Properties

Label 2160.2.h.c.431.4
Level $2160$
Weight $2$
Character 2160.431
Analytic conductor $17.248$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2160,2,Mod(431,2160)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2160, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2160.431");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2160 = 2^{4} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2160.h (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(17.2476868366\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 431.4
Root \(-0.866025 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 2160.431
Dual form 2160.2.h.c.431.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{5} +3.46410i q^{7} -2.00000 q^{13} +3.00000i q^{17} +1.73205i q^{19} +5.19615 q^{23} -1.00000 q^{25} -6.00000i q^{29} +5.19615i q^{31} -3.46410 q^{35} -10.0000 q^{37} -10.3923 q^{47} -5.00000 q^{49} +9.00000i q^{53} +10.3923 q^{59} -13.0000 q^{61} -2.00000i q^{65} -3.46410i q^{67} -8.00000 q^{73} +1.73205i q^{79} +5.19615 q^{83} -3.00000 q^{85} -12.0000i q^{89} -6.92820i q^{91} -1.73205 q^{95} +4.00000 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 8 q^{13} - 4 q^{25} - 40 q^{37} - 20 q^{49} - 52 q^{61} - 32 q^{73} - 12 q^{85} + 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2160\mathbb{Z}\right)^\times\).

\(n\) \(271\) \(1297\) \(1621\) \(2081\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.00000i 0.447214i
\(6\) 0 0
\(7\) 3.46410i 1.30931i 0.755929 + 0.654654i \(0.227186\pi\)
−0.755929 + 0.654654i \(0.772814\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) 0 0
\(13\) −2.00000 −0.554700 −0.277350 0.960769i \(-0.589456\pi\)
−0.277350 + 0.960769i \(0.589456\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 3.00000i 0.727607i 0.931476 + 0.363803i \(0.118522\pi\)
−0.931476 + 0.363803i \(0.881478\pi\)
\(18\) 0 0
\(19\) 1.73205i 0.397360i 0.980064 + 0.198680i \(0.0636654\pi\)
−0.980064 + 0.198680i \(0.936335\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 5.19615 1.08347 0.541736 0.840548i \(-0.317767\pi\)
0.541736 + 0.840548i \(0.317767\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) − 6.00000i − 1.11417i −0.830455 0.557086i \(-0.811919\pi\)
0.830455 0.557086i \(-0.188081\pi\)
\(30\) 0 0
\(31\) 5.19615i 0.933257i 0.884454 + 0.466628i \(0.154531\pi\)
−0.884454 + 0.466628i \(0.845469\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −3.46410 −0.585540
\(36\) 0 0
\(37\) −10.0000 −1.64399 −0.821995 0.569495i \(-0.807139\pi\)
−0.821995 + 0.569495i \(0.807139\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −10.3923 −1.51587 −0.757937 0.652328i \(-0.773792\pi\)
−0.757937 + 0.652328i \(0.773792\pi\)
\(48\) 0 0
\(49\) −5.00000 −0.714286
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 9.00000i 1.23625i 0.786082 + 0.618123i \(0.212106\pi\)
−0.786082 + 0.618123i \(0.787894\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 10.3923 1.35296 0.676481 0.736460i \(-0.263504\pi\)
0.676481 + 0.736460i \(0.263504\pi\)
\(60\) 0 0
\(61\) −13.0000 −1.66448 −0.832240 0.554416i \(-0.812942\pi\)
−0.832240 + 0.554416i \(0.812942\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) − 2.00000i − 0.248069i
\(66\) 0 0
\(67\) − 3.46410i − 0.423207i −0.977356 0.211604i \(-0.932131\pi\)
0.977356 0.211604i \(-0.0678686\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) −8.00000 −0.936329 −0.468165 0.883641i \(-0.655085\pi\)
−0.468165 + 0.883641i \(0.655085\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 1.73205i 0.194871i 0.995242 + 0.0974355i \(0.0310640\pi\)
−0.995242 + 0.0974355i \(0.968936\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 5.19615 0.570352 0.285176 0.958475i \(-0.407948\pi\)
0.285176 + 0.958475i \(0.407948\pi\)
\(84\) 0 0
\(85\) −3.00000 −0.325396
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) − 12.0000i − 1.27200i −0.771690 0.635999i \(-0.780588\pi\)
0.771690 0.635999i \(-0.219412\pi\)
\(90\) 0 0
\(91\) − 6.92820i − 0.726273i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −1.73205 −0.177705
\(96\) 0 0
\(97\) 4.00000 0.406138 0.203069 0.979164i \(-0.434908\pi\)
0.203069 + 0.979164i \(0.434908\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(102\) 0 0
\(103\) 13.8564i 1.36531i 0.730740 + 0.682656i \(0.239175\pi\)
−0.730740 + 0.682656i \(0.760825\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −10.3923 −1.00466 −0.502331 0.864675i \(-0.667524\pi\)
−0.502331 + 0.864675i \(0.667524\pi\)
\(108\) 0 0
\(109\) −11.0000 −1.05361 −0.526804 0.849987i \(-0.676610\pi\)
−0.526804 + 0.849987i \(0.676610\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) − 6.00000i − 0.564433i −0.959351 0.282216i \(-0.908930\pi\)
0.959351 0.282216i \(-0.0910696\pi\)
\(114\) 0 0
\(115\) 5.19615i 0.484544i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −10.3923 −0.952661
\(120\) 0 0
\(121\) −11.0000 −1.00000
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) − 1.00000i − 0.0894427i
\(126\) 0 0
\(127\) 10.3923i 0.922168i 0.887357 + 0.461084i \(0.152539\pi\)
−0.887357 + 0.461084i \(0.847461\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 10.3923 0.907980 0.453990 0.891007i \(-0.350000\pi\)
0.453990 + 0.891007i \(0.350000\pi\)
\(132\) 0 0
\(133\) −6.00000 −0.520266
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 15.0000i 1.28154i 0.767734 + 0.640768i \(0.221384\pi\)
−0.767734 + 0.640768i \(0.778616\pi\)
\(138\) 0 0
\(139\) 3.46410i 0.293821i 0.989150 + 0.146911i \(0.0469330\pi\)
−0.989150 + 0.146911i \(0.953067\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 6.00000 0.498273
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) − 24.0000i − 1.96616i −0.183186 0.983078i \(-0.558641\pi\)
0.183186 0.983078i \(-0.441359\pi\)
\(150\) 0 0
\(151\) 17.3205i 1.40952i 0.709444 + 0.704761i \(0.248946\pi\)
−0.709444 + 0.704761i \(0.751054\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −5.19615 −0.417365
\(156\) 0 0
\(157\) −4.00000 −0.319235 −0.159617 0.987179i \(-0.551026\pi\)
−0.159617 + 0.987179i \(0.551026\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 18.0000i 1.41860i
\(162\) 0 0
\(163\) 3.46410i 0.271329i 0.990755 + 0.135665i \(0.0433170\pi\)
−0.990755 + 0.135665i \(0.956683\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 15.5885 1.20627 0.603136 0.797639i \(-0.293918\pi\)
0.603136 + 0.797639i \(0.293918\pi\)
\(168\) 0 0
\(169\) −9.00000 −0.692308
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 21.0000i 1.59660i 0.602260 + 0.798300i \(0.294267\pi\)
−0.602260 + 0.798300i \(0.705733\pi\)
\(174\) 0 0
\(175\) − 3.46410i − 0.261861i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −20.7846 −1.55351 −0.776757 0.629800i \(-0.783137\pi\)
−0.776757 + 0.629800i \(0.783137\pi\)
\(180\) 0 0
\(181\) 19.0000 1.41226 0.706129 0.708083i \(-0.250440\pi\)
0.706129 + 0.708083i \(0.250440\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) − 10.0000i − 0.735215i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 10.3923 0.751961 0.375980 0.926628i \(-0.377306\pi\)
0.375980 + 0.926628i \(0.377306\pi\)
\(192\) 0 0
\(193\) 2.00000 0.143963 0.0719816 0.997406i \(-0.477068\pi\)
0.0719816 + 0.997406i \(0.477068\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 3.00000i 0.213741i 0.994273 + 0.106871i \(0.0340831\pi\)
−0.994273 + 0.106871i \(0.965917\pi\)
\(198\) 0 0
\(199\) 24.2487i 1.71895i 0.511182 + 0.859473i \(0.329208\pi\)
−0.511182 + 0.859473i \(0.670792\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 20.7846 1.45879
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) − 1.73205i − 0.119239i −0.998221 0.0596196i \(-0.981011\pi\)
0.998221 0.0596196i \(-0.0189888\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −18.0000 −1.22192
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) − 6.00000i − 0.403604i
\(222\) 0 0
\(223\) − 10.3923i − 0.695920i −0.937509 0.347960i \(-0.886874\pi\)
0.937509 0.347960i \(-0.113126\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 15.5885 1.03464 0.517321 0.855791i \(-0.326929\pi\)
0.517321 + 0.855791i \(0.326929\pi\)
\(228\) 0 0
\(229\) 13.0000 0.859064 0.429532 0.903052i \(-0.358679\pi\)
0.429532 + 0.903052i \(0.358679\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 6.00000i 0.393073i 0.980497 + 0.196537i \(0.0629694\pi\)
−0.980497 + 0.196537i \(0.937031\pi\)
\(234\) 0 0
\(235\) − 10.3923i − 0.677919i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −10.3923 −0.672222 −0.336111 0.941822i \(-0.609112\pi\)
−0.336111 + 0.941822i \(0.609112\pi\)
\(240\) 0 0
\(241\) −5.00000 −0.322078 −0.161039 0.986948i \(-0.551485\pi\)
−0.161039 + 0.986948i \(0.551485\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) − 5.00000i − 0.319438i
\(246\) 0 0
\(247\) − 3.46410i − 0.220416i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −20.7846 −1.31191 −0.655956 0.754799i \(-0.727735\pi\)
−0.655956 + 0.754799i \(0.727735\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) − 21.0000i − 1.30994i −0.755653 0.654972i \(-0.772680\pi\)
0.755653 0.654972i \(-0.227320\pi\)
\(258\) 0 0
\(259\) − 34.6410i − 2.15249i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −10.3923 −0.640817 −0.320408 0.947279i \(-0.603820\pi\)
−0.320408 + 0.947279i \(0.603820\pi\)
\(264\) 0 0
\(265\) −9.00000 −0.552866
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 6.00000i 0.365826i 0.983129 + 0.182913i \(0.0585527\pi\)
−0.983129 + 0.182913i \(0.941447\pi\)
\(270\) 0 0
\(271\) − 8.66025i − 0.526073i −0.964786 0.263036i \(-0.915276\pi\)
0.964786 0.263036i \(-0.0847240\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 28.0000 1.68236 0.841178 0.540758i \(-0.181862\pi\)
0.841178 + 0.540758i \(0.181862\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 30.0000i 1.78965i 0.446417 + 0.894825i \(0.352700\pi\)
−0.446417 + 0.894825i \(0.647300\pi\)
\(282\) 0 0
\(283\) − 20.7846i − 1.23552i −0.786368 0.617758i \(-0.788041\pi\)
0.786368 0.617758i \(-0.211959\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 8.00000 0.470588
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 33.0000i 1.92788i 0.266119 + 0.963940i \(0.414259\pi\)
−0.266119 + 0.963940i \(0.585741\pi\)
\(294\) 0 0
\(295\) 10.3923i 0.605063i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −10.3923 −0.601003
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) − 13.0000i − 0.744378i
\(306\) 0 0
\(307\) − 10.3923i − 0.593120i −0.955014 0.296560i \(-0.904160\pi\)
0.955014 0.296560i \(-0.0958395\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 31.1769 1.76788 0.883940 0.467600i \(-0.154881\pi\)
0.883940 + 0.467600i \(0.154881\pi\)
\(312\) 0 0
\(313\) −4.00000 −0.226093 −0.113047 0.993590i \(-0.536061\pi\)
−0.113047 + 0.993590i \(0.536061\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 21.0000i − 1.17948i −0.807594 0.589739i \(-0.799231\pi\)
0.807594 0.589739i \(-0.200769\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −5.19615 −0.289122
\(324\) 0 0
\(325\) 2.00000 0.110940
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) − 36.0000i − 1.98474i
\(330\) 0 0
\(331\) − 17.3205i − 0.952021i −0.879440 0.476011i \(-0.842082\pi\)
0.879440 0.476011i \(-0.157918\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 3.46410 0.189264
\(336\) 0 0
\(337\) −2.00000 −0.108947 −0.0544735 0.998515i \(-0.517348\pi\)
−0.0544735 + 0.998515i \(0.517348\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 6.92820i 0.374088i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 31.1769 1.67366 0.836832 0.547459i \(-0.184405\pi\)
0.836832 + 0.547459i \(0.184405\pi\)
\(348\) 0 0
\(349\) 5.00000 0.267644 0.133822 0.991005i \(-0.457275\pi\)
0.133822 + 0.991005i \(0.457275\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 18.0000i 0.958043i 0.877803 + 0.479022i \(0.159008\pi\)
−0.877803 + 0.479022i \(0.840992\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −31.1769 −1.64545 −0.822727 0.568436i \(-0.807549\pi\)
−0.822727 + 0.568436i \(0.807549\pi\)
\(360\) 0 0
\(361\) 16.0000 0.842105
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) − 8.00000i − 0.418739i
\(366\) 0 0
\(367\) 24.2487i 1.26577i 0.774245 + 0.632886i \(0.218130\pi\)
−0.774245 + 0.632886i \(0.781870\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −31.1769 −1.61862
\(372\) 0 0
\(373\) 20.0000 1.03556 0.517780 0.855514i \(-0.326758\pi\)
0.517780 + 0.855514i \(0.326758\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 12.0000i 0.618031i
\(378\) 0 0
\(379\) − 19.0526i − 0.978664i −0.872098 0.489332i \(-0.837241\pi\)
0.872098 0.489332i \(-0.162759\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 25.9808 1.32755 0.663777 0.747930i \(-0.268952\pi\)
0.663777 + 0.747930i \(0.268952\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) − 36.0000i − 1.82527i −0.408773 0.912636i \(-0.634043\pi\)
0.408773 0.912636i \(-0.365957\pi\)
\(390\) 0 0
\(391\) 15.5885i 0.788342i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −1.73205 −0.0871489
\(396\) 0 0
\(397\) 2.00000 0.100377 0.0501886 0.998740i \(-0.484018\pi\)
0.0501886 + 0.998740i \(0.484018\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 6.00000i 0.299626i 0.988714 + 0.149813i \(0.0478671\pi\)
−0.988714 + 0.149813i \(0.952133\pi\)
\(402\) 0 0
\(403\) − 10.3923i − 0.517678i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 25.0000 1.23617 0.618085 0.786111i \(-0.287909\pi\)
0.618085 + 0.786111i \(0.287909\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 36.0000i 1.77144i
\(414\) 0 0
\(415\) 5.19615i 0.255069i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −20.7846 −1.01539 −0.507697 0.861536i \(-0.669503\pi\)
−0.507697 + 0.861536i \(0.669503\pi\)
\(420\) 0 0
\(421\) −5.00000 −0.243685 −0.121843 0.992549i \(-0.538880\pi\)
−0.121843 + 0.992549i \(0.538880\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) − 3.00000i − 0.145521i
\(426\) 0 0
\(427\) − 45.0333i − 2.17932i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 10.3923 0.500580 0.250290 0.968171i \(-0.419474\pi\)
0.250290 + 0.968171i \(0.419474\pi\)
\(432\) 0 0
\(433\) 38.0000 1.82616 0.913082 0.407777i \(-0.133696\pi\)
0.913082 + 0.407777i \(0.133696\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 9.00000i 0.430528i
\(438\) 0 0
\(439\) − 5.19615i − 0.247999i −0.992282 0.123999i \(-0.960428\pi\)
0.992282 0.123999i \(-0.0395721\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 5.19615 0.246877 0.123438 0.992352i \(-0.460608\pi\)
0.123438 + 0.992352i \(0.460608\pi\)
\(444\) 0 0
\(445\) 12.0000 0.568855
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) − 18.0000i − 0.849473i −0.905317 0.424736i \(-0.860367\pi\)
0.905317 0.424736i \(-0.139633\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 6.92820 0.324799
\(456\) 0 0
\(457\) 28.0000 1.30978 0.654892 0.755722i \(-0.272714\pi\)
0.654892 + 0.755722i \(0.272714\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) − 18.0000i − 0.838344i −0.907907 0.419172i \(-0.862320\pi\)
0.907907 0.419172i \(-0.137680\pi\)
\(462\) 0 0
\(463\) 24.2487i 1.12693i 0.826139 + 0.563467i \(0.190533\pi\)
−0.826139 + 0.563467i \(0.809467\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 15.5885 0.721348 0.360674 0.932692i \(-0.382547\pi\)
0.360674 + 0.932692i \(0.382547\pi\)
\(468\) 0 0
\(469\) 12.0000 0.554109
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) − 1.73205i − 0.0794719i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −41.5692 −1.89935 −0.949673 0.313243i \(-0.898585\pi\)
−0.949673 + 0.313243i \(0.898585\pi\)
\(480\) 0 0
\(481\) 20.0000 0.911922
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 4.00000i 0.181631i
\(486\) 0 0
\(487\) − 6.92820i − 0.313947i −0.987603 0.156973i \(-0.949826\pi\)
0.987603 0.156973i \(-0.0501737\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 10.3923 0.468998 0.234499 0.972116i \(-0.424655\pi\)
0.234499 + 0.972116i \(0.424655\pi\)
\(492\) 0 0
\(493\) 18.0000 0.810679
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 36.3731i 1.62828i 0.580667 + 0.814141i \(0.302792\pi\)
−0.580667 + 0.814141i \(0.697208\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 5.19615 0.231685 0.115842 0.993268i \(-0.463043\pi\)
0.115842 + 0.993268i \(0.463043\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(510\) 0 0
\(511\) − 27.7128i − 1.22594i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −13.8564 −0.610586
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) 0 0
\(523\) − 3.46410i − 0.151475i −0.997128 0.0757373i \(-0.975869\pi\)
0.997128 0.0757373i \(-0.0241310\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −15.5885 −0.679044
\(528\) 0 0
\(529\) 4.00000 0.173913
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) − 10.3923i − 0.449299i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 10.0000 0.429934 0.214967 0.976621i \(-0.431036\pi\)
0.214967 + 0.976621i \(0.431036\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) − 11.0000i − 0.471188i
\(546\) 0 0
\(547\) 34.6410i 1.48114i 0.671978 + 0.740571i \(0.265445\pi\)
−0.671978 + 0.740571i \(0.734555\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 10.3923 0.442727
\(552\) 0 0
\(553\) −6.00000 −0.255146
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 6.00000i − 0.254228i −0.991888 0.127114i \(-0.959429\pi\)
0.991888 0.127114i \(-0.0405714\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 10.3923 0.437983 0.218992 0.975727i \(-0.429723\pi\)
0.218992 + 0.975727i \(0.429723\pi\)
\(564\) 0 0
\(565\) 6.00000 0.252422
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) − 6.00000i − 0.251533i −0.992060 0.125767i \(-0.959861\pi\)
0.992060 0.125767i \(-0.0401390\pi\)
\(570\) 0 0
\(571\) − 29.4449i − 1.23223i −0.787657 0.616115i \(-0.788706\pi\)
0.787657 0.616115i \(-0.211294\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −5.19615 −0.216695
\(576\) 0 0
\(577\) 8.00000 0.333044 0.166522 0.986038i \(-0.446746\pi\)
0.166522 + 0.986038i \(0.446746\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 18.0000i 0.746766i
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −5.19615 −0.214468 −0.107234 0.994234i \(-0.534199\pi\)
−0.107234 + 0.994234i \(0.534199\pi\)
\(588\) 0 0
\(589\) −9.00000 −0.370839
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 33.0000i 1.35515i 0.735455 + 0.677574i \(0.236969\pi\)
−0.735455 + 0.677574i \(0.763031\pi\)
\(594\) 0 0
\(595\) − 10.3923i − 0.426043i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 31.1769 1.27385 0.636927 0.770924i \(-0.280205\pi\)
0.636927 + 0.770924i \(0.280205\pi\)
\(600\) 0 0
\(601\) 35.0000 1.42768 0.713840 0.700309i \(-0.246954\pi\)
0.713840 + 0.700309i \(0.246954\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) − 11.0000i − 0.447214i
\(606\) 0 0
\(607\) − 27.7128i − 1.12483i −0.826856 0.562414i \(-0.809873\pi\)
0.826856 0.562414i \(-0.190127\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 20.7846 0.840855
\(612\) 0 0
\(613\) −28.0000 −1.13091 −0.565455 0.824779i \(-0.691299\pi\)
−0.565455 + 0.824779i \(0.691299\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 15.0000i 0.603877i 0.953327 + 0.301939i \(0.0976338\pi\)
−0.953327 + 0.301939i \(0.902366\pi\)
\(618\) 0 0
\(619\) − 45.0333i − 1.81004i −0.425367 0.905021i \(-0.639855\pi\)
0.425367 0.905021i \(-0.360145\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 41.5692 1.66544
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) − 30.0000i − 1.19618i
\(630\) 0 0
\(631\) 12.1244i 0.482663i 0.970443 + 0.241331i \(0.0775841\pi\)
−0.970443 + 0.241331i \(0.922416\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −10.3923 −0.412406
\(636\) 0 0
\(637\) 10.0000 0.396214
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 24.0000i 0.947943i 0.880540 + 0.473972i \(0.157180\pi\)
−0.880540 + 0.473972i \(0.842820\pi\)
\(642\) 0 0
\(643\) − 31.1769i − 1.22950i −0.788723 0.614749i \(-0.789257\pi\)
0.788723 0.614749i \(-0.210743\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −46.7654 −1.83854 −0.919268 0.393632i \(-0.871219\pi\)
−0.919268 + 0.393632i \(0.871219\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 9.00000i 0.352197i 0.984373 + 0.176099i \(0.0563478\pi\)
−0.984373 + 0.176099i \(0.943652\pi\)
\(654\) 0 0
\(655\) 10.3923i 0.406061i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 10.3923 0.404827 0.202413 0.979300i \(-0.435122\pi\)
0.202413 + 0.979300i \(0.435122\pi\)
\(660\) 0 0
\(661\) 2.00000 0.0777910 0.0388955 0.999243i \(-0.487616\pi\)
0.0388955 + 0.999243i \(0.487616\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) − 6.00000i − 0.232670i
\(666\) 0 0
\(667\) − 31.1769i − 1.20717i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −22.0000 −0.848038 −0.424019 0.905653i \(-0.639381\pi\)
−0.424019 + 0.905653i \(0.639381\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 18.0000i 0.691796i 0.938272 + 0.345898i \(0.112426\pi\)
−0.938272 + 0.345898i \(0.887574\pi\)
\(678\) 0 0
\(679\) 13.8564i 0.531760i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 5.19615 0.198825 0.0994126 0.995046i \(-0.468304\pi\)
0.0994126 + 0.995046i \(0.468304\pi\)
\(684\) 0 0
\(685\) −15.0000 −0.573121
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) − 18.0000i − 0.685745i
\(690\) 0 0
\(691\) 25.9808i 0.988355i 0.869361 + 0.494177i \(0.164531\pi\)
−0.869361 + 0.494177i \(0.835469\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −3.46410 −0.131401
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 42.0000i 1.58632i 0.609015 + 0.793159i \(0.291565\pi\)
−0.609015 + 0.793159i \(0.708435\pi\)
\(702\) 0 0
\(703\) − 17.3205i − 0.653255i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −50.0000 −1.87779 −0.938895 0.344204i \(-0.888149\pi\)
−0.938895 + 0.344204i \(0.888149\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 27.0000i 1.01116i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −10.3923 −0.387568 −0.193784 0.981044i \(-0.562076\pi\)
−0.193784 + 0.981044i \(0.562076\pi\)
\(720\) 0 0
\(721\) −48.0000 −1.78761
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 6.00000i 0.222834i
\(726\) 0 0
\(727\) 41.5692i 1.54172i 0.637006 + 0.770859i \(0.280172\pi\)
−0.637006 + 0.770859i \(0.719828\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 4.00000 0.147743 0.0738717 0.997268i \(-0.476464\pi\)
0.0738717 + 0.997268i \(0.476464\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) − 5.19615i − 0.191144i −0.995423 0.0955718i \(-0.969532\pi\)
0.995423 0.0955718i \(-0.0304679\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −10.3923 −0.381257 −0.190628 0.981662i \(-0.561053\pi\)
−0.190628 + 0.981662i \(0.561053\pi\)
\(744\) 0 0
\(745\) 24.0000 0.879292
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) − 36.0000i − 1.31541i
\(750\) 0 0
\(751\) 12.1244i 0.442424i 0.975226 + 0.221212i \(0.0710013\pi\)
−0.975226 + 0.221212i \(0.928999\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −17.3205 −0.630358
\(756\) 0 0
\(757\) 10.0000 0.363456 0.181728 0.983349i \(-0.441831\pi\)
0.181728 + 0.983349i \(0.441831\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) − 30.0000i − 1.08750i −0.839248 0.543750i \(-0.817004\pi\)
0.839248 0.543750i \(-0.182996\pi\)
\(762\) 0 0
\(763\) − 38.1051i − 1.37950i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −20.7846 −0.750489
\(768\) 0 0
\(769\) 29.0000 1.04577 0.522883 0.852404i \(-0.324856\pi\)
0.522883 + 0.852404i \(0.324856\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) − 15.0000i − 0.539513i −0.962929 0.269756i \(-0.913057\pi\)
0.962929 0.269756i \(-0.0869431\pi\)
\(774\) 0 0
\(775\) − 5.19615i − 0.186651i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) − 4.00000i − 0.142766i
\(786\) 0 0
\(787\) 6.92820i 0.246964i 0.992347 + 0.123482i \(0.0394061\pi\)
−0.992347 + 0.123482i \(0.960594\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 20.7846 0.739016
\(792\) 0 0
\(793\) 26.0000 0.923287
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 3.00000i 0.106265i 0.998587 + 0.0531327i \(0.0169206\pi\)
−0.998587 + 0.0531327i \(0.983079\pi\)
\(798\) 0 0
\(799\) − 31.1769i − 1.10296i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) −18.0000 −0.634417
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) − 48.0000i − 1.68759i −0.536666 0.843795i \(-0.680316\pi\)
0.536666 0.843795i \(-0.319684\pi\)
\(810\) 0 0
\(811\) 10.3923i 0.364923i 0.983213 + 0.182462i \(0.0584065\pi\)
−0.983213 + 0.182462i \(0.941593\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −3.46410 −0.121342
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 6.00000i 0.209401i 0.994504 + 0.104701i \(0.0333885\pi\)
−0.994504 + 0.104701i \(0.966612\pi\)
\(822\) 0 0
\(823\) 48.4974i 1.69051i 0.534360 + 0.845257i \(0.320553\pi\)
−0.534360 + 0.845257i \(0.679447\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 36.3731 1.26482 0.632408 0.774636i \(-0.282067\pi\)
0.632408 + 0.774636i \(0.282067\pi\)
\(828\) 0 0
\(829\) 46.0000 1.59765 0.798823 0.601566i \(-0.205456\pi\)
0.798823 + 0.601566i \(0.205456\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) − 15.0000i − 0.519719i
\(834\) 0 0
\(835\) 15.5885i 0.539461i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 41.5692 1.43513 0.717564 0.696492i \(-0.245257\pi\)
0.717564 + 0.696492i \(0.245257\pi\)
\(840\) 0 0
\(841\) −7.00000 −0.241379
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) − 9.00000i − 0.309609i
\(846\) 0 0
\(847\) − 38.1051i − 1.30931i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −51.9615 −1.78122
\(852\) 0 0
\(853\) −4.00000 −0.136957 −0.0684787 0.997653i \(-0.521815\pi\)
−0.0684787 + 0.997653i \(0.521815\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 51.0000i 1.74213i 0.491171 + 0.871063i \(0.336569\pi\)
−0.491171 + 0.871063i \(0.663431\pi\)
\(858\) 0 0
\(859\) 50.2295i 1.71381i 0.515476 + 0.856904i \(0.327615\pi\)
−0.515476 + 0.856904i \(0.672385\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 5.19615 0.176879 0.0884395 0.996082i \(-0.471812\pi\)
0.0884395 + 0.996082i \(0.471812\pi\)
\(864\) 0 0
\(865\) −21.0000 −0.714021
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 6.92820i 0.234753i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 3.46410 0.117108
\(876\) 0 0
\(877\) −52.0000 −1.75592 −0.877958 0.478738i \(-0.841094\pi\)
−0.877958 + 0.478738i \(0.841094\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) − 18.0000i − 0.606435i −0.952921 0.303218i \(-0.901939\pi\)
0.952921 0.303218i \(-0.0980609\pi\)
\(882\) 0 0
\(883\) 45.0333i 1.51549i 0.652550 + 0.757746i \(0.273699\pi\)
−0.652550 + 0.757746i \(0.726301\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −46.7654 −1.57023 −0.785114 0.619352i \(-0.787396\pi\)
−0.785114 + 0.619352i \(0.787396\pi\)
\(888\) 0 0
\(889\) −36.0000 −1.20740
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) − 18.0000i − 0.602347i
\(894\) 0 0
\(895\) − 20.7846i − 0.694753i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 31.1769 1.03981
\(900\) 0 0
\(901\) −27.0000 −0.899500
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 19.0000i 0.631581i
\(906\) 0 0
\(907\) 48.4974i 1.61033i 0.593051 + 0.805165i \(0.297923\pi\)
−0.593051 + 0.805165i \(0.702077\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 51.9615 1.72156 0.860781 0.508975i \(-0.169976\pi\)
0.860781 + 0.508975i \(0.169976\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 36.0000i 1.18882i
\(918\) 0 0
\(919\) 51.9615i 1.71405i 0.515273 + 0.857026i \(0.327691\pi\)
−0.515273 + 0.857026i \(0.672309\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 10.0000 0.328798
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 12.0000i 0.393707i 0.980433 + 0.196854i \(0.0630724\pi\)
−0.980433 + 0.196854i \(0.936928\pi\)
\(930\) 0 0
\(931\) − 8.66025i − 0.283828i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 8.00000 0.261349 0.130674 0.991425i \(-0.458286\pi\)
0.130674 + 0.991425i \(0.458286\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 30.0000i 0.977972i 0.872292 + 0.488986i \(0.162633\pi\)
−0.872292 + 0.488986i \(0.837367\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 15.5885 0.506557 0.253278 0.967393i \(-0.418491\pi\)
0.253278 + 0.967393i \(0.418491\pi\)
\(948\) 0 0
\(949\) 16.0000 0.519382
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) − 30.0000i − 0.971795i −0.874016 0.485898i \(-0.838493\pi\)
0.874016 0.485898i \(-0.161507\pi\)
\(954\) 0 0
\(955\) 10.3923i 0.336287i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −51.9615 −1.67793
\(960\) 0 0
\(961\) 4.00000 0.129032
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 2.00000i 0.0643823i
\(966\) 0 0
\(967\) 17.3205i 0.556990i 0.960438 + 0.278495i \(0.0898356\pi\)
−0.960438 + 0.278495i \(0.910164\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −51.9615 −1.66752 −0.833762 0.552124i \(-0.813818\pi\)
−0.833762 + 0.552124i \(0.813818\pi\)
\(972\) 0 0
\(973\) −12.0000 −0.384702
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 18.0000i − 0.575871i −0.957650 0.287936i \(-0.907031\pi\)
0.957650 0.287936i \(-0.0929689\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −15.5885 −0.497195 −0.248597 0.968607i \(-0.579970\pi\)
−0.248597 + 0.968607i \(0.579970\pi\)
\(984\) 0 0
\(985\) −3.00000 −0.0955879
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 19.0526i 0.605224i 0.953114 + 0.302612i \(0.0978587\pi\)
−0.953114 + 0.302612i \(0.902141\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −24.2487 −0.768736
\(996\) 0 0
\(997\) −28.0000 −0.886769 −0.443384 0.896332i \(-0.646222\pi\)
−0.443384 + 0.896332i \(0.646222\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2160.2.h.c.431.4 yes 4
3.2 odd 2 inner 2160.2.h.c.431.2 yes 4
4.3 odd 2 inner 2160.2.h.c.431.3 yes 4
12.11 even 2 inner 2160.2.h.c.431.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2160.2.h.c.431.1 4 12.11 even 2 inner
2160.2.h.c.431.2 yes 4 3.2 odd 2 inner
2160.2.h.c.431.3 yes 4 4.3 odd 2 inner
2160.2.h.c.431.4 yes 4 1.1 even 1 trivial