Properties

Label 2156.4.a.d
Level $2156$
Weight $4$
Character orbit 2156.a
Self dual yes
Analytic conductor $127.208$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2156,4,Mod(1,2156)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2156, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2156.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2156 = 2^{2} \cdot 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2156.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(127.208117972\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{97}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 24 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 44)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{97})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta - 4) q^{3} + (\beta - 6) q^{5} + (9 \beta + 13) q^{9} + 11 q^{11} + (2 \beta + 10) q^{13} + \beta q^{15} + (4 \beta + 78) q^{17} + ( - 20 \beta + 4) q^{19} + ( - 23 \beta - 48) q^{23} + ( - 11 \beta - 65) q^{25}+ \cdots + (99 \beta + 143) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 9 q^{3} - 11 q^{5} + 35 q^{9} + 22 q^{11} + 22 q^{13} + q^{15} + 160 q^{17} - 12 q^{19} - 119 q^{23} - 141 q^{25} - 351 q^{27} - 138 q^{29} - 401 q^{31} - 99 q^{33} + 341 q^{37} - 196 q^{39} + 318 q^{41}+ \cdots + 385 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
5.42443
−4.42443
0 −9.42443 0 −0.575571 0 0 0 61.8199 0
1.2 0 0.424429 0 −10.4244 0 0 0 −26.8199 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(7\) \( -1 \)
\(11\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2156.4.a.d 2
7.b odd 2 1 44.4.a.b 2
21.c even 2 1 396.4.a.i 2
28.d even 2 1 176.4.a.g 2
35.c odd 2 1 1100.4.a.e 2
35.f even 4 2 1100.4.b.e 4
56.e even 2 1 704.4.a.r 2
56.h odd 2 1 704.4.a.m 2
77.b even 2 1 484.4.a.e 2
84.h odd 2 1 1584.4.a.z 2
308.g odd 2 1 1936.4.a.o 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
44.4.a.b 2 7.b odd 2 1
176.4.a.g 2 28.d even 2 1
396.4.a.i 2 21.c even 2 1
484.4.a.e 2 77.b even 2 1
704.4.a.m 2 56.h odd 2 1
704.4.a.r 2 56.e even 2 1
1100.4.a.e 2 35.c odd 2 1
1100.4.b.e 4 35.f even 4 2
1584.4.a.z 2 84.h odd 2 1
1936.4.a.o 2 308.g odd 2 1
2156.4.a.d 2 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} + 9T_{3} - 4 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(2156))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 9T - 4 \) Copy content Toggle raw display
$5$ \( T^{2} + 11T + 6 \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( (T - 11)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} - 22T + 24 \) Copy content Toggle raw display
$17$ \( T^{2} - 160T + 6012 \) Copy content Toggle raw display
$19$ \( T^{2} + 12T - 9664 \) Copy content Toggle raw display
$23$ \( T^{2} + 119T - 9288 \) Copy content Toggle raw display
$29$ \( T^{2} + 138T - 38016 \) Copy content Toggle raw display
$31$ \( T^{2} + 401T + 40176 \) Copy content Toggle raw display
$37$ \( T^{2} - 341T + 16242 \) Copy content Toggle raw display
$41$ \( T^{2} - 318T + 17424 \) Copy content Toggle raw display
$43$ \( T^{2} - 450T + 34232 \) Copy content Toggle raw display
$47$ \( T^{2} - 312T - 101376 \) Copy content Toggle raw display
$53$ \( T^{2} + 400T + 30300 \) Copy content Toggle raw display
$59$ \( T^{2} - 21T - 62964 \) Copy content Toggle raw display
$61$ \( T^{2} - 462T + 18344 \) Copy content Toggle raw display
$67$ \( T^{2} - 327T - 192124 \) Copy content Toggle raw display
$71$ \( T^{2} - 603T - 24552 \) Copy content Toggle raw display
$73$ \( T^{2} + 206T - 70968 \) Copy content Toggle raw display
$79$ \( T^{2} - 2026 T + 983392 \) Copy content Toggle raw display
$83$ \( T^{2} - 1046 T + 110472 \) Copy content Toggle raw display
$89$ \( T^{2} + 721T - 647034 \) Copy content Toggle raw display
$97$ \( T^{2} + 1467 T - 603886 \) Copy content Toggle raw display
show more
show less