) −20.3109 −0.971601
\(438\) 0 0
\(439\) 14.2885 0.681951 0.340975 0.940072i \(-0.389243\pi\)
0.340975 + 0.940072i \(0.389243\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 8.95678 0.425549 0.212775 0.977101i \(-0.431750\pi\)
0.212775 + 0.977101i \(0.431750\pi\)
\(444\) 0 0
\(445\) −31.4921 −1.49287
\(446\) 0 0
\(447\) 20.5577 0.972347
\(448\) 0 0
\(449\) 0.379870 0.0179272 0.00896359 0.999960i \(-0.497147\pi\)
0.00896359 + 0.999960i \(0.497147\pi\)
\(450\) 0 0
\(451\) 4.41188 0.207747
\(452\) 0 0
\(453\) −22.9102 −1.07642
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −26.3557 −1.23287 −0.616434 0.787407i \(-0.711423\pi\)
−0.616434 + 0.787407i \(0.711423\pi\)
\(458\) 0 0
\(459\) −27.1571 −1.26758
\(460\) 0 0
\(461\) −38.4343 −1.79006 −0.895032 0.446002i \(-0.852847\pi\)
−0.895032 + 0.446002i \(0.852847\pi\)
\(462\) 0 0
\(463\) −1.64255 −0.0763357 −0.0381678 0.999271i \(-0.512152\pi\)
−0.0381678 + 0.999271i \(0.512152\pi\)
\(464\) 0 0
\(465\) −54.2003 −2.51348
\(466\) 0 0
\(467\) −5.65712 −0.261780 −0.130890 0.991397i \(-0.541783\pi\)
−0.130890 + 0.991397i \(0.541783\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −10.9792 −0.505895
\(472\) 0 0
\(473\) 3.71155 0.170657
\(474\) 0 0
\(475\) 70.0673 3.21491
\(476\) 0 0
\(477\) 42.8462 1.96179
\(478\) 0 0
\(479\) −32.8238 −1.49976 −0.749878 0.661576i \(-0.769888\pi\)
−0.749878 + 0.661576i \(0.769888\pi\)
\(480\) 0 0
\(481\) −32.6217 −1.48742
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −57.6234 −2.61654
\(486\) 0 0
\(487\) −6.53033 −0.295918 −0.147959 0.988994i \(-0.547270\pi\)
−0.147959 + 0.988994i \(0.547270\pi\)
\(488\) 0 0
\(489\) −40.0448 −1.81089
\(490\) 0 0
\(491\) 31.4455 1.41912 0.709558 0.704647i \(-0.248895\pi\)
0.709558 + 0.704647i \(0.248895\pi\)
\(492\) 0 0
\(493\) 2.64416 0.119087
\(494\) 0 0
\(495\) 21.4231 0.962896
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 23.6699 1.05961 0.529806 0.848119i \(-0.322265\pi\)
0.529806 + 0.848119i \(0.322265\pi\)
\(500\) 0 0
\(501\) −54.5801 −2.43846
\(502\) 0 0
\(503\) −5.57355 −0.248512 −0.124256 0.992250i \(-0.539654\pi\)
−0.124256 + 0.992250i \(0.539654\pi\)
\(504\) 0 0
\(505\) 11.2211 0.499331
\(506\) 0 0
\(507\) 43.0834 1.91340
\(508\) 0 0
\(509\) 9.82215 0.435359 0.217679 0.976020i \(-0.430151\pi\)
0.217679 + 0.976020i \(0.430151\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 35.1571 1.55222
\(514\) 0 0
\(515\) −26.6442 −1.17408
\(516\) 0 0
\(517\) −5.01121 −0.220393
\(518\) 0 0
\(519\) −55.1795 −2.42211
\(520\) 0 0
\(521\) −40.1363 −1.75840 −0.879201 0.476452i \(-0.841923\pi\)
−0.879201 + 0.476452i \(0.841923\pi\)
\(522\) 0 0
\(523\) 18.2244 0.796899 0.398449 0.917190i \(-0.369548\pi\)
0.398449 + 0.917190i \(0.369548\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 20.1505 0.877768
\(528\) 0 0
\(529\) −10.3541 −0.450178
\(530\) 0 0
\(531\) 26.5207 1.15090
\(532\) 0 0
\(533\) −23.3815 −1.01276
\(534\) 0 0
\(535\) 34.5353 1.49309
\(536\) 0 0
\(537\) 19.2261 0.829665
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −1.68913 −0.0726212 −0.0363106 0.999341i \(-0.511561\pi\)
−0.0363106 + 0.999341i \(0.511561\pi\)
\(542\) 0 0
\(543\) 21.8254 0.936617
\(544\) 0 0
\(545\) −62.8910 −2.69396
\(546\) 0 0
\(547\) −25.0706 −1.07194 −0.535971 0.844236i \(-0.680054\pi\)
−0.535971 + 0.844236i \(0.680054\pi\)
\(548\) 0 0
\(549\) −70.1683 −2.99471
\(550\) 0 0
\(551\) −3.42309 −0.145829
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 73.0465 3.10065
\(556\) 0 0
\(557\) 26.0448 1.10356 0.551778 0.833991i \(-0.313950\pi\)
0.551778 + 0.833991i \(0.313950\pi\)
\(558\) 0 0
\(559\) −19.6699 −0.831950
\(560\) 0 0
\(561\) −12.5993 −0.531944
\(562\) 0 0
\(563\) 37.4455 1.57814 0.789070 0.614303i \(-0.210563\pi\)
0.789070 + 0.614303i \(0.210563\pi\)
\(564\) 0 0
\(565\) −66.0274 −2.77779
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −7.97758 −0.334438 −0.167219 0.985920i \(-0.553479\pi\)
−0.167219 + 0.985920i \(0.553479\pi\)
\(570\) 0 0
\(571\) 9.19866 0.384952 0.192476 0.981302i \(-0.438348\pi\)
0.192476 + 0.981302i \(0.438348\pi\)
\(572\) 0 0
\(573\) −5.26765 −0.220059
\(574\) 0 0
\(575\) −43.6251 −1.81929
\(576\) 0 0
\(577\) 2.75476 0.114682 0.0573412 0.998355i \(-0.481738\pi\)
0.0573412 + 0.998355i \(0.481738\pi\)
\(578\) 0 0
\(579\) −41.7564 −1.73534
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 8.31087 0.344201
\(584\) 0 0
\(585\) −113.535 −4.69410
\(586\) 0 0
\(587\) −6.20987 −0.256309 −0.128154 0.991754i \(-0.540905\pi\)
−0.128154 + 0.991754i \(0.540905\pi\)
\(588\) 0 0
\(589\) −26.0864 −1.07487
\(590\) 0 0
\(591\) −17.1346 −0.704825
\(592\) 0 0
\(593\) 25.2356 1.03630 0.518152 0.855289i \(-0.326620\pi\)
0.518152 + 0.855289i \(0.326620\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 29.1571 1.19332
\(598\) 0 0
\(599\) −14.6442 −0.598344 −0.299172 0.954199i \(-0.596710\pi\)
−0.299172 + 0.954199i \(0.596710\pi\)
\(600\) 0 0
\(601\) 9.87657 0.402874 0.201437 0.979501i \(-0.435439\pi\)
0.201437 + 0.979501i \(0.435439\pi\)
\(602\) 0 0
\(603\) −2.28845 −0.0931931
\(604\) 0 0
\(605\) 4.15544 0.168943
\(606\) 0 0
\(607\) −47.1571 −1.91405 −0.957023 0.290012i \(-0.906341\pi\)
−0.957023 + 0.290012i \(0.906341\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 26.5577 1.07441
\(612\) 0 0
\(613\) 6.10886 0.246734 0.123367 0.992361i \(-0.460631\pi\)
0.123367 + 0.992361i \(0.460631\pi\)
\(614\) 0 0
\(615\) 52.3557 2.11119
\(616\) 0 0
\(617\) −29.3815 −1.18285 −0.591427 0.806359i \(-0.701435\pi\)
−0.591427 + 0.806359i \(0.701435\pi\)
\(618\) 0 0
\(619\) 17.4551 0.701580 0.350790 0.936454i \(-0.385913\pi\)
0.350790 + 0.936454i \(0.385913\pi\)
\(620\) 0 0
\(621\) −21.8894 −0.878391
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 64.1571 2.56628
\(626\) 0 0
\(627\) 16.3109 0.651394
\(628\) 0 0
\(629\) −27.1571 −1.08282
\(630\) 0 0
\(631\) −49.6234 −1.97547 −0.987737 0.156124i \(-0.950100\pi\)
−0.987737 + 0.156124i \(0.950100\pi\)
\(632\) 0 0
\(633\) 46.5801 1.85139
\(634\) 0 0
\(635\) 62.7979 2.49206
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 24.5129 0.969715
\(640\) 0 0
\(641\) 22.1554 0.875087 0.437544 0.899197i \(-0.355849\pi\)
0.437544 + 0.899197i \(0.355849\pi\)
\(642\) 0 0
\(643\) −2.07685 −0.0819029 −0.0409514 0.999161i \(-0.513039\pi\)
−0.0409514 + 0.999161i \(0.513039\pi\)
\(644\) 0 0
\(645\) 44.0448 1.73426
\(646\) 0 0
\(647\) −3.67953 −0.144657 −0.0723287 0.997381i \(-0.523043\pi\)
−0.0723287 + 0.997381i \(0.523043\pi\)
\(648\) 0 0
\(649\) 5.14423 0.201929
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −35.0016 −1.36972 −0.684860 0.728675i \(-0.740136\pi\)
−0.684860 + 0.728675i \(0.740136\pi\)
\(654\) 0 0
\(655\) 15.3299 0.598990
\(656\) 0 0
\(657\) 43.3669 1.69190
\(658\) 0 0
\(659\) 48.0673 1.87243 0.936217 0.351422i \(-0.114302\pi\)
0.936217 + 0.351422i \(0.114302\pi\)
\(660\) 0 0
\(661\) 41.3989 1.61023 0.805116 0.593118i \(-0.202103\pi\)
0.805116 + 0.593118i \(0.202103\pi\)
\(662\) 0 0
\(663\) 66.7722 2.59322
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 2.13128 0.0825233
\(668\) 0 0
\(669\) 37.3541 1.44419
\(670\) 0 0
\(671\) −13.6105 −0.525429
\(672\) 0 0
\(673\) 17.9360 0.691381 0.345691 0.938349i \(-0.387645\pi\)
0.345691 + 0.938349i \(0.387645\pi\)
\(674\) 0 0
\(675\) 75.5128 2.90649
\(676\) 0 0
\(677\) −18.6363 −0.716252 −0.358126 0.933673i \(-0.616584\pi\)
−0.358126 + 0.933673i \(0.616584\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 47.4679 1.81897
\(682\) 0 0
\(683\) −1.19866 −0.0458653 −0.0229327 0.999737i \(-0.507300\pi\)
−0.0229327 + 0.999737i \(0.507300\pi\)
\(684\) 0 0
\(685\) 12.6459 0.483175
\(686\) 0 0
\(687\) −63.3349 −2.41638
\(688\) 0 0
\(689\) −44.0448 −1.67797
\(690\) 0 0
\(691\) 47.7884 1.81796 0.908978 0.416844i \(-0.136864\pi\)
0.908978 + 0.416844i \(0.136864\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −45.3367 −1.71972
\(696\) 0 0
\(697\) −19.4647 −0.737278
\(698\) 0 0
\(699\) −35.9808 −1.36092
\(700\) 0 0
\(701\) −6.51289 −0.245988 −0.122994 0.992407i \(-0.539250\pi\)
−0.122994 + 0.992407i \(0.539250\pi\)
\(702\) 0 0
\(703\) 35.1571 1.32597
\(704\) 0 0
\(705\) −59.4679 −2.23969
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −20.1554 −0.756953 −0.378477 0.925611i \(-0.623552\pi\)
−0.378477 + 0.925611i \(0.623552\pi\)
\(710\) 0 0
\(711\) −41.3591 −1.55109
\(712\) 0 0
\(713\) 16.2419 0.608263
\(714\) 0 0
\(715\) −22.0224 −0.823592
\(716\) 0 0
\(717\) 40.6217 1.51705
\(718\) 0 0
\(719\) 27.6795 1.03227 0.516136 0.856507i \(-0.327370\pi\)
0.516136 + 0.856507i \(0.327370\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0.288455 0.0107278
\(724\) 0 0
\(725\) −7.35235 −0.273059
\(726\) 0 0
\(727\) −14.3429 −0.531948 −0.265974 0.963980i \(-0.585694\pi\)
−0.265974 + 0.963980i \(0.585694\pi\)
\(728\) 0 0
\(729\) −41.8462 −1.54986
\(730\) 0 0
\(731\) −16.3749 −0.605647
\(732\) 0 0
\(733\) 6.16826 0.227830 0.113915 0.993491i \(-0.463661\pi\)
0.113915 + 0.993491i \(0.463661\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −0.443892 −0.0163510
\(738\) 0 0
\(739\) −25.3367 −0.932024 −0.466012 0.884778i \(-0.654310\pi\)
−0.466012 + 0.884778i \(0.654310\pi\)
\(740\) 0 0
\(741\) −86.4421 −3.17553
\(742\) 0 0
\(743\) 33.2435 1.21959 0.609793 0.792561i \(-0.291253\pi\)
0.609793 + 0.792561i \(0.291253\pi\)
\(744\) 0 0
\(745\) 29.9136 1.09595
\(746\) 0 0
\(747\) −45.4903 −1.66440
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 12.7548 0.465428 0.232714 0.972545i \(-0.425239\pi\)
0.232714 + 0.972545i \(0.425239\pi\)
\(752\) 0 0
\(753\) 74.1587 2.70249
\(754\) 0 0
\(755\) −33.3367 −1.21324
\(756\) 0 0
\(757\) −21.4679 −0.780265 −0.390133 0.920759i \(-0.627571\pi\)
−0.390133 + 0.920759i \(0.627571\pi\)
\(758\) 0 0
\(759\) −10.1554 −0.368619
\(760\) 0 0
\(761\) 40.1458 1.45529 0.727643 0.685956i \(-0.240616\pi\)
0.727643 + 0.685956i \(0.240616\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −94.5161 −3.41724
\(766\) 0 0
\(767\) −27.2627 −0.984398
\(768\) 0 0
\(769\) −0.145844 −0.00525927 −0.00262964 0.999997i \(-0.500837\pi\)
−0.00262964 + 0.999997i \(0.500837\pi\)
\(770\) 0 0
\(771\) −7.35907 −0.265030
\(772\) 0 0
\(773\) 20.4713 0.736301 0.368150 0.929766i \(-0.379991\pi\)
0.368150 + 0.929766i \(0.379991\pi\)
\(774\) 0 0
\(775\) −56.0303 −2.01267
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 25.1987 0.902836
\(780\) 0 0
\(781\) 4.75476 0.170139
\(782\) 0 0
\(783\) −3.68913 −0.131839
\(784\) 0 0
\(785\) −15.9758 −0.570202
\(786\) 0 0
\(787\) −5.75638 −0.205193 −0.102596 0.994723i \(-0.532715\pi\)
−0.102596 + 0.994723i \(0.532715\pi\)
\(788\) 0 0
\(789\) 58.0032 2.06497
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 72.1313 2.56146
\(794\) 0 0
\(795\) 98.6250 3.49787
\(796\) 0 0
\(797\) −33.0432 −1.17045 −0.585225 0.810871i \(-0.698994\pi\)
−0.585225 + 0.810871i \(0.698994\pi\)
\(798\) 0 0
\(799\) 22.1089 0.782155
\(800\) 0 0
\(801\) −39.0706 −1.38049
\(802\) 0 0
\(803\) 8.41188 0.296849
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −8.06402 −0.283867
\(808\) 0 0
\(809\) −29.4679 −1.03604 −0.518019 0.855369i \(-0.673330\pi\)
−0.518019 + 0.855369i \(0.673330\pi\)
\(810\) 0 0
\(811\) 13.5095 0.474384 0.237192 0.971463i \(-0.423773\pi\)
0.237192 + 0.971463i \(0.423773\pi\)
\(812\) 0 0
\(813\) −13.7756 −0.483130
\(814\) 0 0
\(815\) −58.2693 −2.04108
\(816\) 0 0
\(817\) 21.1987 0.741647
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −21.5960 −0.753705 −0.376852 0.926273i \(-0.622994\pi\)
−0.376852 + 0.926273i \(0.622994\pi\)
\(822\) 0 0
\(823\) 8.64591 0.301377 0.150689 0.988581i \(-0.451851\pi\)
0.150689 + 0.988581i \(0.451851\pi\)
\(824\) 0 0
\(825\) 35.0336 1.21971
\(826\) 0 0
\(827\) −10.1089 −0.351519 −0.175760 0.984433i \(-0.556238\pi\)
−0.175760 + 0.984433i \(0.556238\pi\)
\(828\) 0 0
\(829\) −20.4663 −0.710824 −0.355412 0.934710i \(-0.615659\pi\)
−0.355412 + 0.934710i \(0.615659\pi\)
\(830\) 0 0
\(831\) 39.2211 1.36056
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −79.4196 −2.74843
\(836\) 0 0
\(837\) −28.1138 −0.971756
\(838\) 0 0
\(839\) 27.6795 0.955604 0.477802 0.878468i \(-0.341434\pi\)
0.477802 + 0.878468i \(0.341434\pi\)
\(840\) 0 0
\(841\) −28.6408 −0.987614
\(842\) 0 0
\(843\) −59.7148 −2.05669
\(844\) 0 0
\(845\) 62.6907 2.15663
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 14.8462 0.509520
\(850\) 0 0
\(851\) −21.8894 −0.750359
\(852\) 0 0
\(853\) 55.1009 1.88662 0.943309 0.331915i \(-0.107695\pi\)
0.943309 + 0.331915i \(0.107695\pi\)
\(854\) 0 0
\(855\) 122.359 4.18459
\(856\) 0 0
\(857\) 43.5689 1.48829 0.744143 0.668020i \(-0.232858\pi\)
0.744143 + 0.668020i \(0.232858\pi\)
\(858\) 0 0
\(859\) −9.45510 −0.322604 −0.161302 0.986905i \(-0.551569\pi\)
−0.161302 + 0.986905i \(0.551569\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −9.77557 −0.332764 −0.166382 0.986061i \(-0.553209\pi\)
−0.166382 + 0.986061i \(0.553209\pi\)
\(864\) 0 0
\(865\) −80.2917 −2.73000
\(866\) 0 0
\(867\) 7.03860 0.239043
\(868\) 0 0
\(869\) −8.02242 −0.272142
\(870\) 0 0
\(871\) 2.35248 0.0797106
\(872\) 0 0
\(873\) −71.4903 −2.41958
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 3.44551 0.116347 0.0581733 0.998307i \(-0.481472\pi\)
0.0581733 + 0.998307i \(0.481472\pi\)
\(878\) 0 0
\(879\) 50.9966 1.72007
\(880\) 0 0
\(881\) 11.7805 0.396897 0.198448 0.980111i \(-0.436410\pi\)
0.198448 + 0.980111i \(0.436410\pi\)
\(882\) 0 0
\(883\) 16.0448 0.539952 0.269976 0.962867i \(-0.412984\pi\)
0.269976 + 0.962867i \(0.412984\pi\)
\(884\) 0 0
\(885\) 61.0465 2.05205
\(886\) 0 0
\(887\) −46.2885 −1.55421 −0.777107 0.629368i \(-0.783314\pi\)
−0.777107 + 0.629368i \(0.783314\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 2.11222 0.0707619
\(892\) 0 0
\(893\) −28.6217 −0.957790
\(894\) 0 0
\(895\) 27.9758 0.935129
\(896\) 0 0
\(897\) 53.8204 1.79701
\(898\) 0 0
\(899\) 2.73732 0.0912948
\(900\) 0 0
\(901\) −36.6666 −1.22154
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 31.7581 1.05568
\(906\) 0 0
\(907\) −8.37489 −0.278084 −0.139042 0.990286i \(-0.544402\pi\)
−0.139042 + 0.990286i \(0.544402\pi\)
\(908\) 0 0
\(909\) 13.9214 0.461744
\(910\) 0 0
\(911\) −36.2469 −1.20091 −0.600456 0.799658i \(-0.705014\pi\)
−0.600456 + 0.799658i \(0.705014\pi\)
\(912\) 0 0
\(913\) −8.82376 −0.292024
\(914\) 0 0
\(915\) −161.516 −5.33955
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 5.60269 0.184816 0.0924078 0.995721i \(-0.470544\pi\)
0.0924078 + 0.995721i \(0.470544\pi\)
\(920\) 0 0
\(921\) 93.1603 3.06974
\(922\) 0 0
\(923\) −25.1987 −0.829424
\(924\) 0 0
\(925\) 75.5128 2.48284
\(926\) 0 0
\(927\) −33.0560 −1.08570
\(928\) 0 0
\(929\) −25.7980 −0.846404 −0.423202 0.906035i \(-0.639094\pi\)
−0.423202 + 0.906035i \(0.639094\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 71.5544 2.34258
\(934\) 0 0
\(935\) −18.3333 −0.599563
\(936\) 0 0
\(937\) −60.8124 −1.98666 −0.993328 0.115326i \(-0.963209\pi\)
−0.993328 + 0.115326i \(0.963209\pi\)
\(938\) 0 0
\(939\) 56.7996 1.85358
\(940\) 0 0
\(941\) −42.2771 −1.37819 −0.689097 0.724669i \(-0.741993\pi\)
−0.689097 + 0.724669i \(0.741993\pi\)
\(942\) 0 0
\(943\) −15.6891 −0.510908
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −29.4405 −0.956689 −0.478344 0.878172i \(-0.658763\pi\)
−0.478344 + 0.878172i \(0.658763\pi\)
\(948\) 0 0
\(949\) −44.5801 −1.44713
\(950\) 0 0
\(951\) −25.8254 −0.837445
\(952\) 0 0
\(953\) −24.5801 −0.796229 −0.398114 0.917336i \(-0.630335\pi\)
−0.398114 + 0.917336i \(0.630335\pi\)
\(954\) 0 0
\(955\) −7.66497 −0.248032
\(956\) 0 0
\(957\) −1.71155 −0.0553264
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −10.1396 −0.327084
\(962\) 0 0
\(963\) 42.8462 1.38070
\(964\) 0 0
\(965\) −60.7597 −1.95593
\(966\) 0 0
\(967\) −12.6442 −0.406609 −0.203304 0.979116i \(-0.565168\pi\)
−0.203304 + 0.979116i \(0.565168\pi\)
\(968\) 0 0
\(969\) −71.9616 −2.31174
\(970\) 0 0
\(971\) 39.6795 1.27338 0.636688 0.771121i \(-0.280304\pi\)
0.636688 + 0.771121i \(0.280304\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) −185.666 −5.94609
\(976\) 0 0
\(977\) 47.1745 1.50925 0.754623 0.656159i \(-0.227820\pi\)
0.754623 + 0.656159i \(0.227820\pi\)
\(978\) 0 0
\(979\) −7.57853 −0.242211
\(980\) 0 0
\(981\) −78.0257 −2.49117
\(982\) 0 0
\(983\) 51.6795 1.64832 0.824161 0.566356i \(-0.191647\pi\)
0.824161 + 0.566356i \(0.191647\pi\)
\(984\) 0 0
\(985\) −24.9326 −0.794419
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −13.1987 −0.419693
\(990\) 0 0
\(991\) 55.2211 1.75416 0.877078 0.480349i \(-0.159490\pi\)
0.877078 + 0.480349i \(0.159490\pi\)
\(992\) 0 0
\(993\) 85.3573 2.70873
\(994\) 0 0
\(995\) 42.4264 1.34501
\(996\) 0 0
\(997\) 46.5432 1.47404 0.737018 0.675873i \(-0.236233\pi\)
0.737018 + 0.675873i \(0.236233\pi\)
\(998\) 0 0
\(999\) 37.8894 1.19877
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2156.2.a.j.1.3 3
4.3 odd 2 8624.2.a.cj.1.1 3
7.2 even 3 2156.2.i.k.1145.1 6
7.3 odd 6 2156.2.i.m.177.3 6
7.4 even 3 2156.2.i.k.177.1 6
7.5 odd 6 2156.2.i.m.1145.3 6
7.6 odd 2 308.2.a.c.1.1 3
21.20 even 2 2772.2.a.s.1.3 3
28.27 even 2 1232.2.a.r.1.3 3
35.13 even 4 7700.2.e.p.1849.1 6
35.27 even 4 7700.2.e.p.1849.6 6
35.34 odd 2 7700.2.a.y.1.3 3
56.13 odd 2 4928.2.a.ca.1.3 3
56.27 even 2 4928.2.a.bx.1.1 3
77.76 even 2 3388.2.a.o.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
308.2.a.c.1.1 3 7.6 odd 2
1232.2.a.r.1.3 3 28.27 even 2
2156.2.a.j.1.3 3 1.1 even 1 trivial
2156.2.i.k.177.1 6 7.4 even 3
2156.2.i.k.1145.1 6 7.2 even 3
2156.2.i.m.177.3 6 7.3 odd 6
2156.2.i.m.1145.3 6 7.5 odd 6
2772.2.a.s.1.3 3 21.20 even 2
3388.2.a.o.1.1 3 77.76 even 2
4928.2.a.bx.1.1 3 56.27 even 2
4928.2.a.ca.1.3 3 56.13 odd 2
7700.2.a.y.1.3 3 35.34 odd 2
7700.2.e.p.1849.1 6 35.13 even 4
7700.2.e.p.1849.6 6 35.27 even 4
8624.2.a.cj.1.1 3 4.3 odd 2