Properties

Label 2160.3.c.o.1889.9
Level $2160$
Weight $3$
Character 2160.1889
Analytic conductor $58.856$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2160,3,Mod(1889,2160)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2160, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2160.1889");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2160 = 2^{4} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 2160.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(58.8557371018\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 76x^{10} + 1798x^{8} + 15824x^{6} + 40465x^{4} + 25444x^{2} + 196 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{12}\cdot 3^{4} \)
Twist minimal: no (minimal twist has level 1080)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1889.9
Root \(-3.85006i\) of defining polynomial
Character \(\chi\) \(=\) 2160.1889
Dual form 2160.3.c.o.1889.10

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(4.03477 - 2.95308i) q^{5} +7.07219i q^{7} +9.43298i q^{11} -6.86548i q^{13} -6.05971 q^{17} +14.3359 q^{19} +11.4980 q^{23} +(7.55866 - 23.8300i) q^{25} -21.2098i q^{29} +8.47239 q^{31} +(20.8847 + 28.5346i) q^{35} +22.0334i q^{37} +58.8487i q^{41} -49.4038i q^{43} +49.9243 q^{47} -1.01582 q^{49} -69.7104 q^{53} +(27.8563 + 38.0599i) q^{55} +50.0747i q^{59} +92.9186 q^{61} +(-20.2743 - 27.7006i) q^{65} +42.1261i q^{67} +84.2630i q^{71} +108.713i q^{73} -66.7118 q^{77} -23.2680 q^{79} +55.7104 q^{83} +(-24.4495 + 17.8948i) q^{85} -73.1674i q^{89} +48.5540 q^{91} +(57.8419 - 42.3349i) q^{95} +69.4827i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 6 q^{5} + 6 q^{25} - 12 q^{31} + 30 q^{35} - 48 q^{47} - 24 q^{49} + 60 q^{53} - 30 q^{55} - 120 q^{61} + 108 q^{65} - 204 q^{77} - 72 q^{79} + 84 q^{83} - 84 q^{85} - 48 q^{91} + 96 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2160\mathbb{Z}\right)^\times\).

\(n\) \(271\) \(1297\) \(1621\) \(2081\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 4.03477 2.95308i 0.806953 0.590616i
\(6\) 0 0
\(7\) 7.07219i 1.01031i 0.863028 + 0.505156i \(0.168565\pi\)
−0.863028 + 0.505156i \(0.831435\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 9.43298i 0.857543i 0.903413 + 0.428772i \(0.141054\pi\)
−0.903413 + 0.428772i \(0.858946\pi\)
\(12\) 0 0
\(13\) 6.86548i 0.528114i −0.964507 0.264057i \(-0.914939\pi\)
0.964507 0.264057i \(-0.0850607\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −6.05971 −0.356454 −0.178227 0.983989i \(-0.557036\pi\)
−0.178227 + 0.983989i \(0.557036\pi\)
\(18\) 0 0
\(19\) 14.3359 0.754519 0.377260 0.926108i \(-0.376866\pi\)
0.377260 + 0.926108i \(0.376866\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 11.4980 0.499914 0.249957 0.968257i \(-0.419583\pi\)
0.249957 + 0.968257i \(0.419583\pi\)
\(24\) 0 0
\(25\) 7.55866 23.8300i 0.302347 0.953198i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 21.2098i 0.731373i −0.930738 0.365687i \(-0.880834\pi\)
0.930738 0.365687i \(-0.119166\pi\)
\(30\) 0 0
\(31\) 8.47239 0.273303 0.136651 0.990619i \(-0.456366\pi\)
0.136651 + 0.990619i \(0.456366\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 20.8847 + 28.5346i 0.596706 + 0.815275i
\(36\) 0 0
\(37\) 22.0334i 0.595497i 0.954644 + 0.297748i \(0.0962356\pi\)
−0.954644 + 0.297748i \(0.903764\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 58.8487i 1.43533i 0.696387 + 0.717667i \(0.254790\pi\)
−0.696387 + 0.717667i \(0.745210\pi\)
\(42\) 0 0
\(43\) 49.4038i 1.14893i −0.818530 0.574463i \(-0.805211\pi\)
0.818530 0.574463i \(-0.194789\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 49.9243 1.06222 0.531110 0.847303i \(-0.321775\pi\)
0.531110 + 0.847303i \(0.321775\pi\)
\(48\) 0 0
\(49\) −1.01582 −0.0207310
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −69.7104 −1.31529 −0.657645 0.753328i \(-0.728447\pi\)
−0.657645 + 0.753328i \(0.728447\pi\)
\(54\) 0 0
\(55\) 27.8563 + 38.0599i 0.506478 + 0.691997i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 50.0747i 0.848723i 0.905493 + 0.424362i \(0.139501\pi\)
−0.905493 + 0.424362i \(0.860499\pi\)
\(60\) 0 0
\(61\) 92.9186 1.52326 0.761628 0.648015i \(-0.224401\pi\)
0.761628 + 0.648015i \(0.224401\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −20.2743 27.7006i −0.311912 0.426163i
\(66\) 0 0
\(67\) 42.1261i 0.628747i 0.949299 + 0.314374i \(0.101794\pi\)
−0.949299 + 0.314374i \(0.898206\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 84.2630i 1.18680i 0.804907 + 0.593402i \(0.202215\pi\)
−0.804907 + 0.593402i \(0.797785\pi\)
\(72\) 0 0
\(73\) 108.713i 1.48922i 0.667499 + 0.744611i \(0.267365\pi\)
−0.667499 + 0.744611i \(0.732635\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −66.7118 −0.866387
\(78\) 0 0
\(79\) −23.2680 −0.294532 −0.147266 0.989097i \(-0.547047\pi\)
−0.147266 + 0.989097i \(0.547047\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 55.7104 0.671210 0.335605 0.942003i \(-0.391059\pi\)
0.335605 + 0.942003i \(0.391059\pi\)
\(84\) 0 0
\(85\) −24.4495 + 17.8948i −0.287642 + 0.210527i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 73.1674i 0.822105i −0.911612 0.411053i \(-0.865161\pi\)
0.911612 0.411053i \(-0.134839\pi\)
\(90\) 0 0
\(91\) 48.5540 0.533560
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 57.8419 42.3349i 0.608862 0.445631i
\(96\) 0 0
\(97\) 69.4827i 0.716317i 0.933661 + 0.358158i \(0.116595\pi\)
−0.933661 + 0.358158i \(0.883405\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 128.367i 1.27096i −0.772116 0.635482i \(-0.780801\pi\)
0.772116 0.635482i \(-0.219199\pi\)
\(102\) 0 0
\(103\) 52.7014i 0.511664i 0.966721 + 0.255832i \(0.0823494\pi\)
−0.966721 + 0.255832i \(0.917651\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −6.20204 −0.0579630 −0.0289815 0.999580i \(-0.509226\pi\)
−0.0289815 + 0.999580i \(0.509226\pi\)
\(108\) 0 0
\(109\) 61.4661 0.563909 0.281955 0.959428i \(-0.409017\pi\)
0.281955 + 0.959428i \(0.409017\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −14.4323 −0.127719 −0.0638596 0.997959i \(-0.520341\pi\)
−0.0638596 + 0.997959i \(0.520341\pi\)
\(114\) 0 0
\(115\) 46.3918 33.9546i 0.403407 0.295257i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 42.8554i 0.360130i
\(120\) 0 0
\(121\) 32.0189 0.264619
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −39.8743 118.470i −0.318994 0.947757i
\(126\) 0 0
\(127\) 217.236i 1.71052i 0.518197 + 0.855261i \(0.326604\pi\)
−0.518197 + 0.855261i \(0.673396\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 116.241i 0.887334i 0.896192 + 0.443667i \(0.146323\pi\)
−0.896192 + 0.443667i \(0.853677\pi\)
\(132\) 0 0
\(133\) 101.386i 0.762300i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −131.556 −0.960264 −0.480132 0.877196i \(-0.659411\pi\)
−0.480132 + 0.877196i \(0.659411\pi\)
\(138\) 0 0
\(139\) 246.744 1.77513 0.887567 0.460679i \(-0.152394\pi\)
0.887567 + 0.460679i \(0.152394\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 64.7620 0.452881
\(144\) 0 0
\(145\) −62.6343 85.5767i −0.431960 0.590184i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 177.624i 1.19211i −0.802945 0.596054i \(-0.796735\pi\)
0.802945 0.596054i \(-0.203265\pi\)
\(150\) 0 0
\(151\) −170.603 −1.12982 −0.564912 0.825151i \(-0.691090\pi\)
−0.564912 + 0.825151i \(0.691090\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 34.1841 25.0196i 0.220543 0.161417i
\(156\) 0 0
\(157\) 19.7206i 0.125609i 0.998026 + 0.0628046i \(0.0200045\pi\)
−0.998026 + 0.0628046i \(0.979996\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 81.3162i 0.505069i
\(162\) 0 0
\(163\) 205.296i 1.25949i 0.776804 + 0.629743i \(0.216840\pi\)
−0.776804 + 0.629743i \(0.783160\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 77.6781 0.465138 0.232569 0.972580i \(-0.425287\pi\)
0.232569 + 0.972580i \(0.425287\pi\)
\(168\) 0 0
\(169\) 121.865 0.721095
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 35.6959 0.206334 0.103167 0.994664i \(-0.467102\pi\)
0.103167 + 0.994664i \(0.467102\pi\)
\(174\) 0 0
\(175\) 168.530 + 53.4563i 0.963028 + 0.305464i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 276.264i 1.54338i −0.636001 0.771688i \(-0.719412\pi\)
0.636001 0.771688i \(-0.280588\pi\)
\(180\) 0 0
\(181\) 287.557 1.58871 0.794357 0.607451i \(-0.207808\pi\)
0.794357 + 0.607451i \(0.207808\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 65.0663 + 88.8995i 0.351710 + 0.480538i
\(186\) 0 0
\(187\) 57.1612i 0.305675i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 63.4669i 0.332288i 0.986102 + 0.166144i \(0.0531316\pi\)
−0.986102 + 0.166144i \(0.946868\pi\)
\(192\) 0 0
\(193\) 238.164i 1.23401i −0.786960 0.617004i \(-0.788346\pi\)
0.786960 0.617004i \(-0.211654\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −131.777 −0.668918 −0.334459 0.942410i \(-0.608554\pi\)
−0.334459 + 0.942410i \(0.608554\pi\)
\(198\) 0 0
\(199\) 310.456 1.56008 0.780041 0.625729i \(-0.215198\pi\)
0.780041 + 0.625729i \(0.215198\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 150.000 0.738915
\(204\) 0 0
\(205\) 173.785 + 237.441i 0.847730 + 1.15825i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 135.230i 0.647033i
\(210\) 0 0
\(211\) 71.4570 0.338659 0.169329 0.985560i \(-0.445840\pi\)
0.169329 + 0.985560i \(0.445840\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −145.893 199.333i −0.678574 0.927130i
\(216\) 0 0
\(217\) 59.9183i 0.276121i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 41.6029i 0.188248i
\(222\) 0 0
\(223\) 199.600i 0.895066i −0.894267 0.447533i \(-0.852303\pi\)
0.894267 0.447533i \(-0.147697\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −316.068 −1.39237 −0.696185 0.717863i \(-0.745121\pi\)
−0.696185 + 0.717863i \(0.745121\pi\)
\(228\) 0 0
\(229\) −27.4174 −0.119727 −0.0598634 0.998207i \(-0.519066\pi\)
−0.0598634 + 0.998207i \(0.519066\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −27.5604 −0.118285 −0.0591425 0.998250i \(-0.518837\pi\)
−0.0591425 + 0.998250i \(0.518837\pi\)
\(234\) 0 0
\(235\) 201.433 147.430i 0.857161 0.627363i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 462.914i 1.93688i 0.249247 + 0.968440i \(0.419817\pi\)
−0.249247 + 0.968440i \(0.580183\pi\)
\(240\) 0 0
\(241\) 438.560 1.81975 0.909876 0.414880i \(-0.136176\pi\)
0.909876 + 0.414880i \(0.136176\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −4.09859 + 2.99979i −0.0167289 + 0.0122441i
\(246\) 0 0
\(247\) 98.4227i 0.398472i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 102.340i 0.407728i 0.978999 + 0.203864i \(0.0653500\pi\)
−0.978999 + 0.203864i \(0.934650\pi\)
\(252\) 0 0
\(253\) 108.461i 0.428698i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 227.592 0.885572 0.442786 0.896627i \(-0.353990\pi\)
0.442786 + 0.896627i \(0.353990\pi\)
\(258\) 0 0
\(259\) −155.824 −0.601638
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −220.422 −0.838105 −0.419053 0.907962i \(-0.637638\pi\)
−0.419053 + 0.907962i \(0.637638\pi\)
\(264\) 0 0
\(265\) −281.265 + 205.860i −1.06138 + 0.776831i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 252.831i 0.939893i 0.882695 + 0.469946i \(0.155727\pi\)
−0.882695 + 0.469946i \(0.844273\pi\)
\(270\) 0 0
\(271\) −77.0885 −0.284460 −0.142230 0.989834i \(-0.545427\pi\)
−0.142230 + 0.989834i \(0.545427\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 224.787 + 71.3007i 0.817409 + 0.259275i
\(276\) 0 0
\(277\) 395.252i 1.42690i 0.700705 + 0.713451i \(0.252869\pi\)
−0.700705 + 0.713451i \(0.747131\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 257.575i 0.916635i 0.888788 + 0.458318i \(0.151548\pi\)
−0.888788 + 0.458318i \(0.848452\pi\)
\(282\) 0 0
\(283\) 481.604i 1.70178i 0.525344 + 0.850890i \(0.323937\pi\)
−0.525344 + 0.850890i \(0.676063\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −416.189 −1.45013
\(288\) 0 0
\(289\) −252.280 −0.872941
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 538.266 1.83709 0.918543 0.395321i \(-0.129367\pi\)
0.918543 + 0.395321i \(0.129367\pi\)
\(294\) 0 0
\(295\) 147.874 + 202.040i 0.501269 + 0.684880i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 78.9395i 0.264012i
\(300\) 0 0
\(301\) 349.393 1.16077
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 374.905 274.396i 1.22920 0.899658i
\(306\) 0 0
\(307\) 286.244i 0.932389i −0.884682 0.466195i \(-0.845625\pi\)
0.884682 0.466195i \(-0.154375\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 426.662i 1.37190i −0.727648 0.685951i \(-0.759386\pi\)
0.727648 0.685951i \(-0.240614\pi\)
\(312\) 0 0
\(313\) 61.5426i 0.196622i −0.995156 0.0983109i \(-0.968656\pi\)
0.995156 0.0983109i \(-0.0313439\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −72.9235 −0.230043 −0.115021 0.993363i \(-0.536694\pi\)
−0.115021 + 0.993363i \(0.536694\pi\)
\(318\) 0 0
\(319\) 200.072 0.627184
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −86.8713 −0.268951
\(324\) 0 0
\(325\) −163.604 51.8939i −0.503397 0.159673i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 353.074i 1.07317i
\(330\) 0 0
\(331\) −554.716 −1.67588 −0.837940 0.545763i \(-0.816240\pi\)
−0.837940 + 0.545763i \(0.816240\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 124.402 + 169.969i 0.371348 + 0.507370i
\(336\) 0 0
\(337\) 424.454i 1.25951i −0.776794 0.629754i \(-0.783156\pi\)
0.776794 0.629754i \(-0.216844\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 79.9199i 0.234369i
\(342\) 0 0
\(343\) 339.353i 0.989368i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −29.1438 −0.0839880 −0.0419940 0.999118i \(-0.513371\pi\)
−0.0419940 + 0.999118i \(0.513371\pi\)
\(348\) 0 0
\(349\) 433.957 1.24343 0.621715 0.783244i \(-0.286436\pi\)
0.621715 + 0.783244i \(0.286436\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 193.520 0.548215 0.274108 0.961699i \(-0.411618\pi\)
0.274108 + 0.961699i \(0.411618\pi\)
\(354\) 0 0
\(355\) 248.835 + 339.982i 0.700944 + 0.957694i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 72.2543i 0.201265i −0.994924 0.100633i \(-0.967913\pi\)
0.994924 0.100633i \(-0.0320867\pi\)
\(360\) 0 0
\(361\) −155.483 −0.430700
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 321.038 + 438.632i 0.879557 + 1.20173i
\(366\) 0 0
\(367\) 27.8675i 0.0759332i −0.999279 0.0379666i \(-0.987912\pi\)
0.999279 0.0379666i \(-0.0120880\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 493.005i 1.32885i
\(372\) 0 0
\(373\) 372.131i 0.997672i 0.866697 + 0.498836i \(0.166239\pi\)
−0.866697 + 0.498836i \(0.833761\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −145.616 −0.386249
\(378\) 0 0
\(379\) 84.9969 0.224266 0.112133 0.993693i \(-0.464232\pi\)
0.112133 + 0.993693i \(0.464232\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 10.6137 0.0277119 0.0138560 0.999904i \(-0.495589\pi\)
0.0138560 + 0.999904i \(0.495589\pi\)
\(384\) 0 0
\(385\) −269.166 + 197.005i −0.699133 + 0.511701i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 30.6939i 0.0789046i 0.999221 + 0.0394523i \(0.0125613\pi\)
−0.999221 + 0.0394523i \(0.987439\pi\)
\(390\) 0 0
\(391\) −69.6748 −0.178196
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −93.8810 + 68.7123i −0.237673 + 0.173955i
\(396\) 0 0
\(397\) 322.601i 0.812596i −0.913741 0.406298i \(-0.866820\pi\)
0.913741 0.406298i \(-0.133180\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 147.729i 0.368400i 0.982889 + 0.184200i \(0.0589695\pi\)
−0.982889 + 0.184200i \(0.941031\pi\)
\(402\) 0 0
\(403\) 58.1671i 0.144335i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −207.840 −0.510664
\(408\) 0 0
\(409\) −681.238 −1.66562 −0.832810 0.553560i \(-0.813269\pi\)
−0.832810 + 0.553560i \(0.813269\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −354.137 −0.857476
\(414\) 0 0
\(415\) 224.778 164.517i 0.541635 0.396427i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 428.504i 1.02268i −0.859378 0.511341i \(-0.829149\pi\)
0.859378 0.511341i \(-0.170851\pi\)
\(420\) 0 0
\(421\) 659.688 1.56695 0.783477 0.621421i \(-0.213444\pi\)
0.783477 + 0.621421i \(0.213444\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −45.8033 + 144.403i −0.107773 + 0.339771i
\(426\) 0 0
\(427\) 657.138i 1.53896i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 421.860i 0.978794i −0.872061 0.489397i \(-0.837217\pi\)
0.872061 0.489397i \(-0.162783\pi\)
\(432\) 0 0
\(433\) 145.766i 0.336641i −0.985732 0.168321i \(-0.946166\pi\)
0.985732 0.168321i \(-0.0538344\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 164.834 0.377195
\(438\) 0 0
\(439\) 193.485 0.440741 0.220371 0.975416i \(-0.429273\pi\)
0.220371 + 0.975416i \(0.429273\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −548.667 −1.23853 −0.619263 0.785184i \(-0.712568\pi\)
−0.619263 + 0.785184i \(0.712568\pi\)
\(444\) 0 0
\(445\) −216.069 295.213i −0.485548 0.663400i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 486.456i 1.08342i −0.840565 0.541711i \(-0.817777\pi\)
0.840565 0.541711i \(-0.182223\pi\)
\(450\) 0 0
\(451\) −555.118 −1.23086
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 195.904 143.384i 0.430558 0.315129i
\(456\) 0 0
\(457\) 20.7241i 0.0453482i 0.999743 + 0.0226741i \(0.00721801\pi\)
−0.999743 + 0.0226741i \(0.992782\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 425.420i 0.922819i −0.887187 0.461409i \(-0.847344\pi\)
0.887187 0.461409i \(-0.152656\pi\)
\(462\) 0 0
\(463\) 894.704i 1.93241i −0.257780 0.966204i \(-0.582991\pi\)
0.257780 0.966204i \(-0.417009\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −700.964 −1.50099 −0.750497 0.660874i \(-0.770186\pi\)
−0.750497 + 0.660874i \(0.770186\pi\)
\(468\) 0 0
\(469\) −297.923 −0.635231
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 466.025 0.985254
\(474\) 0 0
\(475\) 108.360 341.623i 0.228126 0.719206i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 122.329i 0.255384i 0.991814 + 0.127692i \(0.0407570\pi\)
−0.991814 + 0.127692i \(0.959243\pi\)
\(480\) 0 0
\(481\) 151.270 0.314490
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 205.188 + 280.347i 0.423068 + 0.578034i
\(486\) 0 0
\(487\) 220.179i 0.452112i −0.974114 0.226056i \(-0.927417\pi\)
0.974114 0.226056i \(-0.0725833\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 670.307i 1.36519i 0.730798 + 0.682594i \(0.239148\pi\)
−0.730798 + 0.682594i \(0.760852\pi\)
\(492\) 0 0
\(493\) 128.525i 0.260701i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −595.924 −1.19904
\(498\) 0 0
\(499\) 10.8177 0.0216788 0.0108394 0.999941i \(-0.496550\pi\)
0.0108394 + 0.999941i \(0.496550\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 299.614 0.595655 0.297828 0.954620i \(-0.403738\pi\)
0.297828 + 0.954620i \(0.403738\pi\)
\(504\) 0 0
\(505\) −379.079 517.932i −0.750651 1.02561i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 467.799i 0.919054i 0.888164 + 0.459527i \(0.151981\pi\)
−0.888164 + 0.459527i \(0.848019\pi\)
\(510\) 0 0
\(511\) −768.840 −1.50458
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 155.631 + 212.638i 0.302197 + 0.412889i
\(516\) 0 0
\(517\) 470.935i 0.910899i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 817.672i 1.56943i −0.619858 0.784714i \(-0.712810\pi\)
0.619858 0.784714i \(-0.287190\pi\)
\(522\) 0 0
\(523\) 128.171i 0.245070i −0.992464 0.122535i \(-0.960898\pi\)
0.992464 0.122535i \(-0.0391023\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −51.3403 −0.0974199
\(528\) 0 0
\(529\) −396.795 −0.750086
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 404.025 0.758020
\(534\) 0 0
\(535\) −25.0238 + 18.3151i −0.0467734 + 0.0342338i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 9.58220i 0.0177777i
\(540\) 0 0
\(541\) 988.719 1.82758 0.913788 0.406191i \(-0.133143\pi\)
0.913788 + 0.406191i \(0.133143\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 248.001 181.514i 0.455048 0.333054i
\(546\) 0 0
\(547\) 219.588i 0.401440i −0.979649 0.200720i \(-0.935672\pi\)
0.979649 0.200720i \(-0.0643282\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 304.061i 0.551835i
\(552\) 0 0
\(553\) 164.556i 0.297569i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −550.582 −0.988478 −0.494239 0.869326i \(-0.664553\pi\)
−0.494239 + 0.869326i \(0.664553\pi\)
\(558\) 0 0
\(559\) −339.181 −0.606764
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 499.451 0.887125 0.443562 0.896244i \(-0.353714\pi\)
0.443562 + 0.896244i \(0.353714\pi\)
\(564\) 0 0
\(565\) −58.2309 + 42.6196i −0.103063 + 0.0754330i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 570.215i 1.00213i −0.865408 0.501067i \(-0.832941\pi\)
0.865408 0.501067i \(-0.167059\pi\)
\(570\) 0 0
\(571\) −297.528 −0.521065 −0.260533 0.965465i \(-0.583898\pi\)
−0.260533 + 0.965465i \(0.583898\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 86.9097 273.997i 0.151147 0.476517i
\(576\) 0 0
\(577\) 856.924i 1.48514i −0.669770 0.742569i \(-0.733607\pi\)
0.669770 0.742569i \(-0.266393\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 393.994i 0.678131i
\(582\) 0 0
\(583\) 657.577i 1.12792i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −285.152 −0.485779 −0.242890 0.970054i \(-0.578095\pi\)
−0.242890 + 0.970054i \(0.578095\pi\)
\(588\) 0 0
\(589\) 121.459 0.206212
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −1110.27 −1.87230 −0.936148 0.351607i \(-0.885635\pi\)
−0.936148 + 0.351607i \(0.885635\pi\)
\(594\) 0 0
\(595\) −126.555 172.912i −0.212698 0.290608i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 290.549i 0.485056i 0.970144 + 0.242528i \(0.0779767\pi\)
−0.970144 + 0.242528i \(0.922023\pi\)
\(600\) 0 0
\(601\) −840.436 −1.39840 −0.699198 0.714928i \(-0.746460\pi\)
−0.699198 + 0.714928i \(0.746460\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 129.189 94.5544i 0.213535 0.156288i
\(606\) 0 0
\(607\) 225.751i 0.371912i −0.982558 0.185956i \(-0.940462\pi\)
0.982558 0.185956i \(-0.0595382\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 342.755i 0.560973i
\(612\) 0 0
\(613\) 395.174i 0.644656i 0.946628 + 0.322328i \(0.104465\pi\)
−0.946628 + 0.322328i \(0.895535\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −559.277 −0.906445 −0.453223 0.891397i \(-0.649726\pi\)
−0.453223 + 0.891397i \(0.649726\pi\)
\(618\) 0 0
\(619\) 571.556 0.923354 0.461677 0.887048i \(-0.347248\pi\)
0.461677 + 0.887048i \(0.347248\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 517.453 0.830583
\(624\) 0 0
\(625\) −510.733 360.245i −0.817173 0.576392i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 133.516i 0.212267i
\(630\) 0 0
\(631\) −154.051 −0.244138 −0.122069 0.992522i \(-0.538953\pi\)
−0.122069 + 0.992522i \(0.538953\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 641.516 + 876.498i 1.01026 + 1.38031i
\(636\) 0 0
\(637\) 6.97409i 0.0109483i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 799.864i 1.24784i −0.781489 0.623919i \(-0.785540\pi\)
0.781489 0.623919i \(-0.214460\pi\)
\(642\) 0 0
\(643\) 562.528i 0.874849i −0.899255 0.437425i \(-0.855891\pi\)
0.899255 0.437425i \(-0.144109\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −1160.79 −1.79412 −0.897059 0.441910i \(-0.854301\pi\)
−0.897059 + 0.441910i \(0.854301\pi\)
\(648\) 0 0
\(649\) −472.353 −0.727817
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 812.354 1.24403 0.622017 0.783004i \(-0.286313\pi\)
0.622017 + 0.783004i \(0.286313\pi\)
\(654\) 0 0
\(655\) 343.268 + 469.004i 0.524073 + 0.716037i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 552.026i 0.837673i −0.908062 0.418836i \(-0.862438\pi\)
0.908062 0.418836i \(-0.137562\pi\)
\(660\) 0 0
\(661\) 480.917 0.727559 0.363780 0.931485i \(-0.381486\pi\)
0.363780 + 0.931485i \(0.381486\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 299.401 + 409.068i 0.450226 + 0.615141i
\(666\) 0 0
\(667\) 243.871i 0.365624i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 876.499i 1.30626i
\(672\) 0 0
\(673\) 462.464i 0.687167i −0.939122 0.343584i \(-0.888359\pi\)
0.939122 0.343584i \(-0.111641\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −1136.52 −1.67876 −0.839381 0.543544i \(-0.817082\pi\)
−0.839381 + 0.543544i \(0.817082\pi\)
\(678\) 0 0
\(679\) −491.395 −0.723704
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 1329.13 1.94601 0.973006 0.230779i \(-0.0741274\pi\)
0.973006 + 0.230779i \(0.0741274\pi\)
\(684\) 0 0
\(685\) −530.799 + 388.496i −0.774888 + 0.567147i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 478.596i 0.694624i
\(690\) 0 0
\(691\) −1131.72 −1.63781 −0.818903 0.573932i \(-0.805417\pi\)
−0.818903 + 0.573932i \(0.805417\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 995.552 728.653i 1.43245 1.04842i
\(696\) 0 0
\(697\) 356.606i 0.511630i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 279.897i 0.399282i −0.979869 0.199641i \(-0.936022\pi\)
0.979869 0.199641i \(-0.0639776\pi\)
\(702\) 0 0
\(703\) 315.868i 0.449314i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 907.838 1.28407
\(708\) 0 0
\(709\) −39.9326 −0.0563225 −0.0281612 0.999603i \(-0.508965\pi\)
−0.0281612 + 0.999603i \(0.508965\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 97.4158 0.136628
\(714\) 0 0
\(715\) 261.299 191.247i 0.365454 0.267478i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 507.415i 0.705724i 0.935675 + 0.352862i \(0.114791\pi\)
−0.935675 + 0.352862i \(0.885209\pi\)
\(720\) 0 0
\(721\) −372.714 −0.516941
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −505.429 160.318i −0.697144 0.221128i
\(726\) 0 0
\(727\) 771.057i 1.06060i 0.847810 + 0.530300i \(0.177921\pi\)
−0.847810 + 0.530300i \(0.822079\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 299.373i 0.409539i
\(732\) 0 0
\(733\) 1002.00i 1.36698i −0.729960 0.683490i \(-0.760461\pi\)
0.729960 0.683490i \(-0.239539\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −397.374 −0.539178
\(738\) 0 0
\(739\) −277.168 −0.375058 −0.187529 0.982259i \(-0.560048\pi\)
−0.187529 + 0.982259i \(0.560048\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 550.164 0.740463 0.370231 0.928940i \(-0.379278\pi\)
0.370231 + 0.928940i \(0.379278\pi\)
\(744\) 0 0
\(745\) −524.537 716.671i −0.704077 0.961974i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 43.8620i 0.0585607i
\(750\) 0 0
\(751\) −990.738 −1.31923 −0.659613 0.751606i \(-0.729280\pi\)
−0.659613 + 0.751606i \(0.729280\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −688.345 + 503.805i −0.911715 + 0.667292i
\(756\) 0 0
\(757\) 970.548i 1.28210i 0.767500 + 0.641049i \(0.221500\pi\)
−0.767500 + 0.641049i \(0.778500\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 324.468i 0.426371i −0.977012 0.213186i \(-0.931616\pi\)
0.977012 0.213186i \(-0.0683839\pi\)
\(762\) 0 0
\(763\) 434.700i 0.569725i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 343.787 0.448223
\(768\) 0 0
\(769\) −927.886 −1.20661 −0.603307 0.797509i \(-0.706151\pi\)
−0.603307 + 0.797509i \(0.706151\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −214.716 −0.277769 −0.138885 0.990309i \(-0.544352\pi\)
−0.138885 + 0.990309i \(0.544352\pi\)
\(774\) 0 0
\(775\) 64.0400 201.897i 0.0826322 0.260512i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 843.647i 1.08299i
\(780\) 0 0
\(781\) −794.851 −1.01774
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 58.2366 + 79.5681i 0.0741867 + 0.101361i
\(786\) 0 0
\(787\) 607.914i 0.772444i −0.922406 0.386222i \(-0.873780\pi\)
0.922406 0.386222i \(-0.126220\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 102.068i 0.129036i
\(792\) 0 0
\(793\) 637.931i 0.804453i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −683.251 −0.857278 −0.428639 0.903476i \(-0.641007\pi\)
−0.428639 + 0.903476i \(0.641007\pi\)
\(798\) 0 0
\(799\) −302.527 −0.378632
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −1025.49 −1.27707
\(804\) 0 0
\(805\) 240.133 + 328.092i 0.298302 + 0.407567i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 593.776i 0.733962i −0.930228 0.366981i \(-0.880391\pi\)
0.930228 0.366981i \(-0.119609\pi\)
\(810\) 0 0
\(811\) −176.686 −0.217862 −0.108931 0.994049i \(-0.534743\pi\)
−0.108931 + 0.994049i \(0.534743\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 606.255 + 828.322i 0.743872 + 1.01635i
\(816\) 0 0
\(817\) 708.247i 0.866887i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 1098.29i 1.33775i 0.743376 + 0.668874i \(0.233224\pi\)
−0.743376 + 0.668874i \(0.766776\pi\)
\(822\) 0 0
\(823\) 671.186i 0.815536i 0.913086 + 0.407768i \(0.133693\pi\)
−0.913086 + 0.407768i \(0.866307\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −122.072 −0.147608 −0.0738042 0.997273i \(-0.523514\pi\)
−0.0738042 + 0.997273i \(0.523514\pi\)
\(828\) 0 0
\(829\) 409.266 0.493687 0.246843 0.969055i \(-0.420607\pi\)
0.246843 + 0.969055i \(0.420607\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 6.15558 0.00738965
\(834\) 0 0
\(835\) 313.413 229.389i 0.375345 0.274718i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 1404.60i 1.67414i 0.547094 + 0.837071i \(0.315734\pi\)
−0.547094 + 0.837071i \(0.684266\pi\)
\(840\) 0 0
\(841\) 391.143 0.465093
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 491.697 359.877i 0.581890 0.425890i
\(846\) 0 0
\(847\) 226.444i 0.267348i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 253.340i 0.297697i
\(852\) 0 0
\(853\) 650.887i 0.763056i −0.924357 0.381528i \(-0.875398\pi\)
0.924357 0.381528i \(-0.124602\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −609.229 −0.710885 −0.355443 0.934698i \(-0.615670\pi\)
−0.355443 + 0.934698i \(0.615670\pi\)
\(858\) 0 0
\(859\) −643.278 −0.748868 −0.374434 0.927254i \(-0.622163\pi\)
−0.374434 + 0.927254i \(0.622163\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 515.366 0.597180 0.298590 0.954382i \(-0.403484\pi\)
0.298590 + 0.954382i \(0.403484\pi\)
\(864\) 0 0
\(865\) 144.024 105.413i 0.166502 0.121864i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 219.487i 0.252574i
\(870\) 0 0
\(871\) 289.216 0.332050
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 837.839 281.998i 0.957530 0.322284i
\(876\) 0 0
\(877\) 1066.77i 1.21639i 0.793789 + 0.608193i \(0.208105\pi\)
−0.793789 + 0.608193i \(0.791895\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 1275.90i 1.44824i 0.689673 + 0.724121i \(0.257754\pi\)
−0.689673 + 0.724121i \(0.742246\pi\)
\(882\) 0 0
\(883\) 770.113i 0.872156i −0.899909 0.436078i \(-0.856367\pi\)
0.899909 0.436078i \(-0.143633\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −867.870 −0.978433 −0.489216 0.872162i \(-0.662717\pi\)
−0.489216 + 0.872162i \(0.662717\pi\)
\(888\) 0 0
\(889\) −1536.34 −1.72816
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 715.708 0.801465
\(894\) 0 0
\(895\) −815.830 1114.66i −0.911542 1.24543i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 179.698i 0.199886i
\(900\) 0 0
\(901\) 422.425 0.468840
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 1160.23 849.179i 1.28202 0.938319i
\(906\) 0 0
\(907\) 661.261i 0.729063i −0.931191 0.364532i \(-0.881229\pi\)
0.931191 0.364532i \(-0.118771\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 912.077i 1.00118i 0.865684 + 0.500591i \(0.166884\pi\)
−0.865684 + 0.500591i \(0.833116\pi\)
\(912\) 0 0
\(913\) 525.515i 0.575591i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −822.076 −0.896484
\(918\) 0 0
\(919\) 27.1804 0.0295760 0.0147880 0.999891i \(-0.495293\pi\)
0.0147880 + 0.999891i \(0.495293\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 578.506 0.626768
\(924\) 0 0
\(925\) 525.054 + 166.543i 0.567626 + 0.180046i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 417.565i 0.449478i −0.974419 0.224739i \(-0.927847\pi\)
0.974419 0.224739i \(-0.0721530\pi\)
\(930\) 0 0
\(931\) −14.5627 −0.0156419
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −168.801 230.632i −0.180536 0.246665i
\(936\) 0 0
\(937\) 1120.89i 1.19625i 0.801403 + 0.598124i \(0.204087\pi\)
−0.801403 + 0.598124i \(0.795913\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 119.014i 0.126477i −0.997998 0.0632383i \(-0.979857\pi\)
0.997998 0.0632383i \(-0.0201428\pi\)
\(942\) 0 0
\(943\) 676.643i 0.717543i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −1133.60 −1.19705 −0.598523 0.801106i \(-0.704245\pi\)
−0.598523 + 0.801106i \(0.704245\pi\)
\(948\) 0 0
\(949\) 746.369 0.786479
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −1505.57 −1.57982 −0.789909 0.613224i \(-0.789872\pi\)
−0.789909 + 0.613224i \(0.789872\pi\)
\(954\) 0 0
\(955\) 187.423 + 256.074i 0.196254 + 0.268141i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 930.390i 0.970167i
\(960\) 0 0
\(961\) −889.219 −0.925305
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −703.316 960.934i −0.728825 0.995787i
\(966\) 0 0
\(967\) 458.952i 0.474615i −0.971435 0.237307i \(-0.923735\pi\)
0.971435 0.237307i \(-0.0762649\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 189.181i 0.194831i −0.995244 0.0974155i \(-0.968942\pi\)
0.995244 0.0974155i \(-0.0310576\pi\)
\(972\) 0 0
\(973\) 1745.02i 1.79344i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −86.2776 −0.0883087 −0.0441543 0.999025i \(-0.514059\pi\)
−0.0441543 + 0.999025i \(0.514059\pi\)
\(978\) 0 0
\(979\) 690.186 0.704991
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −278.686 −0.283505 −0.141753 0.989902i \(-0.545274\pi\)
−0.141753 + 0.989902i \(0.545274\pi\)
\(984\) 0 0
\(985\) −531.689 + 389.147i −0.539786 + 0.395074i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 568.047i 0.574365i
\(990\) 0 0
\(991\) −666.594 −0.672648 −0.336324 0.941746i \(-0.609184\pi\)
−0.336324 + 0.941746i \(0.609184\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 1252.62 916.801i 1.25891 0.921408i
\(996\) 0 0
\(997\) 1565.47i 1.57018i −0.619383 0.785089i \(-0.712617\pi\)
0.619383 0.785089i \(-0.287383\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2160.3.c.o.1889.9 12
3.2 odd 2 2160.3.c.p.1889.4 12
4.3 odd 2 1080.3.c.a.809.9 12
5.4 even 2 2160.3.c.p.1889.3 12
12.11 even 2 1080.3.c.b.809.4 yes 12
15.14 odd 2 inner 2160.3.c.o.1889.10 12
20.19 odd 2 1080.3.c.b.809.3 yes 12
60.59 even 2 1080.3.c.a.809.10 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1080.3.c.a.809.9 12 4.3 odd 2
1080.3.c.a.809.10 yes 12 60.59 even 2
1080.3.c.b.809.3 yes 12 20.19 odd 2
1080.3.c.b.809.4 yes 12 12.11 even 2
2160.3.c.o.1889.9 12 1.1 even 1 trivial
2160.3.c.o.1889.10 12 15.14 odd 2 inner
2160.3.c.p.1889.3 12 5.4 even 2
2160.3.c.p.1889.4 12 3.2 odd 2