Properties

Label 2156.4.a.d
Level 21562156
Weight 44
Character orbit 2156.a
Self dual yes
Analytic conductor 127.208127.208
Analytic rank 11
Dimension 22
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2156,4,Mod(1,2156)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2156, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2156.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 2156=227211 2156 = 2^{2} \cdot 7^{2} \cdot 11
Weight: k k == 4 4
Character orbit: [χ][\chi] == 2156.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 127.208117972127.208117972
Analytic rank: 11
Dimension: 22
Coefficient field: Q(97)\Q(\sqrt{97})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2x24 x^{2} - x - 24 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 44)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of β=12(1+97)\beta = \frac{1}{2}(1 + \sqrt{97}). We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β4)q3+(β6)q5+(9β+13)q9+11q11+(2β+10)q13+βq15+(4β+78)q17+(20β+4)q19+(23β48)q23+(11β65)q25++(99β+143)q99+O(q100) q + ( - \beta - 4) q^{3} + (\beta - 6) q^{5} + (9 \beta + 13) q^{9} + 11 q^{11} + (2 \beta + 10) q^{13} + \beta q^{15} + (4 \beta + 78) q^{17} + ( - 20 \beta + 4) q^{19} + ( - 23 \beta - 48) q^{23} + ( - 11 \beta - 65) q^{25}+ \cdots + (99 \beta + 143) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q9q311q5+35q9+22q11+22q13+q15+160q1712q19119q23141q25351q27138q29401q3199q33+341q37196q39+318q41++385q99+O(q100) 2 q - 9 q^{3} - 11 q^{5} + 35 q^{9} + 22 q^{11} + 22 q^{13} + q^{15} + 160 q^{17} - 12 q^{19} - 119 q^{23} - 141 q^{25} - 351 q^{27} - 138 q^{29} - 401 q^{31} - 99 q^{33} + 341 q^{37} - 196 q^{39} + 318 q^{41}+ \cdots + 385 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
5.42443
−4.42443
0 −9.42443 0 −0.575571 0 0 0 61.8199 0
1.2 0 0.424429 0 −10.4244 0 0 0 −26.8199 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 1 -1
77 1 -1
1111 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2156.4.a.d 2
7.b odd 2 1 44.4.a.b 2
21.c even 2 1 396.4.a.i 2
28.d even 2 1 176.4.a.g 2
35.c odd 2 1 1100.4.a.e 2
35.f even 4 2 1100.4.b.e 4
56.e even 2 1 704.4.a.r 2
56.h odd 2 1 704.4.a.m 2
77.b even 2 1 484.4.a.e 2
84.h odd 2 1 1584.4.a.z 2
308.g odd 2 1 1936.4.a.o 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
44.4.a.b 2 7.b odd 2 1
176.4.a.g 2 28.d even 2 1
396.4.a.i 2 21.c even 2 1
484.4.a.e 2 77.b even 2 1
704.4.a.m 2 56.h odd 2 1
704.4.a.r 2 56.e even 2 1
1100.4.a.e 2 35.c odd 2 1
1100.4.b.e 4 35.f even 4 2
1584.4.a.z 2 84.h odd 2 1
1936.4.a.o 2 308.g odd 2 1
2156.4.a.d 2 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T32+9T34 T_{3}^{2} + 9T_{3} - 4 acting on S4new(Γ0(2156))S_{4}^{\mathrm{new}}(\Gamma_0(2156)). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T2+9T4 T^{2} + 9T - 4 Copy content Toggle raw display
55 T2+11T+6 T^{2} + 11T + 6 Copy content Toggle raw display
77 T2 T^{2} Copy content Toggle raw display
1111 (T11)2 (T - 11)^{2} Copy content Toggle raw display
1313 T222T+24 T^{2} - 22T + 24 Copy content Toggle raw display
1717 T2160T+6012 T^{2} - 160T + 6012 Copy content Toggle raw display
1919 T2+12T9664 T^{2} + 12T - 9664 Copy content Toggle raw display
2323 T2+119T9288 T^{2} + 119T - 9288 Copy content Toggle raw display
2929 T2+138T38016 T^{2} + 138T - 38016 Copy content Toggle raw display
3131 T2+401T+40176 T^{2} + 401T + 40176 Copy content Toggle raw display
3737 T2341T+16242 T^{2} - 341T + 16242 Copy content Toggle raw display
4141 T2318T+17424 T^{2} - 318T + 17424 Copy content Toggle raw display
4343 T2450T+34232 T^{2} - 450T + 34232 Copy content Toggle raw display
4747 T2312T101376 T^{2} - 312T - 101376 Copy content Toggle raw display
5353 T2+400T+30300 T^{2} + 400T + 30300 Copy content Toggle raw display
5959 T221T62964 T^{2} - 21T - 62964 Copy content Toggle raw display
6161 T2462T+18344 T^{2} - 462T + 18344 Copy content Toggle raw display
6767 T2327T192124 T^{2} - 327T - 192124 Copy content Toggle raw display
7171 T2603T24552 T^{2} - 603T - 24552 Copy content Toggle raw display
7373 T2+206T70968 T^{2} + 206T - 70968 Copy content Toggle raw display
7979 T22026T+983392 T^{2} - 2026 T + 983392 Copy content Toggle raw display
8383 T21046T+110472 T^{2} - 1046 T + 110472 Copy content Toggle raw display
8989 T2+721T647034 T^{2} + 721T - 647034 Copy content Toggle raw display
9797 T2+1467T603886 T^{2} + 1467 T - 603886 Copy content Toggle raw display
show more
show less