Properties

Label 2156.2.c.b.1077.7
Level $2156$
Weight $2$
Character 2156.1077
Analytic conductor $17.216$
Analytic rank $0$
Dimension $16$
CM discriminant -11
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2156,2,Mod(1077,2156)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2156, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2156.1077");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2156 = 2^{2} \cdot 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2156.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(17.2157466758\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: 16.0.395868833065051360220676096.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 12 x^{14} + 134 x^{12} - 24 x^{11} - 524 x^{10} - 648 x^{9} + 567 x^{8} - 384 x^{7} + \cdots + 97582 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{3}\cdot 7^{8} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 1077.7
Root \(0.792287 - 1.21752i\) of defining polynomial
Character \(\chi\) \(=\) 2156.1077
Dual form 2156.2.c.b.1077.10

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.22568i q^{3} -2.54143i q^{5} +1.49771 q^{9} +3.31662 q^{11} -3.11498 q^{15} +7.83493 q^{23} -1.45886 q^{25} -5.51275i q^{27} -4.84996i q^{31} -4.06512i q^{33} +11.0371 q^{37} -3.80632i q^{45} +8.54812i q^{47} -5.13819 q^{53} -8.42896i q^{55} +5.24614i q^{59} -6.24619 q^{67} -9.60311i q^{69} -15.2416 q^{71} +1.78809i q^{75} -2.26374 q^{81} -15.2665i q^{89} -5.94450 q^{93} -12.0837i q^{97} +4.96734 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 48 q^{9} - 80 q^{25} + 144 q^{81}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2156\mathbb{Z}\right)^\times\).

\(n\) \(981\) \(1079\) \(1277\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 1.22568i − 0.707647i −0.935312 0.353823i \(-0.884881\pi\)
0.935312 0.353823i \(-0.115119\pi\)
\(4\) 0 0
\(5\) − 2.54143i − 1.13656i −0.822835 0.568281i \(-0.807609\pi\)
0.822835 0.568281i \(-0.192391\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 1.49771 0.499236
\(10\) 0 0
\(11\) 3.31662 1.00000
\(12\) 0 0
\(13\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(14\) 0 0
\(15\) −3.11498 −0.804284
\(16\) 0 0
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 7.83493 1.63370 0.816848 0.576854i \(-0.195720\pi\)
0.816848 + 0.576854i \(0.195720\pi\)
\(24\) 0 0
\(25\) −1.45886 −0.291771
\(26\) 0 0
\(27\) − 5.51275i − 1.06093i
\(28\) 0 0
\(29\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(30\) 0 0
\(31\) − 4.84996i − 0.871078i −0.900170 0.435539i \(-0.856558\pi\)
0.900170 0.435539i \(-0.143442\pi\)
\(32\) 0 0
\(33\) − 4.06512i − 0.707647i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 11.0371 1.81449 0.907245 0.420602i \(-0.138181\pi\)
0.907245 + 0.420602i \(0.138181\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(44\) 0 0
\(45\) − 3.80632i − 0.567413i
\(46\) 0 0
\(47\) 8.54812i 1.24687i 0.781875 + 0.623436i \(0.214264\pi\)
−0.781875 + 0.623436i \(0.785736\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −5.13819 −0.705785 −0.352892 0.935664i \(-0.614802\pi\)
−0.352892 + 0.935664i \(0.614802\pi\)
\(54\) 0 0
\(55\) − 8.42896i − 1.13656i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 5.24614i 0.682990i 0.939884 + 0.341495i \(0.110933\pi\)
−0.939884 + 0.341495i \(0.889067\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −6.24619 −0.763094 −0.381547 0.924349i \(-0.624609\pi\)
−0.381547 + 0.924349i \(0.624609\pi\)
\(68\) 0 0
\(69\) − 9.60311i − 1.15608i
\(70\) 0 0
\(71\) −15.2416 −1.80885 −0.904423 0.426636i \(-0.859698\pi\)
−0.904423 + 0.426636i \(0.859698\pi\)
\(72\) 0 0
\(73\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(74\) 0 0
\(75\) 1.78809i 0.206471i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(80\) 0 0
\(81\) −2.26374 −0.251527
\(82\) 0 0
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) − 15.2665i − 1.61825i −0.587638 0.809124i \(-0.699942\pi\)
0.587638 0.809124i \(-0.300058\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −5.94450 −0.616416
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) − 12.0837i − 1.22691i −0.789728 0.613457i \(-0.789778\pi\)
0.789728 0.613457i \(-0.210222\pi\)
\(98\) 0 0
\(99\) 4.96734 0.499236
\(100\) 0 0
\(101\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(102\) 0 0
\(103\) 16.8542i 1.66070i 0.557244 + 0.830349i \(0.311859\pi\)
−0.557244 + 0.830349i \(0.688141\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(108\) 0 0
\(109\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(110\) 0 0
\(111\) − 13.5280i − 1.28402i
\(112\) 0 0
\(113\) −19.8448 −1.86685 −0.933423 0.358778i \(-0.883194\pi\)
−0.933423 + 0.358778i \(0.883194\pi\)
\(114\) 0 0
\(115\) − 19.9119i − 1.85679i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 11.0000 1.00000
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) − 8.99956i − 0.804945i
\(126\) 0 0
\(127\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −14.0103 −1.20581
\(136\) 0 0
\(137\) −18.6060 −1.58962 −0.794808 0.606861i \(-0.792428\pi\)
−0.794808 + 0.606861i \(0.792428\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(140\) 0 0
\(141\) 10.4773 0.882344
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −12.3258 −0.990034
\(156\) 0 0
\(157\) − 21.8953i − 1.74743i −0.486435 0.873717i \(-0.661703\pi\)
0.486435 0.873717i \(-0.338297\pi\)
\(158\) 0 0
\(159\) 6.29778i 0.499446i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 2.75754 0.215987 0.107994 0.994152i \(-0.465557\pi\)
0.107994 + 0.994152i \(0.465557\pi\)
\(164\) 0 0
\(165\) −10.3312 −0.804284
\(166\) 0 0
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) −13.0000 −1.00000
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 6.43009 0.483315
\(178\) 0 0
\(179\) 26.4781 1.97907 0.989533 0.144308i \(-0.0460955\pi\)
0.989533 + 0.144308i \(0.0460955\pi\)
\(180\) 0 0
\(181\) 25.8909i 1.92446i 0.272242 + 0.962229i \(0.412235\pi\)
−0.272242 + 0.962229i \(0.587765\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) − 28.0500i − 2.06228i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 12.6060 0.912136 0.456068 0.889945i \(-0.349257\pi\)
0.456068 + 0.889945i \(0.349257\pi\)
\(192\) 0 0
\(193\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(198\) 0 0
\(199\) 26.0929i 1.84968i 0.380361 + 0.924838i \(0.375800\pi\)
−0.380361 + 0.924838i \(0.624200\pi\)
\(200\) 0 0
\(201\) 7.65583i 0.540001i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 11.7344 0.815600
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) 0 0
\(213\) 18.6813i 1.28002i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 4.88760i 0.327298i 0.986519 + 0.163649i \(0.0523265\pi\)
−0.986519 + 0.163649i \(0.947674\pi\)
\(224\) 0 0
\(225\) −2.18494 −0.145663
\(226\) 0 0
\(227\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(228\) 0 0
\(229\) 28.9416i 1.91252i 0.292524 + 0.956258i \(0.405505\pi\)
−0.292524 + 0.956258i \(0.594495\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(234\) 0 0
\(235\) 21.7244 1.41715
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(242\) 0 0
\(243\) − 13.7636i − 0.882937i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 3.28028i 0.207050i 0.994627 + 0.103525i \(0.0330121\pi\)
−0.994627 + 0.103525i \(0.966988\pi\)
\(252\) 0 0
\(253\) 25.9855 1.63370
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) − 31.4016i − 1.95878i −0.201984 0.979389i \(-0.564739\pi\)
0.201984 0.979389i \(-0.435261\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(264\) 0 0
\(265\) 13.0583i 0.802168i
\(266\) 0 0
\(267\) −18.7119 −1.14515
\(268\) 0 0
\(269\) − 23.7372i − 1.44728i −0.690178 0.723640i \(-0.742468\pi\)
0.690178 0.723640i \(-0.257532\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −4.83848 −0.291771
\(276\) 0 0
\(277\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(278\) 0 0
\(279\) − 7.26383i − 0.434874i
\(280\) 0 0
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −17.0000 −1.00000
\(290\) 0 0
\(291\) −14.8107 −0.868221
\(292\) 0 0
\(293\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(294\) 0 0
\(295\) 13.3327 0.776260
\(296\) 0 0
\(297\) − 18.2837i − 1.06093i
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(308\) 0 0
\(309\) 20.6579 1.17519
\(310\) 0 0
\(311\) 35.2338i 1.99793i 0.0455232 + 0.998963i \(0.485505\pi\)
−0.0455232 + 0.998963i \(0.514495\pi\)
\(312\) 0 0
\(313\) − 33.2450i − 1.87912i −0.342385 0.939560i \(-0.611235\pi\)
0.342385 0.939560i \(-0.388765\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −6.60597 −0.371028 −0.185514 0.982642i \(-0.559395\pi\)
−0.185514 + 0.982642i \(0.559395\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 35.2858 1.93948 0.969742 0.244131i \(-0.0785028\pi\)
0.969742 + 0.244131i \(0.0785028\pi\)
\(332\) 0 0
\(333\) 16.5304 0.905859
\(334\) 0 0
\(335\) 15.8743i 0.867303i
\(336\) 0 0
\(337\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(338\) 0 0
\(339\) 24.3234i 1.32107i
\(340\) 0 0
\(341\) − 16.0855i − 0.871078i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −24.4056 −1.31395
\(346\) 0 0
\(347\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 23.4650i 1.24891i 0.781059 + 0.624457i \(0.214680\pi\)
−0.781059 + 0.624457i \(0.785320\pi\)
\(354\) 0 0
\(355\) 38.7355i 2.05586i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(360\) 0 0
\(361\) −19.0000 −1.00000
\(362\) 0 0
\(363\) − 13.4825i − 0.707647i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 35.3847i 1.84707i 0.383516 + 0.923534i \(0.374713\pi\)
−0.383516 + 0.923534i \(0.625287\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(374\) 0 0
\(375\) −11.0306 −0.569617
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 16.4225 0.843567 0.421783 0.906697i \(-0.361404\pi\)
0.421783 + 0.906697i \(0.361404\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) − 21.1104i − 1.07869i −0.842084 0.539347i \(-0.818671\pi\)
0.842084 0.539347i \(-0.181329\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 5.04643 0.255864 0.127932 0.991783i \(-0.459166\pi\)
0.127932 + 0.991783i \(0.459166\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 13.3828i 0.671666i 0.941922 + 0.335833i \(0.109018\pi\)
−0.941922 + 0.335833i \(0.890982\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −39.9749 −1.99625 −0.998125 0.0612120i \(-0.980503\pi\)
−0.998125 + 0.0612120i \(0.980503\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 5.75314i 0.285876i
\(406\) 0 0
\(407\) 36.6060 1.81449
\(408\) 0 0
\(409\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(410\) 0 0
\(411\) 22.8050i 1.12489i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 34.8653i 1.70328i 0.524127 + 0.851640i \(0.324392\pi\)
−0.524127 + 0.851640i \(0.675608\pi\)
\(420\) 0 0
\(421\) 35.2136 1.71620 0.858102 0.513479i \(-0.171644\pi\)
0.858102 + 0.513479i \(0.171644\pi\)
\(422\) 0 0
\(423\) 12.8026i 0.622483i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) 0 0
\(433\) 32.6481i 1.56897i 0.620151 + 0.784483i \(0.287071\pi\)
−0.620151 + 0.784483i \(0.712929\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −0.0549029 −0.00260851 −0.00130426 0.999999i \(-0.500415\pi\)
−0.00130426 + 0.999999i \(0.500415\pi\)
\(444\) 0 0
\(445\) −38.7988 −1.83924
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 41.9631 1.98036 0.990181 0.139788i \(-0.0446422\pi\)
0.990181 + 0.139788i \(0.0446422\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(462\) 0 0
\(463\) −37.6694 −1.75064 −0.875322 0.483541i \(-0.839350\pi\)
−0.875322 + 0.483541i \(0.839350\pi\)
\(464\) 0 0
\(465\) 15.1075i 0.700594i
\(466\) 0 0
\(467\) − 32.3800i − 1.49837i −0.662361 0.749185i \(-0.730446\pi\)
0.662361 0.749185i \(-0.269554\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −26.8366 −1.23657
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −7.69551 −0.352353
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −30.7098 −1.39446
\(486\) 0 0
\(487\) −20.7401 −0.939822 −0.469911 0.882714i \(-0.655714\pi\)
−0.469911 + 0.882714i \(0.655714\pi\)
\(488\) 0 0
\(489\) − 3.37986i − 0.152843i
\(490\) 0 0
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) − 12.6241i − 0.567413i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 42.3555 1.89609 0.948047 0.318131i \(-0.103055\pi\)
0.948047 + 0.318131i \(0.103055\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 15.9338i 0.707647i
\(508\) 0 0
\(509\) 30.0255i 1.33086i 0.746461 + 0.665429i \(0.231751\pi\)
−0.746461 + 0.665429i \(0.768249\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 42.8338 1.88748
\(516\) 0 0
\(517\) 28.3509i 1.24687i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 38.1477i 1.67128i 0.549276 + 0.835641i \(0.314904\pi\)
−0.549276 + 0.835641i \(0.685096\pi\)
\(522\) 0 0
\(523\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 38.3861 1.66896
\(530\) 0 0
\(531\) 7.85720i 0.340973i
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) − 32.4537i − 1.40048i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(542\) 0 0
\(543\) 31.7340 1.36184
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −34.3804 −1.45937
\(556\) 0 0
\(557\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(564\) 0 0
\(565\) 50.4343i 2.12178i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(572\) 0 0
\(573\) − 15.4509i − 0.645470i
\(574\) 0 0
\(575\) −11.4300 −0.476666
\(576\) 0 0
\(577\) − 47.8966i − 1.99396i −0.0776414 0.996981i \(-0.524739\pi\)
0.0776414 0.996981i \(-0.475261\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −17.0415 −0.705785
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 12.2405i 0.505219i 0.967568 + 0.252609i \(0.0812887\pi\)
−0.967568 + 0.252609i \(0.918711\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 31.9815 1.30892
\(598\) 0 0
\(599\) −2.00377 −0.0818716 −0.0409358 0.999162i \(-0.513034\pi\)
−0.0409358 + 0.999162i \(0.513034\pi\)
\(600\) 0 0
\(601\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(602\) 0 0
\(603\) −9.35498 −0.380964
\(604\) 0 0
\(605\) − 27.9557i − 1.13656i
\(606\) 0 0
\(607\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 26.5330 1.06818 0.534089 0.845428i \(-0.320655\pi\)
0.534089 + 0.845428i \(0.320655\pi\)
\(618\) 0 0
\(619\) 49.4543i 1.98774i 0.110575 + 0.993868i \(0.464731\pi\)
−0.110575 + 0.993868i \(0.535269\pi\)
\(620\) 0 0
\(621\) − 43.1920i − 1.73324i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −30.1660 −1.20664
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −30.9369 −1.23158 −0.615789 0.787911i \(-0.711162\pi\)
−0.615789 + 0.787911i \(0.711162\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −22.8275 −0.903042
\(640\) 0 0
\(641\) 42.6060 1.68283 0.841417 0.540386i \(-0.181722\pi\)
0.841417 + 0.540386i \(0.181722\pi\)
\(642\) 0 0
\(643\) 48.6405i 1.91819i 0.283076 + 0.959097i \(0.408645\pi\)
−0.283076 + 0.959097i \(0.591355\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 46.2715i − 1.81912i −0.415574 0.909560i \(-0.636419\pi\)
0.415574 0.909560i \(-0.363581\pi\)
\(648\) 0 0
\(649\) 17.3995i 0.682990i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −9.99616 −0.391180 −0.195590 0.980686i \(-0.562662\pi\)
−0.195590 + 0.980686i \(0.562662\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(660\) 0 0
\(661\) − 40.5991i − 1.57912i −0.613672 0.789561i \(-0.710308\pi\)
0.613672 0.789561i \(-0.289692\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 5.99064 0.231611
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(674\) 0 0
\(675\) 8.04232i 0.309549i
\(676\) 0 0
\(677\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −24.0000 −0.918334 −0.459167 0.888350i \(-0.651852\pi\)
−0.459167 + 0.888350i \(0.651852\pi\)
\(684\) 0 0
\(685\) 47.2857i 1.80670i
\(686\) 0 0
\(687\) 35.4732 1.35339
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) − 10.3610i − 0.394150i −0.980388 0.197075i \(-0.936856\pi\)
0.980388 0.197075i \(-0.0631442\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) − 26.6272i − 1.00284i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 52.9718 1.98940 0.994698 0.102837i \(-0.0327921\pi\)
0.994698 + 0.102837i \(0.0327921\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) − 37.9991i − 1.42308i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 50.5562i 1.88543i 0.333603 + 0.942714i \(0.391736\pi\)
−0.333603 + 0.942714i \(0.608264\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 48.1048i 1.78411i 0.451928 + 0.892055i \(0.350737\pi\)
−0.451928 + 0.892055i \(0.649263\pi\)
\(728\) 0 0
\(729\) −23.6610 −0.876335
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −20.7163 −0.763094
\(738\) 0 0
\(739\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 9.34021 0.340829 0.170415 0.985372i \(-0.445489\pi\)
0.170415 + 0.985372i \(0.445489\pi\)
\(752\) 0 0
\(753\) 4.02058 0.146518
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 55.0126 1.99947 0.999733 0.0231238i \(-0.00736118\pi\)
0.999733 + 0.0231238i \(0.00736118\pi\)
\(758\) 0 0
\(759\) − 31.8499i − 1.15608i
\(760\) 0 0
\(761\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(770\) 0 0
\(771\) −38.4883 −1.38612
\(772\) 0 0
\(773\) 8.40826i 0.302424i 0.988501 + 0.151212i \(0.0483176\pi\)
−0.988501 + 0.151212i \(0.951682\pi\)
\(774\) 0 0
\(775\) 7.07540i 0.254156i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) −50.5507 −1.80885
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −55.6453 −1.98607
\(786\) 0 0
\(787\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 16.0053 0.567651
\(796\) 0 0
\(797\) − 56.2918i − 1.99396i −0.0776637 0.996980i \(-0.524746\pi\)
0.0776637 0.996980i \(-0.475254\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) − 22.8648i − 0.807888i
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −29.0941 −1.02416
\(808\) 0 0
\(809\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) − 7.00809i − 0.245483i
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(822\) 0 0
\(823\) −57.3601 −1.99945 −0.999723 0.0235383i \(-0.992507\pi\)
−0.999723 + 0.0235383i \(0.992507\pi\)
\(824\) 0 0
\(825\) 5.93043i 0.206471i
\(826\) 0 0
\(827\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(828\) 0 0
\(829\) 53.1090i 1.84455i 0.386531 + 0.922276i \(0.373673\pi\)
−0.386531 + 0.922276i \(0.626327\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −26.7366 −0.924153
\(838\) 0 0
\(839\) − 57.9103i − 1.99928i −0.0267481 0.999642i \(-0.508515\pi\)
0.0267481 0.999642i \(-0.491485\pi\)
\(840\) 0 0
\(841\) 29.0000 1.00000
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 33.0386i 1.13656i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 86.4750 2.96432
\(852\) 0 0
\(853\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(858\) 0 0
\(859\) 58.3404i 1.99055i 0.0970965 + 0.995275i \(0.469044\pi\)
−0.0970965 + 0.995275i \(0.530956\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 36.0000 1.22545 0.612727 0.790295i \(-0.290072\pi\)
0.612727 + 0.790295i \(0.290072\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 20.8366i 0.707647i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) − 18.0979i − 0.612520i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) − 47.8557i − 1.61230i −0.591712 0.806149i \(-0.701548\pi\)
0.591712 0.806149i \(-0.298452\pi\)
\(882\) 0 0
\(883\) −19.8997 −0.669680 −0.334840 0.942275i \(-0.608682\pi\)
−0.334840 + 0.942275i \(0.608682\pi\)
\(884\) 0 0
\(885\) − 16.3416i − 0.549318i
\(886\) 0 0
\(887\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −7.50798 −0.251527
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) − 67.2922i − 2.24933i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 65.7999 2.18726
\(906\) 0 0
\(907\) −47.8706 −1.58952 −0.794759 0.606926i \(-0.792403\pi\)
−0.794759 + 0.606926i \(0.792403\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −47.1168 −1.56105 −0.780525 0.625125i \(-0.785048\pi\)
−0.780525 + 0.625125i \(0.785048\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −16.1016 −0.529417
\(926\) 0 0
\(927\) 25.2427i 0.829080i
\(928\) 0 0
\(929\) − 48.0239i − 1.57561i −0.615924 0.787806i \(-0.711217\pi\)
0.615924 0.787806i \(-0.288783\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 43.1854 1.41383
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(938\) 0 0
\(939\) −40.7477 −1.32975
\(940\) 0 0
\(941\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −48.6060 −1.57948 −0.789741 0.613441i \(-0.789785\pi\)
−0.789741 + 0.613441i \(0.789785\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 8.09680i 0.262557i
\(952\) 0 0
\(953\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(954\) 0 0
\(955\) − 32.0372i − 1.03670i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 7.47790 0.241223
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) − 50.2428i − 1.61237i −0.591665 0.806184i \(-0.701529\pi\)
0.591665 0.806184i \(-0.298471\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −47.4733 −1.51881 −0.759403 0.650621i \(-0.774509\pi\)
−0.759403 + 0.650621i \(0.774509\pi\)
\(978\) 0 0
\(979\) − 50.6333i − 1.61825i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 55.3257i 1.76461i 0.470674 + 0.882307i \(0.344011\pi\)
−0.470674 + 0.882307i \(0.655989\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) −28.0716 −0.891724 −0.445862 0.895102i \(-0.647103\pi\)
−0.445862 + 0.895102i \(0.647103\pi\)
\(992\) 0 0
\(993\) − 43.2491i − 1.37247i
\(994\) 0 0
\(995\) 66.3132 2.10227
\(996\) 0 0
\(997\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(998\) 0 0
\(999\) − 60.8449i − 1.92505i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2156.2.c.b.1077.7 16
7.2 even 3 2156.2.q.e.2089.10 32
7.3 odd 6 2156.2.q.e.901.10 32
7.4 even 3 2156.2.q.e.901.7 32
7.5 odd 6 2156.2.q.e.2089.7 32
7.6 odd 2 inner 2156.2.c.b.1077.10 yes 16
11.10 odd 2 CM 2156.2.c.b.1077.7 16
77.10 even 6 2156.2.q.e.901.10 32
77.32 odd 6 2156.2.q.e.901.7 32
77.54 even 6 2156.2.q.e.2089.7 32
77.65 odd 6 2156.2.q.e.2089.10 32
77.76 even 2 inner 2156.2.c.b.1077.10 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2156.2.c.b.1077.7 16 1.1 even 1 trivial
2156.2.c.b.1077.7 16 11.10 odd 2 CM
2156.2.c.b.1077.10 yes 16 7.6 odd 2 inner
2156.2.c.b.1077.10 yes 16 77.76 even 2 inner
2156.2.q.e.901.7 32 7.4 even 3
2156.2.q.e.901.7 32 77.32 odd 6
2156.2.q.e.901.10 32 7.3 odd 6
2156.2.q.e.901.10 32 77.10 even 6
2156.2.q.e.2089.7 32 7.5 odd 6
2156.2.q.e.2089.7 32 77.54 even 6
2156.2.q.e.2089.10 32 7.2 even 3
2156.2.q.e.2089.10 32 77.65 odd 6