Properties

Label 2160.2.o.b
Level 21602160
Weight 22
Character orbit 2160.o
Analytic conductor 17.24817.248
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2160,2,Mod(2159,2160)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2160, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2160.2159");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 2160=24335 2160 = 2^{4} \cdot 3^{3} \cdot 5
Weight: k k == 2 2
Character orbit: [χ][\chi] == 2160.o (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 17.247686836617.2476868366
Analytic rank: 00
Dimension: 44
Coefficient field: Q(3,11)\Q(\sqrt{-3}, \sqrt{-11})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4x32x23x+9 x^{4} - x^{3} - 2x^{2} - 3x + 9 Copy content Toggle raw display
Coefficient ring: Z[a1,,a19]\Z[a_1, \ldots, a_{19}]
Coefficient ring index: 2 2
Twist minimal: yes
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β3β21)q5+(β3β1+2)q7+(β3β1+2)q112β2q13+(β3+β1+1)q17+(3β3+β2+3β1)q19++(3β36β23β1)q97+O(q100) q + ( - \beta_{3} - \beta_{2} - 1) q^{5} + (\beta_{3} - \beta_1 + 2) q^{7} + (\beta_{3} - \beta_1 + 2) q^{11} - 2 \beta_{2} q^{13} + ( - \beta_{3} + \beta_1 + 1) q^{17} + (3 \beta_{3} + \beta_{2} + 3 \beta_1) q^{19}+ \cdots + ( - 3 \beta_{3} - 6 \beta_{2} - 3 \beta_1) q^{97}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q3q5+6q7+6q11+6q17+q2521q3524q43+14q4912q5321q55+12q59+22q6118q6536q67+42q77+12q85+12q95+O(q100) 4 q - 3 q^{5} + 6 q^{7} + 6 q^{11} + 6 q^{17} + q^{25} - 21 q^{35} - 24 q^{43} + 14 q^{49} - 12 q^{53} - 21 q^{55} + 12 q^{59} + 22 q^{61} - 18 q^{65} - 36 q^{67} + 42 q^{77} + 12 q^{85} + 12 q^{95}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x4x32x23x+9 x^{4} - x^{3} - 2x^{2} - 3x + 9 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (ν3+2ν22ν6)/3 ( \nu^{3} + 2\nu^{2} - 2\nu - 6 ) / 3 Copy content Toggle raw display
β3\beta_{3}== (ν3ν22ν3)/3 ( \nu^{3} - \nu^{2} - 2\nu - 3 ) / 3 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β3+β2+1 -\beta_{3} + \beta_{2} + 1 Copy content Toggle raw display
ν3\nu^{3}== 2β3+β2+2β1+4 2\beta_{3} + \beta_{2} + 2\beta _1 + 4 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/2160Z)×\left(\mathbb{Z}/2160\mathbb{Z}\right)^\times.

nn 271271 12971297 16211621 20812081
χ(n)\chi(n) 1-1 1-1 11 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
2159.1
−1.18614 1.26217i
−1.18614 + 1.26217i
1.68614 + 0.396143i
1.68614 0.396143i
0 0 0 −2.18614 0.469882i 0 4.37228 0 0 0
2159.2 0 0 0 −2.18614 + 0.469882i 0 4.37228 0 0 0
2159.3 0 0 0 0.686141 2.12819i 0 −1.37228 0 0 0
2159.4 0 0 0 0.686141 + 2.12819i 0 −1.37228 0 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
60.h even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2160.2.o.b yes 4
3.b odd 2 1 2160.2.o.d yes 4
4.b odd 2 1 2160.2.o.a 4
5.b even 2 1 2160.2.o.c yes 4
12.b even 2 1 2160.2.o.c yes 4
15.d odd 2 1 2160.2.o.a 4
20.d odd 2 1 2160.2.o.d yes 4
60.h even 2 1 inner 2160.2.o.b yes 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2160.2.o.a 4 4.b odd 2 1
2160.2.o.a 4 15.d odd 2 1
2160.2.o.b yes 4 1.a even 1 1 trivial
2160.2.o.b yes 4 60.h even 2 1 inner
2160.2.o.c yes 4 5.b even 2 1
2160.2.o.c yes 4 12.b even 2 1
2160.2.o.d yes 4 3.b odd 2 1
2160.2.o.d yes 4 20.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(2160,[χ])S_{2}^{\mathrm{new}}(2160, [\chi]):

T723T76 T_{7}^{2} - 3T_{7} - 6 Copy content Toggle raw display
T1123T116 T_{11}^{2} - 3T_{11} - 6 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4 T^{4} Copy content Toggle raw display
33 T4 T^{4} Copy content Toggle raw display
55 T4+3T3++25 T^{4} + 3 T^{3} + \cdots + 25 Copy content Toggle raw display
77 (T23T6)2 (T^{2} - 3 T - 6)^{2} Copy content Toggle raw display
1111 (T23T6)2 (T^{2} - 3 T - 6)^{2} Copy content Toggle raw display
1313 (T2+12)2 (T^{2} + 12)^{2} Copy content Toggle raw display
1717 (T23T6)2 (T^{2} - 3 T - 6)^{2} Copy content Toggle raw display
1919 T4+51T2+576 T^{4} + 51T^{2} + 576 Copy content Toggle raw display
2323 T4+51T2+576 T^{4} + 51T^{2} + 576 Copy content Toggle raw display
2929 T4+76T2+256 T^{4} + 76T^{2} + 256 Copy content Toggle raw display
3131 (T2+3)2 (T^{2} + 3)^{2} Copy content Toggle raw display
3737 (T2+48)2 (T^{2} + 48)^{2} Copy content Toggle raw display
4141 T4+76T2+256 T^{4} + 76T^{2} + 256 Copy content Toggle raw display
4343 (T+6)4 (T + 6)^{4} Copy content Toggle raw display
4747 (T2+12)2 (T^{2} + 12)^{2} Copy content Toggle raw display
5353 (T+3)4 (T + 3)^{4} Copy content Toggle raw display
5959 (T26T24)2 (T^{2} - 6 T - 24)^{2} Copy content Toggle raw display
6161 (T211T44)2 (T^{2} - 11 T - 44)^{2} Copy content Toggle raw display
6767 (T2+18T+48)2 (T^{2} + 18 T + 48)^{2} Copy content Toggle raw display
7171 (T2132)2 (T^{2} - 132)^{2} Copy content Toggle raw display
7373 T4+447T2+49284 T^{4} + 447 T^{2} + 49284 Copy content Toggle raw display
7979 T4+63T2+324 T^{4} + 63T^{2} + 324 Copy content Toggle raw display
8383 T4+222T2+7569 T^{4} + 222T^{2} + 7569 Copy content Toggle raw display
8989 (T2+44)2 (T^{2} + 44)^{2} Copy content Toggle raw display
9797 T4+171T2+1296 T^{4} + 171T^{2} + 1296 Copy content Toggle raw display
show more
show less