Properties

Label 2160.3.e.b
Level 21602160
Weight 33
Character orbit 2160.e
Analytic conductor 58.85658.856
Analytic rank 00
Dimension 44
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2160,3,Mod(271,2160)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2160, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 0, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2160.271");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: N N == 2160=24335 2160 = 2^{4} \cdot 3^{3} \cdot 5
Weight: k k == 3 3
Character orbit: [χ][\chi] == 2160.e (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 58.855737101858.8557371018
Analytic rank: 00
Dimension: 44
Coefficient field: Q(3,5)\Q(\sqrt{-3}, \sqrt{5})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4x3+2x2+x+1 x^{4} - x^{3} + 2x^{2} + x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a19]\Z[a_1, \ldots, a_{19}]
Coefficient ring index: 24 2^{4}
Twist minimal: yes
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β1q5+2β3q7+4β2q11+22q133β1q17+7β3q1917β2q23+5q2518β1q295β3q3110β2q35+32q97+O(q100) q + \beta_1 q^{5} + 2 \beta_{3} q^{7} + 4 \beta_{2} q^{11} + 22 q^{13} - 3 \beta_1 q^{17} + 7 \beta_{3} q^{19} - 17 \beta_{2} q^{23} + 5 q^{25} - 18 \beta_1 q^{29} - 5 \beta_{3} q^{31} - 10 \beta_{2} q^{35}+ \cdots - 32 q^{97}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+88q13+20q25+8q3744q49124q61+304q7360q85128q97+O(q100) 4 q + 88 q^{13} + 20 q^{25} + 8 q^{37} - 44 q^{49} - 124 q^{61} + 304 q^{73} - 60 q^{85} - 128 q^{97}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x4x3+2x2+x+1 x^{4} - x^{3} + 2x^{2} + x + 1 : Copy content Toggle raw display

β1\beta_{1}== ν3+2 \nu^{3} + 2 Copy content Toggle raw display
β2\beta_{2}== ν3+2ν22ν -\nu^{3} + 2\nu^{2} - 2\nu Copy content Toggle raw display
β3\beta_{3}== 2ν32ν2+6ν+1 2\nu^{3} - 2\nu^{2} + 6\nu + 1 Copy content Toggle raw display
ν\nu== (β3+β2β1+1)/4 ( \beta_{3} + \beta_{2} - \beta _1 + 1 ) / 4 Copy content Toggle raw display
ν2\nu^{2}== (β3+3β2+β13)/4 ( \beta_{3} + 3\beta_{2} + \beta _1 - 3 ) / 4 Copy content Toggle raw display
ν3\nu^{3}== β12 \beta _1 - 2 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/2160Z)×\left(\mathbb{Z}/2160\mathbb{Z}\right)^\times.

nn 271271 12971297 16211621 20812081
χ(n)\chi(n) 1-1 11 11 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
271.1
0.809017 1.40126i
0.809017 + 1.40126i
−0.309017 0.535233i
−0.309017 + 0.535233i
0 0 0 −2.23607 0 7.74597i 0 0 0
271.2 0 0 0 −2.23607 0 7.74597i 0 0 0
271.3 0 0 0 2.23607 0 7.74597i 0 0 0
271.4 0 0 0 2.23607 0 7.74597i 0 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
4.b odd 2 1 inner
12.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2160.3.e.b 4
3.b odd 2 1 inner 2160.3.e.b 4
4.b odd 2 1 inner 2160.3.e.b 4
12.b even 2 1 inner 2160.3.e.b 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2160.3.e.b 4 1.a even 1 1 trivial
2160.3.e.b 4 3.b odd 2 1 inner
2160.3.e.b 4 4.b odd 2 1 inner
2160.3.e.b 4 12.b even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S3new(2160,[χ])S_{3}^{\mathrm{new}}(2160, [\chi]):

T72+60 T_{7}^{2} + 60 Copy content Toggle raw display
T17245 T_{17}^{2} - 45 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4 T^{4} Copy content Toggle raw display
33 T4 T^{4} Copy content Toggle raw display
55 (T25)2 (T^{2} - 5)^{2} Copy content Toggle raw display
77 (T2+60)2 (T^{2} + 60)^{2} Copy content Toggle raw display
1111 (T2+48)2 (T^{2} + 48)^{2} Copy content Toggle raw display
1313 (T22)4 (T - 22)^{4} Copy content Toggle raw display
1717 (T245)2 (T^{2} - 45)^{2} Copy content Toggle raw display
1919 (T2+735)2 (T^{2} + 735)^{2} Copy content Toggle raw display
2323 (T2+867)2 (T^{2} + 867)^{2} Copy content Toggle raw display
2929 (T21620)2 (T^{2} - 1620)^{2} Copy content Toggle raw display
3131 (T2+375)2 (T^{2} + 375)^{2} Copy content Toggle raw display
3737 (T2)4 (T - 2)^{4} Copy content Toggle raw display
4141 (T22880)2 (T^{2} - 2880)^{2} Copy content Toggle raw display
4343 (T2+240)2 (T^{2} + 240)^{2} Copy content Toggle raw display
4747 (T2+192)2 (T^{2} + 192)^{2} Copy content Toggle raw display
5353 (T245)2 (T^{2} - 45)^{2} Copy content Toggle raw display
5959 (T2+588)2 (T^{2} + 588)^{2} Copy content Toggle raw display
6161 (T+31)4 (T + 31)^{4} Copy content Toggle raw display
6767 (T2+540)2 (T^{2} + 540)^{2} Copy content Toggle raw display
7171 (T2+12288)2 (T^{2} + 12288)^{2} Copy content Toggle raw display
7373 (T76)4 (T - 76)^{4} Copy content Toggle raw display
7979 (T2+375)2 (T^{2} + 375)^{2} Copy content Toggle raw display
8383 (T2+16875)2 (T^{2} + 16875)^{2} Copy content Toggle raw display
8989 (T22880)2 (T^{2} - 2880)^{2} Copy content Toggle raw display
9797 (T+32)4 (T + 32)^{4} Copy content Toggle raw display
show more
show less