Properties

Label 2160.2.o.b
Level $2160$
Weight $2$
Character orbit 2160.o
Analytic conductor $17.248$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2160,2,Mod(2159,2160)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2160, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2160.2159");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2160 = 2^{4} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2160.o (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(17.2476868366\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-11})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 2x^{2} - 3x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{3} - \beta_{2} - 1) q^{5} + (\beta_{3} - \beta_1 + 2) q^{7} + (\beta_{3} - \beta_1 + 2) q^{11} - 2 \beta_{2} q^{13} + ( - \beta_{3} + \beta_1 + 1) q^{17} + (3 \beta_{3} + \beta_{2} + 3 \beta_1) q^{19}+ \cdots + ( - 3 \beta_{3} - 6 \beta_{2} - 3 \beta_1) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 3 q^{5} + 6 q^{7} + 6 q^{11} + 6 q^{17} + q^{25} - 21 q^{35} - 24 q^{43} + 14 q^{49} - 12 q^{53} - 21 q^{55} + 12 q^{59} + 22 q^{61} - 18 q^{65} - 36 q^{67} + 42 q^{77} + 12 q^{85} + 12 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} - 2x^{2} - 3x + 9 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} + 2\nu^{2} - 2\nu - 6 ) / 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} - \nu^{2} - 2\nu - 3 ) / 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( -\beta_{3} + \beta_{2} + 1 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 2\beta_{3} + \beta_{2} + 2\beta _1 + 4 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2160\mathbb{Z}\right)^\times\).

\(n\) \(271\) \(1297\) \(1621\) \(2081\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
2159.1
−1.18614 1.26217i
−1.18614 + 1.26217i
1.68614 + 0.396143i
1.68614 0.396143i
0 0 0 −2.18614 0.469882i 0 4.37228 0 0 0
2159.2 0 0 0 −2.18614 + 0.469882i 0 4.37228 0 0 0
2159.3 0 0 0 0.686141 2.12819i 0 −1.37228 0 0 0
2159.4 0 0 0 0.686141 + 2.12819i 0 −1.37228 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
60.h even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2160.2.o.b yes 4
3.b odd 2 1 2160.2.o.d yes 4
4.b odd 2 1 2160.2.o.a 4
5.b even 2 1 2160.2.o.c yes 4
12.b even 2 1 2160.2.o.c yes 4
15.d odd 2 1 2160.2.o.a 4
20.d odd 2 1 2160.2.o.d yes 4
60.h even 2 1 inner 2160.2.o.b yes 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2160.2.o.a 4 4.b odd 2 1
2160.2.o.a 4 15.d odd 2 1
2160.2.o.b yes 4 1.a even 1 1 trivial
2160.2.o.b yes 4 60.h even 2 1 inner
2160.2.o.c yes 4 5.b even 2 1
2160.2.o.c yes 4 12.b even 2 1
2160.2.o.d yes 4 3.b odd 2 1
2160.2.o.d yes 4 20.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(2160, [\chi])\):

\( T_{7}^{2} - 3T_{7} - 6 \) Copy content Toggle raw display
\( T_{11}^{2} - 3T_{11} - 6 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} + 3 T^{3} + \cdots + 25 \) Copy content Toggle raw display
$7$ \( (T^{2} - 3 T - 6)^{2} \) Copy content Toggle raw display
$11$ \( (T^{2} - 3 T - 6)^{2} \) Copy content Toggle raw display
$13$ \( (T^{2} + 12)^{2} \) Copy content Toggle raw display
$17$ \( (T^{2} - 3 T - 6)^{2} \) Copy content Toggle raw display
$19$ \( T^{4} + 51T^{2} + 576 \) Copy content Toggle raw display
$23$ \( T^{4} + 51T^{2} + 576 \) Copy content Toggle raw display
$29$ \( T^{4} + 76T^{2} + 256 \) Copy content Toggle raw display
$31$ \( (T^{2} + 3)^{2} \) Copy content Toggle raw display
$37$ \( (T^{2} + 48)^{2} \) Copy content Toggle raw display
$41$ \( T^{4} + 76T^{2} + 256 \) Copy content Toggle raw display
$43$ \( (T + 6)^{4} \) Copy content Toggle raw display
$47$ \( (T^{2} + 12)^{2} \) Copy content Toggle raw display
$53$ \( (T + 3)^{4} \) Copy content Toggle raw display
$59$ \( (T^{2} - 6 T - 24)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} - 11 T - 44)^{2} \) Copy content Toggle raw display
$67$ \( (T^{2} + 18 T + 48)^{2} \) Copy content Toggle raw display
$71$ \( (T^{2} - 132)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} + 447 T^{2} + 49284 \) Copy content Toggle raw display
$79$ \( T^{4} + 63T^{2} + 324 \) Copy content Toggle raw display
$83$ \( T^{4} + 222T^{2} + 7569 \) Copy content Toggle raw display
$89$ \( (T^{2} + 44)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} + 171T^{2} + 1296 \) Copy content Toggle raw display
show more
show less