Properties

Label 2160.3.c.m.1889.1
Level $2160$
Weight $3$
Character 2160.1889
Analytic conductor $58.856$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2160,3,Mod(1889,2160)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2160, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2160.1889");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2160 = 2^{4} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 2160.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(58.8557371018\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.0.31744.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 14x^{2} + 31 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 270)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1889.1
Root \(3.35300i\) of defining polynomial
Character \(\chi\) \(=\) 2160.1889
Dual form 2160.3.c.m.1889.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.58579 - 4.74186i) q^{5} -0.813575i q^{7} +15.3762i q^{11} +5.89243i q^{13} -12.8995 q^{17} -1.24264 q^{19} +4.79899 q^{23} +(-19.9706 - 15.0392i) q^{25} -42.6768i q^{29} -4.21320 q^{31} +(-3.85786 - 1.29016i) q^{35} -70.3144i q^{37} -7.04300i q^{41} +41.0496i q^{43} +79.7990 q^{47} +48.3381 q^{49} +63.7279 q^{53} +(72.9117 + 24.3833i) q^{55} -36.6448i q^{59} -82.9411 q^{61} +(27.9411 + 9.34414i) q^{65} -89.0027i q^{67} -69.6982i q^{71} -89.6188i q^{73} +12.5097 q^{77} -134.095 q^{79} -109.024 q^{83} +(-20.4558 + 61.1677i) q^{85} +137.514i q^{89} +4.79394 q^{91} +(-1.97056 + 5.89243i) q^{95} -90.6298i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 12 q^{5} - 12 q^{17} + 12 q^{19} - 60 q^{23} - 12 q^{25} + 68 q^{31} - 72 q^{35} + 240 q^{47} - 180 q^{49} + 204 q^{53} + 88 q^{55} - 196 q^{61} - 24 q^{65} - 312 q^{77} - 180 q^{79} - 108 q^{83}+ \cdots + 60 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2160\mathbb{Z}\right)^\times\).

\(n\) \(271\) \(1297\) \(1621\) \(2081\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.58579 4.74186i 0.317157 0.948373i
\(6\) 0 0
\(7\) 0.813575i 0.116225i −0.998310 0.0581125i \(-0.981492\pi\)
0.998310 0.0581125i \(-0.0185082\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 15.3762i 1.39783i 0.715203 + 0.698917i \(0.246334\pi\)
−0.715203 + 0.698917i \(0.753666\pi\)
\(12\) 0 0
\(13\) 5.89243i 0.453264i 0.973980 + 0.226632i \(0.0727715\pi\)
−0.973980 + 0.226632i \(0.927229\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −12.8995 −0.758794 −0.379397 0.925234i \(-0.623869\pi\)
−0.379397 + 0.925234i \(0.623869\pi\)
\(18\) 0 0
\(19\) −1.24264 −0.0654021 −0.0327011 0.999465i \(-0.510411\pi\)
−0.0327011 + 0.999465i \(0.510411\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 4.79899 0.208652 0.104326 0.994543i \(-0.466732\pi\)
0.104326 + 0.994543i \(0.466732\pi\)
\(24\) 0 0
\(25\) −19.9706 15.0392i −0.798823 0.601567i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 42.6768i 1.47161i −0.677192 0.735807i \(-0.736803\pi\)
0.677192 0.735807i \(-0.263197\pi\)
\(30\) 0 0
\(31\) −4.21320 −0.135910 −0.0679549 0.997688i \(-0.521647\pi\)
−0.0679549 + 0.997688i \(0.521647\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −3.85786 1.29016i −0.110225 0.0368616i
\(36\) 0 0
\(37\) 70.3144i 1.90039i −0.311657 0.950195i \(-0.600884\pi\)
0.311657 0.950195i \(-0.399116\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 7.04300i 0.171781i −0.996305 0.0858903i \(-0.972627\pi\)
0.996305 0.0858903i \(-0.0273735\pi\)
\(42\) 0 0
\(43\) 41.0496i 0.954643i 0.878729 + 0.477321i \(0.158392\pi\)
−0.878729 + 0.477321i \(0.841608\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 79.7990 1.69785 0.848925 0.528513i \(-0.177250\pi\)
0.848925 + 0.528513i \(0.177250\pi\)
\(48\) 0 0
\(49\) 48.3381 0.986492
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 63.7279 1.20241 0.601207 0.799093i \(-0.294687\pi\)
0.601207 + 0.799093i \(0.294687\pi\)
\(54\) 0 0
\(55\) 72.9117 + 24.3833i 1.32567 + 0.443333i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 36.6448i 0.621098i −0.950557 0.310549i \(-0.899487\pi\)
0.950557 0.310549i \(-0.100513\pi\)
\(60\) 0 0
\(61\) −82.9411 −1.35969 −0.679845 0.733356i \(-0.737953\pi\)
−0.679845 + 0.733356i \(0.737953\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 27.9411 + 9.34414i 0.429863 + 0.143756i
\(66\) 0 0
\(67\) 89.0027i 1.32840i −0.747556 0.664199i \(-0.768773\pi\)
0.747556 0.664199i \(-0.231227\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 69.6982i 0.981665i −0.871254 0.490833i \(-0.836693\pi\)
0.871254 0.490833i \(-0.163307\pi\)
\(72\) 0 0
\(73\) 89.6188i 1.22766i −0.789440 0.613828i \(-0.789629\pi\)
0.789440 0.613828i \(-0.210371\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 12.5097 0.162463
\(78\) 0 0
\(79\) −134.095 −1.69741 −0.848705 0.528866i \(-0.822617\pi\)
−0.848705 + 0.528866i \(0.822617\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −109.024 −1.31355 −0.656773 0.754088i \(-0.728079\pi\)
−0.656773 + 0.754088i \(0.728079\pi\)
\(84\) 0 0
\(85\) −20.4558 + 61.1677i −0.240657 + 0.719620i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 137.514i 1.54510i 0.634953 + 0.772551i \(0.281020\pi\)
−0.634953 + 0.772551i \(0.718980\pi\)
\(90\) 0 0
\(91\) 4.79394 0.0526807
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −1.97056 + 5.89243i −0.0207428 + 0.0620256i
\(96\) 0 0
\(97\) 90.6298i 0.934328i −0.884171 0.467164i \(-0.845276\pi\)
0.884171 0.467164i \(-0.154724\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 49.7198i 0.492275i 0.969235 + 0.246138i \(0.0791615\pi\)
−0.969235 + 0.246138i \(0.920839\pi\)
\(102\) 0 0
\(103\) 128.844i 1.25091i −0.780259 0.625456i \(-0.784913\pi\)
0.780259 0.625456i \(-0.215087\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −6.42641 −0.0600599 −0.0300299 0.999549i \(-0.509560\pi\)
−0.0300299 + 0.999549i \(0.509560\pi\)
\(108\) 0 0
\(109\) 108.279 0.993387 0.496694 0.867926i \(-0.334547\pi\)
0.496694 + 0.867926i \(0.334547\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −30.4264 −0.269260 −0.134630 0.990896i \(-0.542985\pi\)
−0.134630 + 0.990896i \(0.542985\pi\)
\(114\) 0 0
\(115\) 7.61017 22.7562i 0.0661754 0.197880i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 10.4947i 0.0881909i
\(120\) 0 0
\(121\) −115.426 −0.953937
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −102.983 + 70.8488i −0.823862 + 0.566790i
\(126\) 0 0
\(127\) 133.725i 1.05296i −0.850189 0.526478i \(-0.823512\pi\)
0.850189 0.526478i \(-0.176488\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 61.7838i 0.471632i 0.971798 + 0.235816i \(0.0757763\pi\)
−0.971798 + 0.235816i \(0.924224\pi\)
\(132\) 0 0
\(133\) 1.01098i 0.00760137i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −163.919 −1.19649 −0.598244 0.801314i \(-0.704135\pi\)
−0.598244 + 0.801314i \(0.704135\pi\)
\(138\) 0 0
\(139\) −182.250 −1.31115 −0.655575 0.755130i \(-0.727574\pi\)
−0.655575 + 0.755130i \(0.727574\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −90.6030 −0.633588
\(144\) 0 0
\(145\) −202.368 67.6763i −1.39564 0.466733i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 189.535i 1.27205i −0.771670 0.636023i \(-0.780578\pi\)
0.771670 0.636023i \(-0.219422\pi\)
\(150\) 0 0
\(151\) 113.338 0.750583 0.375292 0.926907i \(-0.377543\pi\)
0.375292 + 0.926907i \(0.377543\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −6.68124 + 19.9784i −0.0431048 + 0.128893i
\(156\) 0 0
\(157\) 113.189i 0.720946i −0.932770 0.360473i \(-0.882615\pi\)
0.932770 0.360473i \(-0.117385\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 3.90434i 0.0242506i
\(162\) 0 0
\(163\) 152.414i 0.935053i −0.883979 0.467527i \(-0.845145\pi\)
0.883979 0.467527i \(-0.154855\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −105.853 −0.633849 −0.316925 0.948451i \(-0.602650\pi\)
−0.316925 + 0.948451i \(0.602650\pi\)
\(168\) 0 0
\(169\) 134.279 0.794552
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 110.012 0.635909 0.317954 0.948106i \(-0.397004\pi\)
0.317954 + 0.948106i \(0.397004\pi\)
\(174\) 0 0
\(175\) −12.2355 + 16.2476i −0.0699171 + 0.0928432i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 118.407i 0.661492i 0.943720 + 0.330746i \(0.107300\pi\)
−0.943720 + 0.330746i \(0.892700\pi\)
\(180\) 0 0
\(181\) 172.397 0.952469 0.476235 0.879318i \(-0.342001\pi\)
0.476235 + 0.879318i \(0.342001\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −333.421 111.504i −1.80228 0.602722i
\(186\) 0 0
\(187\) 198.345i 1.06067i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 289.393i 1.51515i 0.652749 + 0.757574i \(0.273616\pi\)
−0.652749 + 0.757574i \(0.726384\pi\)
\(192\) 0 0
\(193\) 127.833i 0.662347i −0.943570 0.331173i \(-0.892555\pi\)
0.943570 0.331173i \(-0.107445\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 280.414 1.42342 0.711711 0.702472i \(-0.247920\pi\)
0.711711 + 0.702472i \(0.247920\pi\)
\(198\) 0 0
\(199\) −156.426 −0.786062 −0.393031 0.919525i \(-0.628574\pi\)
−0.393031 + 0.919525i \(0.628574\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −34.7208 −0.171038
\(204\) 0 0
\(205\) −33.3970 11.1687i −0.162912 0.0544815i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 19.1070i 0.0914213i
\(210\) 0 0
\(211\) −22.5076 −0.106671 −0.0533355 0.998577i \(-0.516985\pi\)
−0.0533355 + 0.998577i \(0.516985\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 194.652 + 65.0959i 0.905357 + 0.302772i
\(216\) 0 0
\(217\) 3.42776i 0.0157961i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 76.0094i 0.343934i
\(222\) 0 0
\(223\) 354.826i 1.59115i −0.605856 0.795575i \(-0.707169\pi\)
0.605856 0.795575i \(-0.292831\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 415.098 1.82862 0.914312 0.405011i \(-0.132732\pi\)
0.914312 + 0.405011i \(0.132732\pi\)
\(228\) 0 0
\(229\) −220.220 −0.961661 −0.480830 0.876814i \(-0.659665\pi\)
−0.480830 + 0.876814i \(0.659665\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 10.0345 0.0430665 0.0215332 0.999768i \(-0.493145\pi\)
0.0215332 + 0.999768i \(0.493145\pi\)
\(234\) 0 0
\(235\) 126.544 378.396i 0.538486 1.61020i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 114.363i 0.478507i −0.970957 0.239253i \(-0.923097\pi\)
0.970957 0.239253i \(-0.0769027\pi\)
\(240\) 0 0
\(241\) −63.7208 −0.264402 −0.132201 0.991223i \(-0.542204\pi\)
−0.132201 + 0.991223i \(0.542204\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 76.6539 229.213i 0.312873 0.935562i
\(246\) 0 0
\(247\) 7.32218i 0.0296444i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 229.631i 0.914866i −0.889244 0.457433i \(-0.848769\pi\)
0.889244 0.457433i \(-0.151231\pi\)
\(252\) 0 0
\(253\) 73.7901i 0.291660i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 388.227 1.51061 0.755306 0.655372i \(-0.227488\pi\)
0.755306 + 0.655372i \(0.227488\pi\)
\(258\) 0 0
\(259\) −57.2061 −0.220873
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −226.877 −0.862651 −0.431325 0.902196i \(-0.641954\pi\)
−0.431325 + 0.902196i \(0.641954\pi\)
\(264\) 0 0
\(265\) 101.059 302.189i 0.381354 1.14034i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 226.772i 0.843019i 0.906824 + 0.421509i \(0.138500\pi\)
−0.906824 + 0.421509i \(0.861500\pi\)
\(270\) 0 0
\(271\) −322.889 −1.19147 −0.595737 0.803180i \(-0.703140\pi\)
−0.595737 + 0.803180i \(0.703140\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 231.245 307.071i 0.840890 1.11662i
\(276\) 0 0
\(277\) 200.564i 0.724058i 0.932167 + 0.362029i \(0.117916\pi\)
−0.932167 + 0.362029i \(0.882084\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 128.030i 0.455624i 0.973705 + 0.227812i \(0.0731572\pi\)
−0.973705 + 0.227812i \(0.926843\pi\)
\(282\) 0 0
\(283\) 420.235i 1.48493i 0.669885 + 0.742465i \(0.266344\pi\)
−0.669885 + 0.742465i \(0.733656\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −5.73001 −0.0199652
\(288\) 0 0
\(289\) −122.603 −0.424232
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 137.434 0.469056 0.234528 0.972109i \(-0.424645\pi\)
0.234528 + 0.972109i \(0.424645\pi\)
\(294\) 0 0
\(295\) −173.765 58.1108i −0.589032 0.196986i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 28.2777i 0.0945744i
\(300\) 0 0
\(301\) 33.3970 0.110953
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −131.527 + 393.296i −0.431236 + 1.28949i
\(306\) 0 0
\(307\) 117.849i 0.383872i 0.981407 + 0.191936i \(0.0614766\pi\)
−0.981407 + 0.191936i \(0.938523\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 499.326i 1.60555i −0.596283 0.802774i \(-0.703356\pi\)
0.596283 0.802774i \(-0.296644\pi\)
\(312\) 0 0
\(313\) 491.806i 1.57127i −0.618693 0.785633i \(-0.712338\pi\)
0.618693 0.785633i \(-0.287662\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −241.399 −0.761511 −0.380756 0.924676i \(-0.624336\pi\)
−0.380756 + 0.924676i \(0.624336\pi\)
\(318\) 0 0
\(319\) 656.205 2.05707
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 16.0294 0.0496267
\(324\) 0 0
\(325\) 88.6173 117.675i 0.272669 0.362078i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 64.9225i 0.197333i
\(330\) 0 0
\(331\) 87.8091 0.265284 0.132642 0.991164i \(-0.457654\pi\)
0.132642 + 0.991164i \(0.457654\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −422.039 141.139i −1.25982 0.421311i
\(336\) 0 0
\(337\) 452.138i 1.34166i −0.741613 0.670828i \(-0.765939\pi\)
0.741613 0.670828i \(-0.234061\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 64.7829i 0.189979i
\(342\) 0 0
\(343\) 79.1919i 0.230880i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −189.411 −0.545854 −0.272927 0.962035i \(-0.587992\pi\)
−0.272927 + 0.962035i \(0.587992\pi\)
\(348\) 0 0
\(349\) −155.794 −0.446401 −0.223200 0.974773i \(-0.571650\pi\)
−0.223200 + 0.974773i \(0.571650\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 263.387 0.746138 0.373069 0.927804i \(-0.378305\pi\)
0.373069 + 0.927804i \(0.378305\pi\)
\(354\) 0 0
\(355\) −330.500 110.527i −0.930985 0.311342i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 79.6346i 0.221823i 0.993830 + 0.110912i \(0.0353771\pi\)
−0.993830 + 0.110912i \(0.964623\pi\)
\(360\) 0 0
\(361\) −359.456 −0.995723
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −424.960 142.116i −1.16428 0.389360i
\(366\) 0 0
\(367\) 475.953i 1.29688i 0.761268 + 0.648438i \(0.224577\pi\)
−0.761268 + 0.648438i \(0.775423\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 51.8475i 0.139751i
\(372\) 0 0
\(373\) 61.7838i 0.165640i −0.996565 0.0828201i \(-0.973607\pi\)
0.996565 0.0828201i \(-0.0263927\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 251.470 0.667030
\(378\) 0 0
\(379\) 142.345 0.375581 0.187791 0.982209i \(-0.439867\pi\)
0.187791 + 0.982209i \(0.439867\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −357.520 −0.933472 −0.466736 0.884397i \(-0.654570\pi\)
−0.466736 + 0.884397i \(0.654570\pi\)
\(384\) 0 0
\(385\) 19.8377 59.3192i 0.0515264 0.154076i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 411.079i 1.05676i 0.849009 + 0.528379i \(0.177200\pi\)
−0.849009 + 0.528379i \(0.822800\pi\)
\(390\) 0 0
\(391\) −61.9045 −0.158324
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −212.647 + 635.863i −0.538346 + 1.60978i
\(396\) 0 0
\(397\) 457.462i 1.15230i 0.817345 + 0.576149i \(0.195445\pi\)
−0.817345 + 0.576149i \(0.804555\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 467.283i 1.16529i −0.812725 0.582647i \(-0.802017\pi\)
0.812725 0.582647i \(-0.197983\pi\)
\(402\) 0 0
\(403\) 24.8260i 0.0616030i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 1081.17 2.65643
\(408\) 0 0
\(409\) −448.574 −1.09676 −0.548378 0.836230i \(-0.684755\pi\)
−0.548378 + 0.836230i \(0.684755\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −29.8133 −0.0721871
\(414\) 0 0
\(415\) −172.889 + 516.979i −0.416601 + 1.24573i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 360.834i 0.861180i −0.902548 0.430590i \(-0.858306\pi\)
0.902548 0.430590i \(-0.141694\pi\)
\(420\) 0 0
\(421\) 357.059 0.848121 0.424060 0.905634i \(-0.360604\pi\)
0.424060 + 0.905634i \(0.360604\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 257.610 + 193.998i 0.606142 + 0.456465i
\(426\) 0 0
\(427\) 67.4789i 0.158030i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 655.947i 1.52192i 0.648800 + 0.760959i \(0.275271\pi\)
−0.648800 + 0.760959i \(0.724729\pi\)
\(432\) 0 0
\(433\) 164.372i 0.379612i −0.981822 0.189806i \(-0.939214\pi\)
0.981822 0.189806i \(-0.0607859\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −5.96342 −0.0136463
\(438\) 0 0
\(439\) 132.286 0.301336 0.150668 0.988584i \(-0.451858\pi\)
0.150668 + 0.988584i \(0.451858\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −455.485 −1.02818 −0.514092 0.857735i \(-0.671871\pi\)
−0.514092 + 0.857735i \(0.671871\pi\)
\(444\) 0 0
\(445\) 652.073 + 218.068i 1.46533 + 0.490040i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 415.749i 0.925944i −0.886373 0.462972i \(-0.846783\pi\)
0.886373 0.462972i \(-0.153217\pi\)
\(450\) 0 0
\(451\) 108.294 0.240121
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 7.60216 22.7322i 0.0167081 0.0499609i
\(456\) 0 0
\(457\) 303.643i 0.664426i −0.943204 0.332213i \(-0.892205\pi\)
0.943204 0.332213i \(-0.107795\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 428.790i 0.930130i 0.885277 + 0.465065i \(0.153969\pi\)
−0.885277 + 0.465065i \(0.846031\pi\)
\(462\) 0 0
\(463\) 814.484i 1.75914i −0.475765 0.879572i \(-0.657829\pi\)
0.475765 0.879572i \(-0.342171\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 607.118 1.30004 0.650019 0.759918i \(-0.274761\pi\)
0.650019 + 0.759918i \(0.274761\pi\)
\(468\) 0 0
\(469\) −72.4104 −0.154393
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −631.186 −1.33443
\(474\) 0 0
\(475\) 24.8162 + 18.6883i 0.0522447 + 0.0393438i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 343.889i 0.717931i 0.933351 + 0.358965i \(0.116870\pi\)
−0.933351 + 0.358965i \(0.883130\pi\)
\(480\) 0 0
\(481\) 414.323 0.861378
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −429.754 143.720i −0.886092 0.296329i
\(486\) 0 0
\(487\) 300.759i 0.617576i 0.951131 + 0.308788i \(0.0999233\pi\)
−0.951131 + 0.308788i \(0.900077\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 173.914i 0.354203i 0.984193 + 0.177101i \(0.0566720\pi\)
−0.984193 + 0.177101i \(0.943328\pi\)
\(492\) 0 0
\(493\) 550.509i 1.11665i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −56.7048 −0.114094
\(498\) 0 0
\(499\) 761.610 1.52627 0.763136 0.646237i \(-0.223658\pi\)
0.763136 + 0.646237i \(0.223658\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 280.632 0.557917 0.278959 0.960303i \(-0.410011\pi\)
0.278959 + 0.960303i \(0.410011\pi\)
\(504\) 0 0
\(505\) 235.765 + 78.8450i 0.466860 + 0.156129i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 633.176i 1.24396i −0.783032 0.621981i \(-0.786328\pi\)
0.783032 0.621981i \(-0.213672\pi\)
\(510\) 0 0
\(511\) −72.9117 −0.142684
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −610.960 204.319i −1.18633 0.396736i
\(516\) 0 0
\(517\) 1227.00i 2.37331i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 92.3966i 0.177345i 0.996061 + 0.0886723i \(0.0282624\pi\)
−0.996061 + 0.0886723i \(0.971738\pi\)
\(522\) 0 0
\(523\) 818.552i 1.56511i 0.622582 + 0.782554i \(0.286084\pi\)
−0.622582 + 0.782554i \(0.713916\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 54.3482 0.103128
\(528\) 0 0
\(529\) −505.970 −0.956464
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 41.5004 0.0778620
\(534\) 0 0
\(535\) −10.1909 + 30.4732i −0.0190484 + 0.0569592i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 743.254i 1.37895i
\(540\) 0 0
\(541\) −376.985 −0.696830 −0.348415 0.937340i \(-0.613280\pi\)
−0.348415 + 0.937340i \(0.613280\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 171.708 513.445i 0.315060 0.942102i
\(546\) 0 0
\(547\) 337.346i 0.616721i −0.951270 0.308360i \(-0.900220\pi\)
0.951270 0.308360i \(-0.0997803\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 53.0319i 0.0962467i
\(552\) 0 0
\(553\) 109.097i 0.197282i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 303.338 0.544593 0.272296 0.962213i \(-0.412217\pi\)
0.272296 + 0.962213i \(0.412217\pi\)
\(558\) 0 0
\(559\) −241.882 −0.432705
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −234.093 −0.415796 −0.207898 0.978150i \(-0.566662\pi\)
−0.207898 + 0.978150i \(0.566662\pi\)
\(564\) 0 0
\(565\) −48.2498 + 144.278i −0.0853978 + 0.255359i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 66.5257i 0.116917i −0.998290 0.0584584i \(-0.981381\pi\)
0.998290 0.0584584i \(-0.0186185\pi\)
\(570\) 0 0
\(571\) −1115.54 −1.95365 −0.976826 0.214035i \(-0.931339\pi\)
−0.976826 + 0.214035i \(0.931339\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −95.8385 72.1728i −0.166676 0.125518i
\(576\) 0 0
\(577\) 957.356i 1.65920i −0.558361 0.829598i \(-0.688570\pi\)
0.558361 0.829598i \(-0.311430\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 88.6996i 0.152667i
\(582\) 0 0
\(583\) 979.891i 1.68077i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 79.8974 0.136111 0.0680557 0.997682i \(-0.478320\pi\)
0.0680557 + 0.997682i \(0.478320\pi\)
\(588\) 0 0
\(589\) 5.23550 0.00888879
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −213.831 −0.360593 −0.180296 0.983612i \(-0.557706\pi\)
−0.180296 + 0.983612i \(0.557706\pi\)
\(594\) 0 0
\(595\) 49.7645 + 16.6424i 0.0836378 + 0.0279704i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 915.493i 1.52837i −0.644998 0.764184i \(-0.723142\pi\)
0.644998 0.764184i \(-0.276858\pi\)
\(600\) 0 0
\(601\) 479.426 0.797714 0.398857 0.917013i \(-0.369407\pi\)
0.398857 + 0.917013i \(0.369407\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −183.042 + 547.336i −0.302548 + 0.904688i
\(606\) 0 0
\(607\) 219.893i 0.362261i −0.983459 0.181131i \(-0.942024\pi\)
0.983459 0.181131i \(-0.0579757\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 470.210i 0.769575i
\(612\) 0 0
\(613\) 862.066i 1.40631i 0.711038 + 0.703154i \(0.248225\pi\)
−0.711038 + 0.703154i \(0.751775\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 695.423 1.12710 0.563552 0.826080i \(-0.309434\pi\)
0.563552 + 0.826080i \(0.309434\pi\)
\(618\) 0 0
\(619\) 512.073 0.827259 0.413629 0.910445i \(-0.364261\pi\)
0.413629 + 0.910445i \(0.364261\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 111.878 0.179580
\(624\) 0 0
\(625\) 172.647 + 600.681i 0.276235 + 0.961090i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 907.020i 1.44200i
\(630\) 0 0
\(631\) 643.375 1.01961 0.509806 0.860290i \(-0.329717\pi\)
0.509806 + 0.860290i \(0.329717\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −634.108 212.060i −0.998595 0.333953i
\(636\) 0 0
\(637\) 284.829i 0.447141i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 196.925i 0.307215i 0.988132 + 0.153608i \(0.0490892\pi\)
−0.988132 + 0.153608i \(0.950911\pi\)
\(642\) 0 0
\(643\) 236.954i 0.368513i 0.982878 + 0.184256i \(0.0589877\pi\)
−0.982878 + 0.184256i \(0.941012\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −17.3818 −0.0268653 −0.0134326 0.999910i \(-0.504276\pi\)
−0.0134326 + 0.999910i \(0.504276\pi\)
\(648\) 0 0
\(649\) 563.456 0.868191
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −785.704 −1.20322 −0.601611 0.798789i \(-0.705474\pi\)
−0.601611 + 0.798789i \(0.705474\pi\)
\(654\) 0 0
\(655\) 292.971 + 97.9760i 0.447283 + 0.149582i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 498.767i 0.756855i −0.925631 0.378427i \(-0.876465\pi\)
0.925631 0.378427i \(-0.123535\pi\)
\(660\) 0 0
\(661\) 303.133 0.458597 0.229299 0.973356i \(-0.426357\pi\)
0.229299 + 0.973356i \(0.426357\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 4.79394 + 1.60320i 0.00720893 + 0.00241083i
\(666\) 0 0
\(667\) 204.805i 0.307055i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 1275.32i 1.90062i
\(672\) 0 0
\(673\) 463.133i 0.688163i 0.938940 + 0.344081i \(0.111810\pi\)
−0.938940 + 0.344081i \(0.888190\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 311.064 0.459474 0.229737 0.973253i \(-0.426213\pi\)
0.229737 + 0.973253i \(0.426213\pi\)
\(678\) 0 0
\(679\) −73.7342 −0.108592
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −232.009 −0.339691 −0.169846 0.985471i \(-0.554327\pi\)
−0.169846 + 0.985471i \(0.554327\pi\)
\(684\) 0 0
\(685\) −259.940 + 777.281i −0.379475 + 1.13472i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 375.513i 0.545011i
\(690\) 0 0
\(691\) 552.904 0.800150 0.400075 0.916482i \(-0.368984\pi\)
0.400075 + 0.916482i \(0.368984\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −289.009 + 864.204i −0.415841 + 1.24346i
\(696\) 0 0
\(697\) 90.8512i 0.130346i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 250.274i 0.357024i 0.983938 + 0.178512i \(0.0571284\pi\)
−0.983938 + 0.178512i \(0.942872\pi\)
\(702\) 0 0
\(703\) 87.3755i 0.124290i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 40.4508 0.0572147
\(708\) 0 0
\(709\) 1170.57 1.65102 0.825510 0.564388i \(-0.190888\pi\)
0.825510 + 0.564388i \(0.190888\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −20.2191 −0.0283578
\(714\) 0 0
\(715\) −143.677 + 429.627i −0.200947 + 0.600877i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 168.127i 0.233834i 0.993142 + 0.116917i \(0.0373012\pi\)
−0.993142 + 0.116917i \(0.962699\pi\)
\(720\) 0 0
\(721\) −104.824 −0.145387
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −641.823 + 852.279i −0.885274 + 1.17556i
\(726\) 0 0
\(727\) 382.835i 0.526595i −0.964715 0.263298i \(-0.915190\pi\)
0.964715 0.263298i \(-0.0848101\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 529.520i 0.724377i
\(732\) 0 0
\(733\) 1403.08i 1.91416i 0.289819 + 0.957082i \(0.406405\pi\)
−0.289819 + 0.957082i \(0.593595\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 1368.52 1.85688
\(738\) 0 0
\(739\) −899.125 −1.21668 −0.608339 0.793677i \(-0.708164\pi\)
−0.608339 + 0.793677i \(0.708164\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 316.587 0.426093 0.213046 0.977042i \(-0.431661\pi\)
0.213046 + 0.977042i \(0.431661\pi\)
\(744\) 0 0
\(745\) −898.749 300.562i −1.20637 0.403439i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 5.22837i 0.00698046i
\(750\) 0 0
\(751\) 286.433 0.381402 0.190701 0.981648i \(-0.438924\pi\)
0.190701 + 0.981648i \(0.438924\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 179.730 537.434i 0.238053 0.711833i
\(756\) 0 0
\(757\) 783.221i 1.03464i 0.855793 + 0.517319i \(0.173070\pi\)
−0.855793 + 0.517319i \(0.826930\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 1031.91i 1.35599i −0.735064 0.677997i \(-0.762848\pi\)
0.735064 0.677997i \(-0.237152\pi\)
\(762\) 0 0
\(763\) 88.0933i 0.115456i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 215.927 0.281521
\(768\) 0 0
\(769\) −831.250 −1.08095 −0.540475 0.841360i \(-0.681755\pi\)
−0.540475 + 0.841360i \(0.681755\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −395.360 −0.511462 −0.255731 0.966748i \(-0.582316\pi\)
−0.255731 + 0.966748i \(0.582316\pi\)
\(774\) 0 0
\(775\) 84.1400 + 63.3631i 0.108568 + 0.0817588i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 8.75192i 0.0112348i
\(780\) 0 0
\(781\) 1071.69 1.37220
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −536.725 179.493i −0.683726 0.228653i
\(786\) 0 0
\(787\) 573.929i 0.729262i 0.931152 + 0.364631i \(0.118805\pi\)
−0.931152 + 0.364631i \(0.881195\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 24.7542i 0.0312948i
\(792\) 0 0
\(793\) 488.725i 0.616299i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 1408.39 1.76712 0.883560 0.468319i \(-0.155140\pi\)
0.883560 + 0.468319i \(0.155140\pi\)
\(798\) 0 0
\(799\) −1029.37 −1.28832
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 1377.99 1.71606
\(804\) 0 0
\(805\) −18.5139 6.19145i −0.0229986 0.00769124i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 105.645i 0.130587i −0.997866 0.0652936i \(-0.979202\pi\)
0.997866 0.0652936i \(-0.0207984\pi\)
\(810\) 0 0
\(811\) 1090.81 1.34502 0.672508 0.740090i \(-0.265217\pi\)
0.672508 + 0.740090i \(0.265217\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −722.725 241.696i −0.886779 0.296559i
\(816\) 0 0
\(817\) 51.0099i 0.0624357i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 851.302i 1.03691i −0.855105 0.518454i \(-0.826508\pi\)
0.855105 0.518454i \(-0.173492\pi\)
\(822\) 0 0
\(823\) 1120.12i 1.36103i 0.732736 + 0.680513i \(0.238243\pi\)
−0.732736 + 0.680513i \(0.761757\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 1214.63 1.46871 0.734357 0.678763i \(-0.237484\pi\)
0.734357 + 0.678763i \(0.237484\pi\)
\(828\) 0 0
\(829\) 1495.22 1.80364 0.901821 0.432111i \(-0.142231\pi\)
0.901821 + 0.432111i \(0.142231\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −623.537 −0.748544
\(834\) 0 0
\(835\) −167.860 + 501.940i −0.201030 + 0.601125i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 463.865i 0.552879i 0.961031 + 0.276439i \(0.0891545\pi\)
−0.961031 + 0.276439i \(0.910846\pi\)
\(840\) 0 0
\(841\) −980.308 −1.16565
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 212.938 636.734i 0.251998 0.753531i
\(846\) 0 0
\(847\) 93.9081i 0.110871i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 337.438i 0.396519i
\(852\) 0 0
\(853\) 495.850i 0.581301i 0.956829 + 0.290651i \(0.0938717\pi\)
−0.956829 + 0.290651i \(0.906128\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 1704.43 1.98884 0.994418 0.105511i \(-0.0336478\pi\)
0.994418 + 0.105511i \(0.0336478\pi\)
\(858\) 0 0
\(859\) 207.523 0.241586 0.120793 0.992678i \(-0.461456\pi\)
0.120793 + 0.992678i \(0.461456\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −117.426 −0.136068 −0.0680338 0.997683i \(-0.521673\pi\)
−0.0680338 + 0.997683i \(0.521673\pi\)
\(864\) 0 0
\(865\) 174.456 521.663i 0.201683 0.603079i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 2061.87i 2.37270i
\(870\) 0 0
\(871\) 524.442 0.602115
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 57.6408 + 83.7842i 0.0658752 + 0.0957534i
\(876\) 0 0
\(877\) 908.637i 1.03607i −0.855358 0.518037i \(-0.826663\pi\)
0.855358 0.518037i \(-0.173337\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 1226.54i 1.39221i 0.717941 + 0.696104i \(0.245085\pi\)
−0.717941 + 0.696104i \(0.754915\pi\)
\(882\) 0 0
\(883\) 760.022i 0.860728i −0.902656 0.430364i \(-0.858385\pi\)
0.902656 0.430364i \(-0.141615\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 597.542 0.673667 0.336833 0.941564i \(-0.390644\pi\)
0.336833 + 0.941564i \(0.390644\pi\)
\(888\) 0 0
\(889\) −108.796 −0.122380
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −99.1615 −0.111043
\(894\) 0 0
\(895\) 561.470 + 187.768i 0.627341 + 0.209797i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 179.806i 0.200007i
\(900\) 0 0
\(901\) −822.058 −0.912384
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 273.385 817.483i 0.302083 0.903296i
\(906\) 0 0
\(907\) 1708.26i 1.88341i 0.336435 + 0.941707i \(0.390779\pi\)
−0.336435 + 0.941707i \(0.609221\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 1432.15i 1.57206i 0.618187 + 0.786031i \(0.287868\pi\)
−0.618187 + 0.786031i \(0.712132\pi\)
\(912\) 0 0
\(913\) 1676.38i 1.83612i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 50.2658 0.0548155
\(918\) 0 0
\(919\) 244.398 0.265939 0.132969 0.991120i \(-0.457549\pi\)
0.132969 + 0.991120i \(0.457549\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 410.692 0.444954
\(924\) 0 0
\(925\) −1057.47 + 1404.22i −1.14321 + 1.51807i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 376.003i 0.404740i 0.979309 + 0.202370i \(0.0648643\pi\)
−0.979309 + 0.202370i \(0.935136\pi\)
\(930\) 0 0
\(931\) −60.0669 −0.0645187
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −940.524 314.532i −1.00591 0.336398i
\(936\) 0 0
\(937\) 412.076i 0.439782i 0.975524 + 0.219891i \(0.0705701\pi\)
−0.975524 + 0.219891i \(0.929430\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 334.579i 0.355556i −0.984071 0.177778i \(-0.943109\pi\)
0.984071 0.177778i \(-0.0568910\pi\)
\(942\) 0 0
\(943\) 33.7993i 0.0358423i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −611.132 −0.645335 −0.322667 0.946512i \(-0.604580\pi\)
−0.322667 + 0.946512i \(0.604580\pi\)
\(948\) 0 0
\(949\) 528.073 0.556452
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −1445.17 −1.51644 −0.758221 0.651997i \(-0.773931\pi\)
−0.758221 + 0.651997i \(0.773931\pi\)
\(954\) 0 0
\(955\) 1372.26 + 458.916i 1.43693 + 0.480540i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 133.360i 0.139062i
\(960\) 0 0
\(961\) −943.249 −0.981529
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −606.167 202.716i −0.628152 0.210068i
\(966\) 0 0
\(967\) 1183.07i 1.22344i 0.791073 + 0.611721i \(0.209523\pi\)
−0.791073 + 0.611721i \(0.790477\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 1444.94i 1.48810i 0.668124 + 0.744050i \(0.267097\pi\)
−0.668124 + 0.744050i \(0.732903\pi\)
\(972\) 0 0
\(973\) 148.274i 0.152388i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −1246.51 −1.27586 −0.637929 0.770095i \(-0.720209\pi\)
−0.637929 + 0.770095i \(0.720209\pi\)
\(978\) 0 0
\(979\) −2114.44 −2.15979
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −144.005 −0.146495 −0.0732477 0.997314i \(-0.523336\pi\)
−0.0732477 + 0.997314i \(0.523336\pi\)
\(984\) 0 0
\(985\) 444.677 1329.69i 0.451449 1.34994i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 196.997i 0.199188i
\(990\) 0 0
\(991\) −725.742 −0.732333 −0.366167 0.930549i \(-0.619330\pi\)
−0.366167 + 0.930549i \(0.619330\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −248.059 + 741.753i −0.249305 + 0.745480i
\(996\) 0 0
\(997\) 881.323i 0.883975i 0.897021 + 0.441987i \(0.145726\pi\)
−0.897021 + 0.441987i \(0.854274\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2160.3.c.m.1889.1 4
3.2 odd 2 2160.3.c.g.1889.4 4
4.3 odd 2 270.3.b.d.269.1 yes 4
5.4 even 2 2160.3.c.g.1889.3 4
12.11 even 2 270.3.b.a.269.4 yes 4
15.14 odd 2 inner 2160.3.c.m.1889.2 4
20.3 even 4 1350.3.d.o.701.7 8
20.7 even 4 1350.3.d.o.701.2 8
20.19 odd 2 270.3.b.a.269.3 4
36.7 odd 6 810.3.j.a.539.4 8
36.11 even 6 810.3.j.f.539.1 8
36.23 even 6 810.3.j.f.269.2 8
36.31 odd 6 810.3.j.a.269.3 8
60.23 odd 4 1350.3.d.o.701.3 8
60.47 odd 4 1350.3.d.o.701.6 8
60.59 even 2 270.3.b.d.269.2 yes 4
180.59 even 6 810.3.j.a.269.4 8
180.79 odd 6 810.3.j.f.539.2 8
180.119 even 6 810.3.j.a.539.3 8
180.139 odd 6 810.3.j.f.269.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
270.3.b.a.269.3 4 20.19 odd 2
270.3.b.a.269.4 yes 4 12.11 even 2
270.3.b.d.269.1 yes 4 4.3 odd 2
270.3.b.d.269.2 yes 4 60.59 even 2
810.3.j.a.269.3 8 36.31 odd 6
810.3.j.a.269.4 8 180.59 even 6
810.3.j.a.539.3 8 180.119 even 6
810.3.j.a.539.4 8 36.7 odd 6
810.3.j.f.269.1 8 180.139 odd 6
810.3.j.f.269.2 8 36.23 even 6
810.3.j.f.539.1 8 36.11 even 6
810.3.j.f.539.2 8 180.79 odd 6
1350.3.d.o.701.2 8 20.7 even 4
1350.3.d.o.701.3 8 60.23 odd 4
1350.3.d.o.701.6 8 60.47 odd 4
1350.3.d.o.701.7 8 20.3 even 4
2160.3.c.g.1889.3 4 5.4 even 2
2160.3.c.g.1889.4 4 3.2 odd 2
2160.3.c.m.1889.1 4 1.1 even 1 trivial
2160.3.c.m.1889.2 4 15.14 odd 2 inner