Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [2160,4,Mod(1,2160)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2160, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("2160.1");
S:= CuspForms(chi, 4);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 2160 = 2^{4} \cdot 3^{3} \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 2160.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | \(127.444125612\) |
Analytic rank: | \(0\) |
Dimension: | \(3\) |
Coefficient field: | 3.3.47977.1 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: | \( x^{3} - x^{2} - 60x - 44 \) |
Coefficient ring: | \(\Z[a_1, \ldots, a_{11}]\) |
Coefficient ring index: | \( 2\cdot 3^{2} \) |
Twist minimal: | no (minimal twist has level 1080) |
Fricke sign: | \(+1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
Embedding invariants
Embedding label | 1.3 | ||
Root | \(-0.749725\) of defining polynomial | ||
Character | \(\chi\) | \(=\) | 2160.1 |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | 0 | 0 | ||||||||
\(3\) | 0 | 0 | ||||||||
\(4\) | 0 | 0 | ||||||||
\(5\) | −5.00000 | −0.447214 | ||||||||
\(6\) | 0 | 0 | ||||||||
\(7\) | 24.3916 | 1.31702 | 0.658510 | − | 0.752572i | \(-0.271187\pi\) | ||||
0.658510 | + | 0.752572i | \(0.271187\pi\) | |||||||
\(8\) | 0 | 0 | ||||||||
\(9\) | 0 | 0 | ||||||||
\(10\) | 0 | 0 | ||||||||
\(11\) | 26.8932 | 0.737146 | 0.368573 | − | 0.929599i | \(-0.379846\pi\) | ||||
0.368573 | + | 0.929599i | \(0.379846\pi\) | |||||||
\(12\) | 0 | 0 | ||||||||
\(13\) | −68.2815 | −1.45676 | −0.728380 | − | 0.685174i | \(-0.759726\pi\) | ||||
−0.728380 | + | 0.685174i | \(0.759726\pi\) | |||||||
\(14\) | 0 | 0 | ||||||||
\(15\) | 0 | 0 | ||||||||
\(16\) | 0 | 0 | ||||||||
\(17\) | −61.8899 | −0.882971 | −0.441485 | − | 0.897268i | \(-0.645548\pi\) | ||||
−0.441485 | + | 0.897268i | \(0.645548\pi\) | |||||||
\(18\) | 0 | 0 | ||||||||
\(19\) | 75.1747 | 0.907697 | 0.453849 | − | 0.891079i | \(-0.350051\pi\) | ||||
0.453849 | + | 0.891079i | \(0.350051\pi\) | |||||||
\(20\) | 0 | 0 | ||||||||
\(21\) | 0 | 0 | ||||||||
\(22\) | 0 | 0 | ||||||||
\(23\) | 43.3916 | 0.393381 | 0.196691 | − | 0.980466i | \(-0.436981\pi\) | ||||
0.196691 | + | 0.980466i | \(0.436981\pi\) | |||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | 25.0000 | 0.200000 | ||||||||
\(26\) | 0 | 0 | ||||||||
\(27\) | 0 | 0 | ||||||||
\(28\) | 0 | 0 | ||||||||
\(29\) | 174.951 | 1.12026 | 0.560131 | − | 0.828404i | \(-0.310751\pi\) | ||||
0.560131 | + | 0.828404i | \(0.310751\pi\) | |||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | −222.666 | −1.29007 | −0.645033 | − | 0.764154i | \(-0.723157\pi\) | ||||
−0.645033 | + | 0.764154i | \(0.723157\pi\) | |||||||
\(32\) | 0 | 0 | ||||||||
\(33\) | 0 | 0 | ||||||||
\(34\) | 0 | 0 | ||||||||
\(35\) | −121.958 | −0.588989 | ||||||||
\(36\) | 0 | 0 | ||||||||
\(37\) | 67.1813 | 0.298501 | 0.149250 | − | 0.988799i | \(-0.452314\pi\) | ||||
0.149250 | + | 0.988799i | \(0.452314\pi\) | |||||||
\(38\) | 0 | 0 | ||||||||
\(39\) | 0 | 0 | ||||||||
\(40\) | 0 | 0 | ||||||||
\(41\) | −22.2070 | −0.0845890 | −0.0422945 | − | 0.999105i | \(-0.513467\pi\) | ||||
−0.0422945 | + | 0.999105i | \(0.513467\pi\) | |||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | 84.7442 | 0.300543 | 0.150272 | − | 0.988645i | \(-0.451985\pi\) | ||||
0.150272 | + | 0.988645i | \(0.451985\pi\) | |||||||
\(44\) | 0 | 0 | ||||||||
\(45\) | 0 | 0 | ||||||||
\(46\) | 0 | 0 | ||||||||
\(47\) | 585.650 | 1.81757 | 0.908785 | − | 0.417264i | \(-0.137011\pi\) | ||||
0.908785 | + | 0.417264i | \(0.137011\pi\) | |||||||
\(48\) | 0 | 0 | ||||||||
\(49\) | 251.948 | 0.734542 | ||||||||
\(50\) | 0 | 0 | ||||||||
\(51\) | 0 | 0 | ||||||||
\(52\) | 0 | 0 | ||||||||
\(53\) | 38.3625 | 0.0994245 | 0.0497122 | − | 0.998764i | \(-0.484170\pi\) | ||||
0.0497122 | + | 0.998764i | \(0.484170\pi\) | |||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | −134.466 | −0.329662 | ||||||||
\(56\) | 0 | 0 | ||||||||
\(57\) | 0 | 0 | ||||||||
\(58\) | 0 | 0 | ||||||||
\(59\) | −92.0000 | −0.203006 | −0.101503 | − | 0.994835i | \(-0.532365\pi\) | ||||
−0.101503 | + | 0.994835i | \(0.532365\pi\) | |||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | −226.300 | −0.474997 | −0.237498 | − | 0.971388i | \(-0.576327\pi\) | ||||
−0.237498 | + | 0.971388i | \(0.576327\pi\) | |||||||
\(62\) | 0 | 0 | ||||||||
\(63\) | 0 | 0 | ||||||||
\(64\) | 0 | 0 | ||||||||
\(65\) | 341.407 | 0.651482 | ||||||||
\(66\) | 0 | 0 | ||||||||
\(67\) | −858.035 | −1.56456 | −0.782281 | − | 0.622925i | \(-0.785944\pi\) | ||||
−0.782281 | + | 0.622925i | \(0.785944\pi\) | |||||||
\(68\) | 0 | 0 | ||||||||
\(69\) | 0 | 0 | ||||||||
\(70\) | 0 | 0 | ||||||||
\(71\) | −116.912 | −0.195422 | −0.0977108 | − | 0.995215i | \(-0.531152\pi\) | ||||
−0.0977108 | + | 0.995215i | \(0.531152\pi\) | |||||||
\(72\) | 0 | 0 | ||||||||
\(73\) | 911.769 | 1.46184 | 0.730921 | − | 0.682462i | \(-0.239091\pi\) | ||||
0.730921 | + | 0.682462i | \(0.239091\pi\) | |||||||
\(74\) | 0 | 0 | ||||||||
\(75\) | 0 | 0 | ||||||||
\(76\) | 0 | 0 | ||||||||
\(77\) | 655.967 | 0.970836 | ||||||||
\(78\) | 0 | 0 | ||||||||
\(79\) | 285.129 | 0.406070 | 0.203035 | − | 0.979171i | \(-0.434919\pi\) | ||||
0.203035 | + | 0.979171i | \(0.434919\pi\) | |||||||
\(80\) | 0 | 0 | ||||||||
\(81\) | 0 | 0 | ||||||||
\(82\) | 0 | 0 | ||||||||
\(83\) | 999.099 | 1.32127 | 0.660635 | − | 0.750707i | \(-0.270287\pi\) | ||||
0.660635 | + | 0.750707i | \(0.270287\pi\) | |||||||
\(84\) | 0 | 0 | ||||||||
\(85\) | 309.450 | 0.394877 | ||||||||
\(86\) | 0 | 0 | ||||||||
\(87\) | 0 | 0 | ||||||||
\(88\) | 0 | 0 | ||||||||
\(89\) | −374.848 | −0.446447 | −0.223223 | − | 0.974767i | \(-0.571658\pi\) | ||||
−0.223223 | + | 0.974767i | \(0.571658\pi\) | |||||||
\(90\) | 0 | 0 | ||||||||
\(91\) | −1665.49 | −1.91858 | ||||||||
\(92\) | 0 | 0 | ||||||||
\(93\) | 0 | 0 | ||||||||
\(94\) | 0 | 0 | ||||||||
\(95\) | −375.873 | −0.405935 | ||||||||
\(96\) | 0 | 0 | ||||||||
\(97\) | −227.413 | −0.238044 | −0.119022 | − | 0.992892i | \(-0.537976\pi\) | ||||
−0.119022 | + | 0.992892i | \(0.537976\pi\) | |||||||
\(98\) | 0 | 0 | ||||||||
\(99\) | 0 | 0 | ||||||||
\(100\) | 0 | 0 | ||||||||
\(101\) | 1857.75 | 1.83023 | 0.915115 | − | 0.403193i | \(-0.132100\pi\) | ||||
0.915115 | + | 0.403193i | \(0.132100\pi\) | |||||||
\(102\) | 0 | 0 | ||||||||
\(103\) | −172.787 | −0.165294 | −0.0826468 | − | 0.996579i | \(-0.526337\pi\) | ||||
−0.0826468 | + | 0.996579i | \(0.526337\pi\) | |||||||
\(104\) | 0 | 0 | ||||||||
\(105\) | 0 | 0 | ||||||||
\(106\) | 0 | 0 | ||||||||
\(107\) | 1806.79 | 1.63242 | 0.816209 | − | 0.577756i | \(-0.196072\pi\) | ||||
0.816209 | + | 0.577756i | \(0.196072\pi\) | |||||||
\(108\) | 0 | 0 | ||||||||
\(109\) | 287.644 | 0.252764 | 0.126382 | − | 0.991982i | \(-0.459663\pi\) | ||||
0.126382 | + | 0.991982i | \(0.459663\pi\) | |||||||
\(110\) | 0 | 0 | ||||||||
\(111\) | 0 | 0 | ||||||||
\(112\) | 0 | 0 | ||||||||
\(113\) | −671.875 | −0.559333 | −0.279667 | − | 0.960097i | \(-0.590224\pi\) | ||||
−0.279667 | + | 0.960097i | \(0.590224\pi\) | |||||||
\(114\) | 0 | 0 | ||||||||
\(115\) | −216.958 | −0.175925 | ||||||||
\(116\) | 0 | 0 | ||||||||
\(117\) | 0 | 0 | ||||||||
\(118\) | 0 | 0 | ||||||||
\(119\) | −1509.59 | −1.16289 | ||||||||
\(120\) | 0 | 0 | ||||||||
\(121\) | −607.756 | −0.456616 | ||||||||
\(122\) | 0 | 0 | ||||||||
\(123\) | 0 | 0 | ||||||||
\(124\) | 0 | 0 | ||||||||
\(125\) | −125.000 | −0.0894427 | ||||||||
\(126\) | 0 | 0 | ||||||||
\(127\) | −1818.41 | −1.27053 | −0.635265 | − | 0.772294i | \(-0.719109\pi\) | ||||
−0.635265 | + | 0.772294i | \(0.719109\pi\) | |||||||
\(128\) | 0 | 0 | ||||||||
\(129\) | 0 | 0 | ||||||||
\(130\) | 0 | 0 | ||||||||
\(131\) | −1768.99 | −1.17983 | −0.589915 | − | 0.807465i | \(-0.700839\pi\) | ||||
−0.589915 | + | 0.807465i | \(0.700839\pi\) | |||||||
\(132\) | 0 | 0 | ||||||||
\(133\) | 1833.63 | 1.19546 | ||||||||
\(134\) | 0 | 0 | ||||||||
\(135\) | 0 | 0 | ||||||||
\(136\) | 0 | 0 | ||||||||
\(137\) | −1842.85 | −1.14924 | −0.574618 | − | 0.818422i | \(-0.694849\pi\) | ||||
−0.574618 | + | 0.818422i | \(0.694849\pi\) | |||||||
\(138\) | 0 | 0 | ||||||||
\(139\) | −1371.14 | −0.836678 | −0.418339 | − | 0.908291i | \(-0.637388\pi\) | ||||
−0.418339 | + | 0.908291i | \(0.637388\pi\) | |||||||
\(140\) | 0 | 0 | ||||||||
\(141\) | 0 | 0 | ||||||||
\(142\) | 0 | 0 | ||||||||
\(143\) | −1836.31 | −1.07384 | ||||||||
\(144\) | 0 | 0 | ||||||||
\(145\) | −874.756 | −0.500997 | ||||||||
\(146\) | 0 | 0 | ||||||||
\(147\) | 0 | 0 | ||||||||
\(148\) | 0 | 0 | ||||||||
\(149\) | −2139.65 | −1.17642 | −0.588212 | − | 0.808707i | \(-0.700168\pi\) | ||||
−0.588212 | + | 0.808707i | \(0.700168\pi\) | |||||||
\(150\) | 0 | 0 | ||||||||
\(151\) | 1199.81 | 0.646616 | 0.323308 | − | 0.946294i | \(-0.395205\pi\) | ||||
0.323308 | + | 0.946294i | \(0.395205\pi\) | |||||||
\(152\) | 0 | 0 | ||||||||
\(153\) | 0 | 0 | ||||||||
\(154\) | 0 | 0 | ||||||||
\(155\) | 1113.33 | 0.576935 | ||||||||
\(156\) | 0 | 0 | ||||||||
\(157\) | 1847.13 | 0.938960 | 0.469480 | − | 0.882943i | \(-0.344441\pi\) | ||||
0.469480 | + | 0.882943i | \(0.344441\pi\) | |||||||
\(158\) | 0 | 0 | ||||||||
\(159\) | 0 | 0 | ||||||||
\(160\) | 0 | 0 | ||||||||
\(161\) | 1058.39 | 0.518091 | ||||||||
\(162\) | 0 | 0 | ||||||||
\(163\) | 3203.12 | 1.53919 | 0.769595 | − | 0.638532i | \(-0.220458\pi\) | ||||
0.769595 | + | 0.638532i | \(0.220458\pi\) | |||||||
\(164\) | 0 | 0 | ||||||||
\(165\) | 0 | 0 | ||||||||
\(166\) | 0 | 0 | ||||||||
\(167\) | −590.884 | −0.273796 | −0.136898 | − | 0.990585i | \(-0.543713\pi\) | ||||
−0.136898 | + | 0.990585i | \(0.543713\pi\) | |||||||
\(168\) | 0 | 0 | ||||||||
\(169\) | 2465.36 | 1.12215 | ||||||||
\(170\) | 0 | 0 | ||||||||
\(171\) | 0 | 0 | ||||||||
\(172\) | 0 | 0 | ||||||||
\(173\) | 3110.68 | 1.36705 | 0.683527 | − | 0.729925i | \(-0.260445\pi\) | ||||
0.683527 | + | 0.729925i | \(0.260445\pi\) | |||||||
\(174\) | 0 | 0 | ||||||||
\(175\) | 609.789 | 0.263404 | ||||||||
\(176\) | 0 | 0 | ||||||||
\(177\) | 0 | 0 | ||||||||
\(178\) | 0 | 0 | ||||||||
\(179\) | 2448.94 | 1.02258 | 0.511291 | − | 0.859408i | \(-0.329168\pi\) | ||||
0.511291 | + | 0.859408i | \(0.329168\pi\) | |||||||
\(180\) | 0 | 0 | ||||||||
\(181\) | 2416.13 | 0.992206 | 0.496103 | − | 0.868264i | \(-0.334764\pi\) | ||||
0.496103 | + | 0.868264i | \(0.334764\pi\) | |||||||
\(182\) | 0 | 0 | ||||||||
\(183\) | 0 | 0 | ||||||||
\(184\) | 0 | 0 | ||||||||
\(185\) | −335.906 | −0.133494 | ||||||||
\(186\) | 0 | 0 | ||||||||
\(187\) | −1664.42 | −0.650879 | ||||||||
\(188\) | 0 | 0 | ||||||||
\(189\) | 0 | 0 | ||||||||
\(190\) | 0 | 0 | ||||||||
\(191\) | 1652.25 | 0.625929 | 0.312964 | − | 0.949765i | \(-0.398678\pi\) | ||||
0.312964 | + | 0.949765i | \(0.398678\pi\) | |||||||
\(192\) | 0 | 0 | ||||||||
\(193\) | 4736.65 | 1.76659 | 0.883295 | − | 0.468818i | \(-0.155320\pi\) | ||||
0.883295 | + | 0.468818i | \(0.155320\pi\) | |||||||
\(194\) | 0 | 0 | ||||||||
\(195\) | 0 | 0 | ||||||||
\(196\) | 0 | 0 | ||||||||
\(197\) | −2106.79 | −0.761944 | −0.380972 | − | 0.924587i | \(-0.624411\pi\) | ||||
−0.380972 | + | 0.924587i | \(0.624411\pi\) | |||||||
\(198\) | 0 | 0 | ||||||||
\(199\) | −891.149 | −0.317447 | −0.158723 | − | 0.987323i | \(-0.550738\pi\) | ||||
−0.158723 | + | 0.987323i | \(0.550738\pi\) | |||||||
\(200\) | 0 | 0 | ||||||||
\(201\) | 0 | 0 | ||||||||
\(202\) | 0 | 0 | ||||||||
\(203\) | 4267.33 | 1.47541 | ||||||||
\(204\) | 0 | 0 | ||||||||
\(205\) | 111.035 | 0.0378294 | ||||||||
\(206\) | 0 | 0 | ||||||||
\(207\) | 0 | 0 | ||||||||
\(208\) | 0 | 0 | ||||||||
\(209\) | 2021.69 | 0.669105 | ||||||||
\(210\) | 0 | 0 | ||||||||
\(211\) | −3607.11 | −1.17689 | −0.588444 | − | 0.808538i | \(-0.700259\pi\) | ||||
−0.588444 | + | 0.808538i | \(0.700259\pi\) | |||||||
\(212\) | 0 | 0 | ||||||||
\(213\) | 0 | 0 | ||||||||
\(214\) | 0 | 0 | ||||||||
\(215\) | −423.721 | −0.134407 | ||||||||
\(216\) | 0 | 0 | ||||||||
\(217\) | −5431.18 | −1.69904 | ||||||||
\(218\) | 0 | 0 | ||||||||
\(219\) | 0 | 0 | ||||||||
\(220\) | 0 | 0 | ||||||||
\(221\) | 4225.93 | 1.28628 | ||||||||
\(222\) | 0 | 0 | ||||||||
\(223\) | −2507.12 | −0.752865 | −0.376432 | − | 0.926444i | \(-0.622849\pi\) | ||||
−0.376432 | + | 0.926444i | \(0.622849\pi\) | |||||||
\(224\) | 0 | 0 | ||||||||
\(225\) | 0 | 0 | ||||||||
\(226\) | 0 | 0 | ||||||||
\(227\) | 3970.82 | 1.16102 | 0.580512 | − | 0.814252i | \(-0.302853\pi\) | ||||
0.580512 | + | 0.814252i | \(0.302853\pi\) | |||||||
\(228\) | 0 | 0 | ||||||||
\(229\) | 5494.88 | 1.58564 | 0.792820 | − | 0.609455i | \(-0.208612\pi\) | ||||
0.792820 | + | 0.609455i | \(0.208612\pi\) | |||||||
\(230\) | 0 | 0 | ||||||||
\(231\) | 0 | 0 | ||||||||
\(232\) | 0 | 0 | ||||||||
\(233\) | 6895.27 | 1.93873 | 0.969365 | − | 0.245625i | \(-0.0789931\pi\) | ||||
0.969365 | + | 0.245625i | \(0.0789931\pi\) | |||||||
\(234\) | 0 | 0 | ||||||||
\(235\) | −2928.25 | −0.812842 | ||||||||
\(236\) | 0 | 0 | ||||||||
\(237\) | 0 | 0 | ||||||||
\(238\) | 0 | 0 | ||||||||
\(239\) | 4308.62 | 1.16612 | 0.583058 | − | 0.812431i | \(-0.301856\pi\) | ||||
0.583058 | + | 0.812431i | \(0.301856\pi\) | |||||||
\(240\) | 0 | 0 | ||||||||
\(241\) | 3448.92 | 0.921843 | 0.460922 | − | 0.887441i | \(-0.347519\pi\) | ||||
0.460922 | + | 0.887441i | \(0.347519\pi\) | |||||||
\(242\) | 0 | 0 | ||||||||
\(243\) | 0 | 0 | ||||||||
\(244\) | 0 | 0 | ||||||||
\(245\) | −1259.74 | −0.328497 | ||||||||
\(246\) | 0 | 0 | ||||||||
\(247\) | −5133.04 | −1.32230 | ||||||||
\(248\) | 0 | 0 | ||||||||
\(249\) | 0 | 0 | ||||||||
\(250\) | 0 | 0 | ||||||||
\(251\) | 6184.80 | 1.55530 | 0.777652 | − | 0.628695i | \(-0.216411\pi\) | ||||
0.777652 | + | 0.628695i | \(0.216411\pi\) | |||||||
\(252\) | 0 | 0 | ||||||||
\(253\) | 1166.94 | 0.289979 | ||||||||
\(254\) | 0 | 0 | ||||||||
\(255\) | 0 | 0 | ||||||||
\(256\) | 0 | 0 | ||||||||
\(257\) | 4616.98 | 1.12062 | 0.560310 | − | 0.828283i | \(-0.310682\pi\) | ||||
0.560310 | + | 0.828283i | \(0.310682\pi\) | |||||||
\(258\) | 0 | 0 | ||||||||
\(259\) | 1638.66 | 0.393132 | ||||||||
\(260\) | 0 | 0 | ||||||||
\(261\) | 0 | 0 | ||||||||
\(262\) | 0 | 0 | ||||||||
\(263\) | 728.557 | 0.170816 | 0.0854082 | − | 0.996346i | \(-0.472781\pi\) | ||||
0.0854082 | + | 0.996346i | \(0.472781\pi\) | |||||||
\(264\) | 0 | 0 | ||||||||
\(265\) | −191.813 | −0.0444640 | ||||||||
\(266\) | 0 | 0 | ||||||||
\(267\) | 0 | 0 | ||||||||
\(268\) | 0 | 0 | ||||||||
\(269\) | 6718.17 | 1.52273 | 0.761364 | − | 0.648325i | \(-0.224530\pi\) | ||||
0.761364 | + | 0.648325i | \(0.224530\pi\) | |||||||
\(270\) | 0 | 0 | ||||||||
\(271\) | 2435.89 | 0.546015 | 0.273007 | − | 0.962012i | \(-0.411982\pi\) | ||||
0.273007 | + | 0.962012i | \(0.411982\pi\) | |||||||
\(272\) | 0 | 0 | ||||||||
\(273\) | 0 | 0 | ||||||||
\(274\) | 0 | 0 | ||||||||
\(275\) | 672.330 | 0.147429 | ||||||||
\(276\) | 0 | 0 | ||||||||
\(277\) | −4808.18 | −1.04295 | −0.521473 | − | 0.853268i | \(-0.674617\pi\) | ||||
−0.521473 | + | 0.853268i | \(0.674617\pi\) | |||||||
\(278\) | 0 | 0 | ||||||||
\(279\) | 0 | 0 | ||||||||
\(280\) | 0 | 0 | ||||||||
\(281\) | −3535.67 | −0.750606 | −0.375303 | − | 0.926902i | \(-0.622461\pi\) | ||||
−0.375303 | + | 0.926902i | \(0.622461\pi\) | |||||||
\(282\) | 0 | 0 | ||||||||
\(283\) | −3070.64 | −0.644984 | −0.322492 | − | 0.946572i | \(-0.604521\pi\) | ||||
−0.322492 | + | 0.946572i | \(0.604521\pi\) | |||||||
\(284\) | 0 | 0 | ||||||||
\(285\) | 0 | 0 | ||||||||
\(286\) | 0 | 0 | ||||||||
\(287\) | −541.663 | −0.111405 | ||||||||
\(288\) | 0 | 0 | ||||||||
\(289\) | −1082.64 | −0.220362 | ||||||||
\(290\) | 0 | 0 | ||||||||
\(291\) | 0 | 0 | ||||||||
\(292\) | 0 | 0 | ||||||||
\(293\) | 1245.18 | 0.248273 | 0.124136 | − | 0.992265i | \(-0.460384\pi\) | ||||
0.124136 | + | 0.992265i | \(0.460384\pi\) | |||||||
\(294\) | 0 | 0 | ||||||||
\(295\) | 460.000 | 0.0907872 | ||||||||
\(296\) | 0 | 0 | ||||||||
\(297\) | 0 | 0 | ||||||||
\(298\) | 0 | 0 | ||||||||
\(299\) | −2962.84 | −0.573061 | ||||||||
\(300\) | 0 | 0 | ||||||||
\(301\) | 2067.04 | 0.395822 | ||||||||
\(302\) | 0 | 0 | ||||||||
\(303\) | 0 | 0 | ||||||||
\(304\) | 0 | 0 | ||||||||
\(305\) | 1131.50 | 0.212425 | ||||||||
\(306\) | 0 | 0 | ||||||||
\(307\) | 4269.79 | 0.793778 | 0.396889 | − | 0.917867i | \(-0.370090\pi\) | ||||
0.396889 | + | 0.917867i | \(0.370090\pi\) | |||||||
\(308\) | 0 | 0 | ||||||||
\(309\) | 0 | 0 | ||||||||
\(310\) | 0 | 0 | ||||||||
\(311\) | 2584.39 | 0.471213 | 0.235607 | − | 0.971849i | \(-0.424292\pi\) | ||||
0.235607 | + | 0.971849i | \(0.424292\pi\) | |||||||
\(312\) | 0 | 0 | ||||||||
\(313\) | −8899.44 | −1.60711 | −0.803556 | − | 0.595229i | \(-0.797061\pi\) | ||||
−0.803556 | + | 0.595229i | \(0.797061\pi\) | |||||||
\(314\) | 0 | 0 | ||||||||
\(315\) | 0 | 0 | ||||||||
\(316\) | 0 | 0 | ||||||||
\(317\) | 6168.58 | 1.09294 | 0.546470 | − | 0.837479i | \(-0.315971\pi\) | ||||
0.546470 | + | 0.837479i | \(0.315971\pi\) | |||||||
\(318\) | 0 | 0 | ||||||||
\(319\) | 4705.00 | 0.825797 | ||||||||
\(320\) | 0 | 0 | ||||||||
\(321\) | 0 | 0 | ||||||||
\(322\) | 0 | 0 | ||||||||
\(323\) | −4652.55 | −0.801470 | ||||||||
\(324\) | 0 | 0 | ||||||||
\(325\) | −1707.04 | −0.291352 | ||||||||
\(326\) | 0 | 0 | ||||||||
\(327\) | 0 | 0 | ||||||||
\(328\) | 0 | 0 | ||||||||
\(329\) | 14284.9 | 2.39378 | ||||||||
\(330\) | 0 | 0 | ||||||||
\(331\) | 9996.33 | 1.65996 | 0.829982 | − | 0.557791i | \(-0.188351\pi\) | ||||
0.829982 | + | 0.557791i | \(0.188351\pi\) | |||||||
\(332\) | 0 | 0 | ||||||||
\(333\) | 0 | 0 | ||||||||
\(334\) | 0 | 0 | ||||||||
\(335\) | 4290.18 | 0.699694 | ||||||||
\(336\) | 0 | 0 | ||||||||
\(337\) | −2497.40 | −0.403685 | −0.201843 | − | 0.979418i | \(-0.564693\pi\) | ||||
−0.201843 | + | 0.979418i | \(0.564693\pi\) | |||||||
\(338\) | 0 | 0 | ||||||||
\(339\) | 0 | 0 | ||||||||
\(340\) | 0 | 0 | ||||||||
\(341\) | −5988.21 | −0.950967 | ||||||||
\(342\) | 0 | 0 | ||||||||
\(343\) | −2220.90 | −0.349614 | ||||||||
\(344\) | 0 | 0 | ||||||||
\(345\) | 0 | 0 | ||||||||
\(346\) | 0 | 0 | ||||||||
\(347\) | 9001.22 | 1.39254 | 0.696269 | − | 0.717780i | \(-0.254842\pi\) | ||||
0.696269 | + | 0.717780i | \(0.254842\pi\) | |||||||
\(348\) | 0 | 0 | ||||||||
\(349\) | −10707.4 | −1.64227 | −0.821135 | − | 0.570733i | \(-0.806659\pi\) | ||||
−0.821135 | + | 0.570733i | \(0.806659\pi\) | |||||||
\(350\) | 0 | 0 | ||||||||
\(351\) | 0 | 0 | ||||||||
\(352\) | 0 | 0 | ||||||||
\(353\) | −2843.35 | −0.428714 | −0.214357 | − | 0.976755i | \(-0.568766\pi\) | ||||
−0.214357 | + | 0.976755i | \(0.568766\pi\) | |||||||
\(354\) | 0 | 0 | ||||||||
\(355\) | 584.561 | 0.0873952 | ||||||||
\(356\) | 0 | 0 | ||||||||
\(357\) | 0 | 0 | ||||||||
\(358\) | 0 | 0 | ||||||||
\(359\) | −9328.89 | −1.37148 | −0.685738 | − | 0.727849i | \(-0.740520\pi\) | ||||
−0.685738 | + | 0.727849i | \(0.740520\pi\) | |||||||
\(360\) | 0 | 0 | ||||||||
\(361\) | −1207.77 | −0.176086 | ||||||||
\(362\) | 0 | 0 | ||||||||
\(363\) | 0 | 0 | ||||||||
\(364\) | 0 | 0 | ||||||||
\(365\) | −4558.85 | −0.653756 | ||||||||
\(366\) | 0 | 0 | ||||||||
\(367\) | −46.7367 | −0.00664751 | −0.00332376 | − | 0.999994i | \(-0.501058\pi\) | ||||
−0.00332376 | + | 0.999994i | \(0.501058\pi\) | |||||||
\(368\) | 0 | 0 | ||||||||
\(369\) | 0 | 0 | ||||||||
\(370\) | 0 | 0 | ||||||||
\(371\) | 935.721 | 0.130944 | ||||||||
\(372\) | 0 | 0 | ||||||||
\(373\) | −3791.98 | −0.526384 | −0.263192 | − | 0.964743i | \(-0.584775\pi\) | ||||
−0.263192 | + | 0.964743i | \(0.584775\pi\) | |||||||
\(374\) | 0 | 0 | ||||||||
\(375\) | 0 | 0 | ||||||||
\(376\) | 0 | 0 | ||||||||
\(377\) | −11945.9 | −1.63195 | ||||||||
\(378\) | 0 | 0 | ||||||||
\(379\) | −1881.74 | −0.255035 | −0.127518 | − | 0.991836i | \(-0.540701\pi\) | ||||
−0.127518 | + | 0.991836i | \(0.540701\pi\) | |||||||
\(380\) | 0 | 0 | ||||||||
\(381\) | 0 | 0 | ||||||||
\(382\) | 0 | 0 | ||||||||
\(383\) | 12011.9 | 1.60256 | 0.801280 | − | 0.598289i | \(-0.204153\pi\) | ||||
0.801280 | + | 0.598289i | \(0.204153\pi\) | |||||||
\(384\) | 0 | 0 | ||||||||
\(385\) | −3279.83 | −0.434171 | ||||||||
\(386\) | 0 | 0 | ||||||||
\(387\) | 0 | 0 | ||||||||
\(388\) | 0 | 0 | ||||||||
\(389\) | 7758.91 | 1.01129 | 0.505645 | − | 0.862741i | \(-0.331254\pi\) | ||||
0.505645 | + | 0.862741i | \(0.331254\pi\) | |||||||
\(390\) | 0 | 0 | ||||||||
\(391\) | −2685.50 | −0.347344 | ||||||||
\(392\) | 0 | 0 | ||||||||
\(393\) | 0 | 0 | ||||||||
\(394\) | 0 | 0 | ||||||||
\(395\) | −1425.65 | −0.181600 | ||||||||
\(396\) | 0 | 0 | ||||||||
\(397\) | 14841.9 | 1.87630 | 0.938152 | − | 0.346223i | \(-0.112536\pi\) | ||||
0.938152 | + | 0.346223i | \(0.112536\pi\) | |||||||
\(398\) | 0 | 0 | ||||||||
\(399\) | 0 | 0 | ||||||||
\(400\) | 0 | 0 | ||||||||
\(401\) | −435.446 | −0.0542273 | −0.0271136 | − | 0.999632i | \(-0.508632\pi\) | ||||
−0.0271136 | + | 0.999632i | \(0.508632\pi\) | |||||||
\(402\) | 0 | 0 | ||||||||
\(403\) | 15204.0 | 1.87932 | ||||||||
\(404\) | 0 | 0 | ||||||||
\(405\) | 0 | 0 | ||||||||
\(406\) | 0 | 0 | ||||||||
\(407\) | 1806.72 | 0.220039 | ||||||||
\(408\) | 0 | 0 | ||||||||
\(409\) | 10550.6 | 1.27554 | 0.637770 | − | 0.770227i | \(-0.279857\pi\) | ||||
0.637770 | + | 0.770227i | \(0.279857\pi\) | |||||||
\(410\) | 0 | 0 | ||||||||
\(411\) | 0 | 0 | ||||||||
\(412\) | 0 | 0 | ||||||||
\(413\) | −2244.02 | −0.267364 | ||||||||
\(414\) | 0 | 0 | ||||||||
\(415\) | −4995.50 | −0.590890 | ||||||||
\(416\) | 0 | 0 | ||||||||
\(417\) | 0 | 0 | ||||||||
\(418\) | 0 | 0 | ||||||||
\(419\) | −4161.11 | −0.485164 | −0.242582 | − | 0.970131i | \(-0.577994\pi\) | ||||
−0.242582 | + | 0.970131i | \(0.577994\pi\) | |||||||
\(420\) | 0 | 0 | ||||||||
\(421\) | 154.745 | 0.0179140 | 0.00895701 | − | 0.999960i | \(-0.497149\pi\) | ||||
0.00895701 | + | 0.999960i | \(0.497149\pi\) | |||||||
\(422\) | 0 | 0 | ||||||||
\(423\) | 0 | 0 | ||||||||
\(424\) | 0 | 0 | ||||||||
\(425\) | −1547.25 | −0.176594 | ||||||||
\(426\) | 0 | 0 | ||||||||
\(427\) | −5519.82 | −0.625580 | ||||||||
\(428\) | 0 | 0 | ||||||||
\(429\) | 0 | 0 | ||||||||
\(430\) | 0 | 0 | ||||||||
\(431\) | 4393.72 | 0.491040 | 0.245520 | − | 0.969392i | \(-0.421041\pi\) | ||||
0.245520 | + | 0.969392i | \(0.421041\pi\) | |||||||
\(432\) | 0 | 0 | ||||||||
\(433\) | 4437.08 | 0.492454 | 0.246227 | − | 0.969212i | \(-0.420809\pi\) | ||||
0.246227 | + | 0.969212i | \(0.420809\pi\) | |||||||
\(434\) | 0 | 0 | ||||||||
\(435\) | 0 | 0 | ||||||||
\(436\) | 0 | 0 | ||||||||
\(437\) | 3261.95 | 0.357071 | ||||||||
\(438\) | 0 | 0 | ||||||||
\(439\) | 7046.68 | 0.766104 | 0.383052 | − | 0.923727i | \(-0.374873\pi\) | ||||
0.383052 | + | 0.923727i | \(0.374873\pi\) | |||||||
\(440\) | 0 | 0 | ||||||||
\(441\) | 0 | 0 | ||||||||
\(442\) | 0 | 0 | ||||||||
\(443\) | −7335.09 | −0.786683 | −0.393341 | − | 0.919392i | \(-0.628681\pi\) | ||||
−0.393341 | + | 0.919392i | \(0.628681\pi\) | |||||||
\(444\) | 0 | 0 | ||||||||
\(445\) | 1874.24 | 0.199657 | ||||||||
\(446\) | 0 | 0 | ||||||||
\(447\) | 0 | 0 | ||||||||
\(448\) | 0 | 0 | ||||||||
\(449\) | 731.914 | 0.0769290 | 0.0384645 | − | 0.999260i | \(-0.487753\pi\) | ||||
0.0384645 | + | 0.999260i | \(0.487753\pi\) | |||||||
\(450\) | 0 | 0 | ||||||||
\(451\) | −597.217 | −0.0623545 | ||||||||
\(452\) | 0 | 0 | ||||||||
\(453\) | 0 | 0 | ||||||||
\(454\) | 0 | 0 | ||||||||
\(455\) | 8327.45 | 0.858016 | ||||||||
\(456\) | 0 | 0 | ||||||||
\(457\) | −12611.7 | −1.29092 | −0.645462 | − | 0.763792i | \(-0.723335\pi\) | ||||
−0.645462 | + | 0.763792i | \(0.723335\pi\) | |||||||
\(458\) | 0 | 0 | ||||||||
\(459\) | 0 | 0 | ||||||||
\(460\) | 0 | 0 | ||||||||
\(461\) | 12971.9 | 1.31055 | 0.655275 | − | 0.755391i | \(-0.272553\pi\) | ||||
0.655275 | + | 0.755391i | \(0.272553\pi\) | |||||||
\(462\) | 0 | 0 | ||||||||
\(463\) | −9899.48 | −0.993667 | −0.496833 | − | 0.867846i | \(-0.665504\pi\) | ||||
−0.496833 | + | 0.867846i | \(0.665504\pi\) | |||||||
\(464\) | 0 | 0 | ||||||||
\(465\) | 0 | 0 | ||||||||
\(466\) | 0 | 0 | ||||||||
\(467\) | 2180.60 | 0.216073 | 0.108037 | − | 0.994147i | \(-0.465544\pi\) | ||||
0.108037 | + | 0.994147i | \(0.465544\pi\) | |||||||
\(468\) | 0 | 0 | ||||||||
\(469\) | −20928.8 | −2.06056 | ||||||||
\(470\) | 0 | 0 | ||||||||
\(471\) | 0 | 0 | ||||||||
\(472\) | 0 | 0 | ||||||||
\(473\) | 2279.04 | 0.221544 | ||||||||
\(474\) | 0 | 0 | ||||||||
\(475\) | 1879.37 | 0.181539 | ||||||||
\(476\) | 0 | 0 | ||||||||
\(477\) | 0 | 0 | ||||||||
\(478\) | 0 | 0 | ||||||||
\(479\) | 4132.54 | 0.394197 | 0.197099 | − | 0.980384i | \(-0.436848\pi\) | ||||
0.197099 | + | 0.980384i | \(0.436848\pi\) | |||||||
\(480\) | 0 | 0 | ||||||||
\(481\) | −4587.23 | −0.434844 | ||||||||
\(482\) | 0 | 0 | ||||||||
\(483\) | 0 | 0 | ||||||||
\(484\) | 0 | 0 | ||||||||
\(485\) | 1137.07 | 0.106457 | ||||||||
\(486\) | 0 | 0 | ||||||||
\(487\) | 19277.8 | 1.79376 | 0.896880 | − | 0.442275i | \(-0.145828\pi\) | ||||
0.896880 | + | 0.442275i | \(0.145828\pi\) | |||||||
\(488\) | 0 | 0 | ||||||||
\(489\) | 0 | 0 | ||||||||
\(490\) | 0 | 0 | ||||||||
\(491\) | −1315.88 | −0.120946 | −0.0604732 | − | 0.998170i | \(-0.519261\pi\) | ||||
−0.0604732 | + | 0.998170i | \(0.519261\pi\) | |||||||
\(492\) | 0 | 0 | ||||||||
\(493\) | −10827.7 | −0.989159 | ||||||||
\(494\) | 0 | 0 | ||||||||
\(495\) | 0 | 0 | ||||||||
\(496\) | 0 | 0 | ||||||||
\(497\) | −2851.67 | −0.257374 | ||||||||
\(498\) | 0 | 0 | ||||||||
\(499\) | −10477.9 | −0.939988 | −0.469994 | − | 0.882670i | \(-0.655744\pi\) | ||||
−0.469994 | + | 0.882670i | \(0.655744\pi\) | |||||||
\(500\) | 0 | 0 | ||||||||
\(501\) | 0 | 0 | ||||||||
\(502\) | 0 | 0 | ||||||||
\(503\) | −9312.29 | −0.825476 | −0.412738 | − | 0.910850i | \(-0.635428\pi\) | ||||
−0.412738 | + | 0.910850i | \(0.635428\pi\) | |||||||
\(504\) | 0 | 0 | ||||||||
\(505\) | −9288.76 | −0.818504 | ||||||||
\(506\) | 0 | 0 | ||||||||
\(507\) | 0 | 0 | ||||||||
\(508\) | 0 | 0 | ||||||||
\(509\) | 21595.3 | 1.88054 | 0.940270 | − | 0.340429i | \(-0.110572\pi\) | ||||
0.940270 | + | 0.340429i | \(0.110572\pi\) | |||||||
\(510\) | 0 | 0 | ||||||||
\(511\) | 22239.5 | 1.92528 | ||||||||
\(512\) | 0 | 0 | ||||||||
\(513\) | 0 | 0 | ||||||||
\(514\) | 0 | 0 | ||||||||
\(515\) | 863.936 | 0.0739215 | ||||||||
\(516\) | 0 | 0 | ||||||||
\(517\) | 15750.0 | 1.33981 | ||||||||
\(518\) | 0 | 0 | ||||||||
\(519\) | 0 | 0 | ||||||||
\(520\) | 0 | 0 | ||||||||
\(521\) | −9386.88 | −0.789341 | −0.394670 | − | 0.918823i | \(-0.629141\pi\) | ||||
−0.394670 | + | 0.918823i | \(0.629141\pi\) | |||||||
\(522\) | 0 | 0 | ||||||||
\(523\) | 19068.9 | 1.59431 | 0.797156 | − | 0.603773i | \(-0.206337\pi\) | ||||
0.797156 | + | 0.603773i | \(0.206337\pi\) | |||||||
\(524\) | 0 | 0 | ||||||||
\(525\) | 0 | 0 | ||||||||
\(526\) | 0 | 0 | ||||||||
\(527\) | 13780.8 | 1.13909 | ||||||||
\(528\) | 0 | 0 | ||||||||
\(529\) | −10284.2 | −0.845251 | ||||||||
\(530\) | 0 | 0 | ||||||||
\(531\) | 0 | 0 | ||||||||
\(532\) | 0 | 0 | ||||||||
\(533\) | 1516.33 | 0.123226 | ||||||||
\(534\) | 0 | 0 | ||||||||
\(535\) | −9033.94 | −0.730040 | ||||||||
\(536\) | 0 | 0 | ||||||||
\(537\) | 0 | 0 | ||||||||
\(538\) | 0 | 0 | ||||||||
\(539\) | 6775.69 | 0.541465 | ||||||||
\(540\) | 0 | 0 | ||||||||
\(541\) | −22209.4 | −1.76499 | −0.882493 | − | 0.470325i | \(-0.844137\pi\) | ||||
−0.882493 | + | 0.470325i | \(0.844137\pi\) | |||||||
\(542\) | 0 | 0 | ||||||||
\(543\) | 0 | 0 | ||||||||
\(544\) | 0 | 0 | ||||||||
\(545\) | −1438.22 | −0.113040 | ||||||||
\(546\) | 0 | 0 | ||||||||
\(547\) | 2233.14 | 0.174556 | 0.0872782 | − | 0.996184i | \(-0.472183\pi\) | ||||
0.0872782 | + | 0.996184i | \(0.472183\pi\) | |||||||
\(548\) | 0 | 0 | ||||||||
\(549\) | 0 | 0 | ||||||||
\(550\) | 0 | 0 | ||||||||
\(551\) | 13151.9 | 1.01686 | ||||||||
\(552\) | 0 | 0 | ||||||||
\(553\) | 6954.74 | 0.534802 | ||||||||
\(554\) | 0 | 0 | ||||||||
\(555\) | 0 | 0 | ||||||||
\(556\) | 0 | 0 | ||||||||
\(557\) | −19727.7 | −1.50070 | −0.750351 | − | 0.661039i | \(-0.770116\pi\) | ||||
−0.750351 | + | 0.661039i | \(0.770116\pi\) | |||||||
\(558\) | 0 | 0 | ||||||||
\(559\) | −5786.46 | −0.437819 | ||||||||
\(560\) | 0 | 0 | ||||||||
\(561\) | 0 | 0 | ||||||||
\(562\) | 0 | 0 | ||||||||
\(563\) | −12025.7 | −0.900216 | −0.450108 | − | 0.892974i | \(-0.648615\pi\) | ||||
−0.450108 | + | 0.892974i | \(0.648615\pi\) | |||||||
\(564\) | 0 | 0 | ||||||||
\(565\) | 3359.37 | 0.250142 | ||||||||
\(566\) | 0 | 0 | ||||||||
\(567\) | 0 | 0 | ||||||||
\(568\) | 0 | 0 | ||||||||
\(569\) | −19708.8 | −1.45209 | −0.726044 | − | 0.687648i | \(-0.758643\pi\) | ||||
−0.726044 | + | 0.687648i | \(0.758643\pi\) | |||||||
\(570\) | 0 | 0 | ||||||||
\(571\) | −3965.65 | −0.290643 | −0.145322 | − | 0.989384i | \(-0.546422\pi\) | ||||
−0.145322 | + | 0.989384i | \(0.546422\pi\) | |||||||
\(572\) | 0 | 0 | ||||||||
\(573\) | 0 | 0 | ||||||||
\(574\) | 0 | 0 | ||||||||
\(575\) | 1084.79 | 0.0786762 | ||||||||
\(576\) | 0 | 0 | ||||||||
\(577\) | 4134.92 | 0.298334 | 0.149167 | − | 0.988812i | \(-0.452341\pi\) | ||||
0.149167 | + | 0.988812i | \(0.452341\pi\) | |||||||
\(578\) | 0 | 0 | ||||||||
\(579\) | 0 | 0 | ||||||||
\(580\) | 0 | 0 | ||||||||
\(581\) | 24369.6 | 1.74014 | ||||||||
\(582\) | 0 | 0 | ||||||||
\(583\) | 1031.69 | 0.0732904 | ||||||||
\(584\) | 0 | 0 | ||||||||
\(585\) | 0 | 0 | ||||||||
\(586\) | 0 | 0 | ||||||||
\(587\) | 10949.0 | 0.769873 | 0.384937 | − | 0.922943i | \(-0.374223\pi\) | ||||
0.384937 | + | 0.922943i | \(0.374223\pi\) | |||||||
\(588\) | 0 | 0 | ||||||||
\(589\) | −16738.9 | −1.17099 | ||||||||
\(590\) | 0 | 0 | ||||||||
\(591\) | 0 | 0 | ||||||||
\(592\) | 0 | 0 | ||||||||
\(593\) | 17834.7 | 1.23505 | 0.617523 | − | 0.786553i | \(-0.288136\pi\) | ||||
0.617523 | + | 0.786553i | \(0.288136\pi\) | |||||||
\(594\) | 0 | 0 | ||||||||
\(595\) | 7547.95 | 0.520060 | ||||||||
\(596\) | 0 | 0 | ||||||||
\(597\) | 0 | 0 | ||||||||
\(598\) | 0 | 0 | ||||||||
\(599\) | −6052.79 | −0.412872 | −0.206436 | − | 0.978460i | \(-0.566186\pi\) | ||||
−0.206436 | + | 0.978460i | \(0.566186\pi\) | |||||||
\(600\) | 0 | 0 | ||||||||
\(601\) | 5233.02 | 0.355174 | 0.177587 | − | 0.984105i | \(-0.443171\pi\) | ||||
0.177587 | + | 0.984105i | \(0.443171\pi\) | |||||||
\(602\) | 0 | 0 | ||||||||
\(603\) | 0 | 0 | ||||||||
\(604\) | 0 | 0 | ||||||||
\(605\) | 3038.78 | 0.204205 | ||||||||
\(606\) | 0 | 0 | ||||||||
\(607\) | 24209.4 | 1.61883 | 0.809413 | − | 0.587240i | \(-0.199785\pi\) | ||||
0.809413 | + | 0.587240i | \(0.199785\pi\) | |||||||
\(608\) | 0 | 0 | ||||||||
\(609\) | 0 | 0 | ||||||||
\(610\) | 0 | 0 | ||||||||
\(611\) | −39989.0 | −2.64776 | ||||||||
\(612\) | 0 | 0 | ||||||||
\(613\) | 7255.45 | 0.478050 | 0.239025 | − | 0.971013i | \(-0.423172\pi\) | ||||
0.239025 | + | 0.971013i | \(0.423172\pi\) | |||||||
\(614\) | 0 | 0 | ||||||||
\(615\) | 0 | 0 | ||||||||
\(616\) | 0 | 0 | ||||||||
\(617\) | −29694.7 | −1.93754 | −0.968772 | − | 0.247951i | \(-0.920243\pi\) | ||||
−0.968772 | + | 0.247951i | \(0.920243\pi\) | |||||||
\(618\) | 0 | 0 | ||||||||
\(619\) | −10775.2 | −0.699665 | −0.349833 | − | 0.936812i | \(-0.613762\pi\) | ||||
−0.349833 | + | 0.936812i | \(0.613762\pi\) | |||||||
\(620\) | 0 | 0 | ||||||||
\(621\) | 0 | 0 | ||||||||
\(622\) | 0 | 0 | ||||||||
\(623\) | −9143.11 | −0.587979 | ||||||||
\(624\) | 0 | 0 | ||||||||
\(625\) | 625.000 | 0.0400000 | ||||||||
\(626\) | 0 | 0 | ||||||||
\(627\) | 0 | 0 | ||||||||
\(628\) | 0 | 0 | ||||||||
\(629\) | −4157.84 | −0.263568 | ||||||||
\(630\) | 0 | 0 | ||||||||
\(631\) | 3661.18 | 0.230981 | 0.115491 | − | 0.993309i | \(-0.463156\pi\) | ||||
0.115491 | + | 0.993309i | \(0.463156\pi\) | |||||||
\(632\) | 0 | 0 | ||||||||
\(633\) | 0 | 0 | ||||||||
\(634\) | 0 | 0 | ||||||||
\(635\) | 9092.03 | 0.568199 | ||||||||
\(636\) | 0 | 0 | ||||||||
\(637\) | −17203.4 | −1.07005 | ||||||||
\(638\) | 0 | 0 | ||||||||
\(639\) | 0 | 0 | ||||||||
\(640\) | 0 | 0 | ||||||||
\(641\) | −5627.43 | −0.346755 | −0.173378 | − | 0.984855i | \(-0.555468\pi\) | ||||
−0.173378 | + | 0.984855i | \(0.555468\pi\) | |||||||
\(642\) | 0 | 0 | ||||||||
\(643\) | 10732.5 | 0.658243 | 0.329122 | − | 0.944288i | \(-0.393247\pi\) | ||||
0.329122 | + | 0.944288i | \(0.393247\pi\) | |||||||
\(644\) | 0 | 0 | ||||||||
\(645\) | 0 | 0 | ||||||||
\(646\) | 0 | 0 | ||||||||
\(647\) | 28753.1 | 1.74714 | 0.873571 | − | 0.486697i | \(-0.161798\pi\) | ||||
0.873571 | + | 0.486697i | \(0.161798\pi\) | |||||||
\(648\) | 0 | 0 | ||||||||
\(649\) | −2474.17 | −0.149645 | ||||||||
\(650\) | 0 | 0 | ||||||||
\(651\) | 0 | 0 | ||||||||
\(652\) | 0 | 0 | ||||||||
\(653\) | 27398.6 | 1.64195 | 0.820974 | − | 0.570966i | \(-0.193431\pi\) | ||||
0.820974 | + | 0.570966i | \(0.193431\pi\) | |||||||
\(654\) | 0 | 0 | ||||||||
\(655\) | 8844.97 | 0.527636 | ||||||||
\(656\) | 0 | 0 | ||||||||
\(657\) | 0 | 0 | ||||||||
\(658\) | 0 | 0 | ||||||||
\(659\) | −26446.7 | −1.56331 | −0.781653 | − | 0.623714i | \(-0.785623\pi\) | ||||
−0.781653 | + | 0.623714i | \(0.785623\pi\) | |||||||
\(660\) | 0 | 0 | ||||||||
\(661\) | 25643.7 | 1.50897 | 0.754483 | − | 0.656320i | \(-0.227888\pi\) | ||||
0.754483 | + | 0.656320i | \(0.227888\pi\) | |||||||
\(662\) | 0 | 0 | ||||||||
\(663\) | 0 | 0 | ||||||||
\(664\) | 0 | 0 | ||||||||
\(665\) | −9168.13 | −0.534624 | ||||||||
\(666\) | 0 | 0 | ||||||||
\(667\) | 7591.40 | 0.440690 | ||||||||
\(668\) | 0 | 0 | ||||||||
\(669\) | 0 | 0 | ||||||||
\(670\) | 0 | 0 | ||||||||
\(671\) | −6085.94 | −0.350142 | ||||||||
\(672\) | 0 | 0 | ||||||||
\(673\) | 10796.0 | 0.618357 | 0.309179 | − | 0.951004i | \(-0.399946\pi\) | ||||
0.309179 | + | 0.951004i | \(0.399946\pi\) | |||||||
\(674\) | 0 | 0 | ||||||||
\(675\) | 0 | 0 | ||||||||
\(676\) | 0 | 0 | ||||||||
\(677\) | 13183.2 | 0.748406 | 0.374203 | − | 0.927347i | \(-0.377916\pi\) | ||||
0.374203 | + | 0.927347i | \(0.377916\pi\) | |||||||
\(678\) | 0 | 0 | ||||||||
\(679\) | −5546.96 | −0.313509 | ||||||||
\(680\) | 0 | 0 | ||||||||
\(681\) | 0 | 0 | ||||||||
\(682\) | 0 | 0 | ||||||||
\(683\) | −1349.06 | −0.0755786 | −0.0377893 | − | 0.999286i | \(-0.512032\pi\) | ||||
−0.0377893 | + | 0.999286i | \(0.512032\pi\) | |||||||
\(684\) | 0 | 0 | ||||||||
\(685\) | 9214.26 | 0.513954 | ||||||||
\(686\) | 0 | 0 | ||||||||
\(687\) | 0 | 0 | ||||||||
\(688\) | 0 | 0 | ||||||||
\(689\) | −2619.45 | −0.144838 | ||||||||
\(690\) | 0 | 0 | ||||||||
\(691\) | −25133.8 | −1.38370 | −0.691849 | − | 0.722042i | \(-0.743204\pi\) | ||||
−0.691849 | + | 0.722042i | \(0.743204\pi\) | |||||||
\(692\) | 0 | 0 | ||||||||
\(693\) | 0 | 0 | ||||||||
\(694\) | 0 | 0 | ||||||||
\(695\) | 6855.68 | 0.374174 | ||||||||
\(696\) | 0 | 0 | ||||||||
\(697\) | 1374.39 | 0.0746896 | ||||||||
\(698\) | 0 | 0 | ||||||||
\(699\) | 0 | 0 | ||||||||
\(700\) | 0 | 0 | ||||||||
\(701\) | 14808.9 | 0.797895 | 0.398948 | − | 0.916974i | \(-0.369375\pi\) | ||||
0.398948 | + | 0.916974i | \(0.369375\pi\) | |||||||
\(702\) | 0 | 0 | ||||||||
\(703\) | 5050.33 | 0.270948 | ||||||||
\(704\) | 0 | 0 | ||||||||
\(705\) | 0 | 0 | ||||||||
\(706\) | 0 | 0 | ||||||||
\(707\) | 45313.5 | 2.41045 | ||||||||
\(708\) | 0 | 0 | ||||||||
\(709\) | −13857.2 | −0.734019 | −0.367009 | − | 0.930217i | \(-0.619618\pi\) | ||||
−0.367009 | + | 0.930217i | \(0.619618\pi\) | |||||||
\(710\) | 0 | 0 | ||||||||
\(711\) | 0 | 0 | ||||||||
\(712\) | 0 | 0 | ||||||||
\(713\) | −9661.84 | −0.507488 | ||||||||
\(714\) | 0 | 0 | ||||||||
\(715\) | 9181.54 | 0.480238 | ||||||||
\(716\) | 0 | 0 | ||||||||
\(717\) | 0 | 0 | ||||||||
\(718\) | 0 | 0 | ||||||||
\(719\) | −21853.5 | −1.13352 | −0.566759 | − | 0.823884i | \(-0.691803\pi\) | ||||
−0.566759 | + | 0.823884i | \(0.691803\pi\) | |||||||
\(720\) | 0 | 0 | ||||||||
\(721\) | −4214.55 | −0.217695 | ||||||||
\(722\) | 0 | 0 | ||||||||
\(723\) | 0 | 0 | ||||||||
\(724\) | 0 | 0 | ||||||||
\(725\) | 4373.78 | 0.224053 | ||||||||
\(726\) | 0 | 0 | ||||||||
\(727\) | 1442.23 | 0.0735757 | 0.0367878 | − | 0.999323i | \(-0.488287\pi\) | ||||
0.0367878 | + | 0.999323i | \(0.488287\pi\) | |||||||
\(728\) | 0 | 0 | ||||||||
\(729\) | 0 | 0 | ||||||||
\(730\) | 0 | 0 | ||||||||
\(731\) | −5244.81 | −0.265371 | ||||||||
\(732\) | 0 | 0 | ||||||||
\(733\) | 2606.50 | 0.131342 | 0.0656708 | − | 0.997841i | \(-0.479081\pi\) | ||||
0.0656708 | + | 0.997841i | \(0.479081\pi\) | |||||||
\(734\) | 0 | 0 | ||||||||
\(735\) | 0 | 0 | ||||||||
\(736\) | 0 | 0 | ||||||||
\(737\) | −23075.3 | −1.15331 | ||||||||
\(738\) | 0 | 0 | ||||||||
\(739\) | −9072.37 | −0.451600 | −0.225800 | − | 0.974174i | \(-0.572500\pi\) | ||||
−0.225800 | + | 0.974174i | \(0.572500\pi\) | |||||||
\(740\) | 0 | 0 | ||||||||
\(741\) | 0 | 0 | ||||||||
\(742\) | 0 | 0 | ||||||||
\(743\) | −10093.2 | −0.498364 | −0.249182 | − | 0.968457i | \(-0.580162\pi\) | ||||
−0.249182 | + | 0.968457i | \(0.580162\pi\) | |||||||
\(744\) | 0 | 0 | ||||||||
\(745\) | 10698.3 | 0.526113 | ||||||||
\(746\) | 0 | 0 | ||||||||
\(747\) | 0 | 0 | ||||||||
\(748\) | 0 | 0 | ||||||||
\(749\) | 44070.4 | 2.14993 | ||||||||
\(750\) | 0 | 0 | ||||||||
\(751\) | −22033.4 | −1.07059 | −0.535294 | − | 0.844666i | \(-0.679799\pi\) | ||||
−0.535294 | + | 0.844666i | \(0.679799\pi\) | |||||||
\(752\) | 0 | 0 | ||||||||
\(753\) | 0 | 0 | ||||||||
\(754\) | 0 | 0 | ||||||||
\(755\) | −5999.04 | −0.289175 | ||||||||
\(756\) | 0 | 0 | ||||||||
\(757\) | 8362.75 | 0.401518 | 0.200759 | − | 0.979641i | \(-0.435659\pi\) | ||||
0.200759 | + | 0.979641i | \(0.435659\pi\) | |||||||
\(758\) | 0 | 0 | ||||||||
\(759\) | 0 | 0 | ||||||||
\(760\) | 0 | 0 | ||||||||
\(761\) | 11405.1 | 0.543280 | 0.271640 | − | 0.962399i | \(-0.412434\pi\) | ||||
0.271640 | + | 0.962399i | \(0.412434\pi\) | |||||||
\(762\) | 0 | 0 | ||||||||
\(763\) | 7016.09 | 0.332896 | ||||||||
\(764\) | 0 | 0 | ||||||||
\(765\) | 0 | 0 | ||||||||
\(766\) | 0 | 0 | ||||||||
\(767\) | 6281.89 | 0.295731 | ||||||||
\(768\) | 0 | 0 | ||||||||
\(769\) | 1447.34 | 0.0678704 | 0.0339352 | − | 0.999424i | \(-0.489196\pi\) | ||||
0.0339352 | + | 0.999424i | \(0.489196\pi\) | |||||||
\(770\) | 0 | 0 | ||||||||
\(771\) | 0 | 0 | ||||||||
\(772\) | 0 | 0 | ||||||||
\(773\) | −25835.9 | −1.20214 | −0.601070 | − | 0.799196i | \(-0.705259\pi\) | ||||
−0.601070 | + | 0.799196i | \(0.705259\pi\) | |||||||
\(774\) | 0 | 0 | ||||||||
\(775\) | −5566.66 | −0.258013 | ||||||||
\(776\) | 0 | 0 | ||||||||
\(777\) | 0 | 0 | ||||||||
\(778\) | 0 | 0 | ||||||||
\(779\) | −1669.40 | −0.0767812 | ||||||||
\(780\) | 0 | 0 | ||||||||
\(781\) | −3144.14 | −0.144054 | ||||||||
\(782\) | 0 | 0 | ||||||||
\(783\) | 0 | 0 | ||||||||
\(784\) | 0 | 0 | ||||||||
\(785\) | −9235.63 | −0.419916 | ||||||||
\(786\) | 0 | 0 | ||||||||
\(787\) | −15859.9 | −0.718355 | −0.359178 | − | 0.933269i | \(-0.616943\pi\) | ||||
−0.359178 | + | 0.933269i | \(0.616943\pi\) | |||||||
\(788\) | 0 | 0 | ||||||||
\(789\) | 0 | 0 | ||||||||
\(790\) | 0 | 0 | ||||||||
\(791\) | −16388.1 | −0.736653 | ||||||||
\(792\) | 0 | 0 | ||||||||
\(793\) | 15452.1 | 0.691956 | ||||||||
\(794\) | 0 | 0 | ||||||||
\(795\) | 0 | 0 | ||||||||
\(796\) | 0 | 0 | ||||||||
\(797\) | −32805.2 | −1.45799 | −0.728997 | − | 0.684517i | \(-0.760013\pi\) | ||||
−0.728997 | + | 0.684517i | \(0.760013\pi\) | |||||||
\(798\) | 0 | 0 | ||||||||
\(799\) | −36245.8 | −1.60486 | ||||||||
\(800\) | 0 | 0 | ||||||||
\(801\) | 0 | 0 | ||||||||
\(802\) | 0 | 0 | ||||||||
\(803\) | 24520.4 | 1.07759 | ||||||||
\(804\) | 0 | 0 | ||||||||
\(805\) | −5291.94 | −0.231697 | ||||||||
\(806\) | 0 | 0 | ||||||||
\(807\) | 0 | 0 | ||||||||
\(808\) | 0 | 0 | ||||||||
\(809\) | −17068.4 | −0.741772 | −0.370886 | − | 0.928678i | \(-0.620946\pi\) | ||||
−0.370886 | + | 0.928678i | \(0.620946\pi\) | |||||||
\(810\) | 0 | 0 | ||||||||
\(811\) | −12079.5 | −0.523018 | −0.261509 | − | 0.965201i | \(-0.584220\pi\) | ||||
−0.261509 | + | 0.965201i | \(0.584220\pi\) | |||||||
\(812\) | 0 | 0 | ||||||||
\(813\) | 0 | 0 | ||||||||
\(814\) | 0 | 0 | ||||||||
\(815\) | −16015.6 | −0.688347 | ||||||||
\(816\) | 0 | 0 | ||||||||
\(817\) | 6370.61 | 0.272802 | ||||||||
\(818\) | 0 | 0 | ||||||||
\(819\) | 0 | 0 | ||||||||
\(820\) | 0 | 0 | ||||||||
\(821\) | −34364.3 | −1.46081 | −0.730403 | − | 0.683016i | \(-0.760668\pi\) | ||||
−0.730403 | + | 0.683016i | \(0.760668\pi\) | |||||||
\(822\) | 0 | 0 | ||||||||
\(823\) | −12983.0 | −0.549891 | −0.274946 | − | 0.961460i | \(-0.588660\pi\) | ||||
−0.274946 | + | 0.961460i | \(0.588660\pi\) | |||||||
\(824\) | 0 | 0 | ||||||||
\(825\) | 0 | 0 | ||||||||
\(826\) | 0 | 0 | ||||||||
\(827\) | −25503.7 | −1.07237 | −0.536186 | − | 0.844100i | \(-0.680135\pi\) | ||||
−0.536186 | + | 0.844100i | \(0.680135\pi\) | |||||||
\(828\) | 0 | 0 | ||||||||
\(829\) | 26016.9 | 1.08999 | 0.544997 | − | 0.838438i | \(-0.316531\pi\) | ||||
0.544997 | + | 0.838438i | \(0.316531\pi\) | |||||||
\(830\) | 0 | 0 | ||||||||
\(831\) | 0 | 0 | ||||||||
\(832\) | 0 | 0 | ||||||||
\(833\) | −15593.0 | −0.648579 | ||||||||
\(834\) | 0 | 0 | ||||||||
\(835\) | 2954.42 | 0.122445 | ||||||||
\(836\) | 0 | 0 | ||||||||
\(837\) | 0 | 0 | ||||||||
\(838\) | 0 | 0 | ||||||||
\(839\) | −11090.3 | −0.456353 | −0.228177 | − | 0.973620i | \(-0.573276\pi\) | ||||
−0.228177 | + | 0.973620i | \(0.573276\pi\) | |||||||
\(840\) | 0 | 0 | ||||||||
\(841\) | 6218.91 | 0.254988 | ||||||||
\(842\) | 0 | 0 | ||||||||
\(843\) | 0 | 0 | ||||||||
\(844\) | 0 | 0 | ||||||||
\(845\) | −12326.8 | −0.501839 | ||||||||
\(846\) | 0 | 0 | ||||||||
\(847\) | −14824.1 | −0.601372 | ||||||||
\(848\) | 0 | 0 | ||||||||
\(849\) | 0 | 0 | ||||||||
\(850\) | 0 | 0 | ||||||||
\(851\) | 2915.10 | 0.117425 | ||||||||
\(852\) | 0 | 0 | ||||||||
\(853\) | 41006.8 | 1.64601 | 0.823004 | − | 0.568036i | \(-0.192296\pi\) | ||||
0.823004 | + | 0.568036i | \(0.192296\pi\) | |||||||
\(854\) | 0 | 0 | ||||||||
\(855\) | 0 | 0 | ||||||||
\(856\) | 0 | 0 | ||||||||
\(857\) | −38890.1 | −1.55013 | −0.775065 | − | 0.631881i | \(-0.782283\pi\) | ||||
−0.775065 | + | 0.631881i | \(0.782283\pi\) | |||||||
\(858\) | 0 | 0 | ||||||||
\(859\) | −43062.9 | −1.71046 | −0.855232 | − | 0.518246i | \(-0.826585\pi\) | ||||
−0.855232 | + | 0.518246i | \(0.826585\pi\) | |||||||
\(860\) | 0 | 0 | ||||||||
\(861\) | 0 | 0 | ||||||||
\(862\) | 0 | 0 | ||||||||
\(863\) | −2294.97 | −0.0905232 | −0.0452616 | − | 0.998975i | \(-0.514412\pi\) | ||||
−0.0452616 | + | 0.998975i | \(0.514412\pi\) | |||||||
\(864\) | 0 | 0 | ||||||||
\(865\) | −15553.4 | −0.611365 | ||||||||
\(866\) | 0 | 0 | ||||||||
\(867\) | 0 | 0 | ||||||||
\(868\) | 0 | 0 | ||||||||
\(869\) | 7668.03 | 0.299333 | ||||||||
\(870\) | 0 | 0 | ||||||||
\(871\) | 58587.9 | 2.27919 | ||||||||
\(872\) | 0 | 0 | ||||||||
\(873\) | 0 | 0 | ||||||||
\(874\) | 0 | 0 | ||||||||
\(875\) | −3048.94 | −0.117798 | ||||||||
\(876\) | 0 | 0 | ||||||||
\(877\) | 33278.9 | 1.28136 | 0.640678 | − | 0.767810i | \(-0.278653\pi\) | ||||
0.640678 | + | 0.767810i | \(0.278653\pi\) | |||||||
\(878\) | 0 | 0 | ||||||||
\(879\) | 0 | 0 | ||||||||
\(880\) | 0 | 0 | ||||||||
\(881\) | 9821.12 | 0.375575 | 0.187788 | − | 0.982210i | \(-0.439868\pi\) | ||||
0.187788 | + | 0.982210i | \(0.439868\pi\) | |||||||
\(882\) | 0 | 0 | ||||||||
\(883\) | 13745.6 | 0.523869 | 0.261934 | − | 0.965086i | \(-0.415640\pi\) | ||||
0.261934 | + | 0.965086i | \(0.415640\pi\) | |||||||
\(884\) | 0 | 0 | ||||||||
\(885\) | 0 | 0 | ||||||||
\(886\) | 0 | 0 | ||||||||
\(887\) | −24565.8 | −0.929922 | −0.464961 | − | 0.885331i | \(-0.653932\pi\) | ||||
−0.464961 | + | 0.885331i | \(0.653932\pi\) | |||||||
\(888\) | 0 | 0 | ||||||||
\(889\) | −44353.7 | −1.67331 | ||||||||
\(890\) | 0 | 0 | ||||||||
\(891\) | 0 | 0 | ||||||||
\(892\) | 0 | 0 | ||||||||
\(893\) | 44026.0 | 1.64980 | ||||||||
\(894\) | 0 | 0 | ||||||||
\(895\) | −12244.7 | −0.457312 | ||||||||
\(896\) | 0 | 0 | ||||||||
\(897\) | 0 | 0 | ||||||||
\(898\) | 0 | 0 | ||||||||
\(899\) | −38955.7 | −1.44521 | ||||||||
\(900\) | 0 | 0 | ||||||||
\(901\) | −2374.25 | −0.0877889 | ||||||||
\(902\) | 0 | 0 | ||||||||
\(903\) | 0 | 0 | ||||||||
\(904\) | 0 | 0 | ||||||||
\(905\) | −12080.6 | −0.443728 | ||||||||
\(906\) | 0 | 0 | ||||||||
\(907\) | −20218.5 | −0.740181 | −0.370091 | − | 0.928996i | \(-0.620673\pi\) | ||||
−0.370091 | + | 0.928996i | \(0.620673\pi\) | |||||||
\(908\) | 0 | 0 | ||||||||
\(909\) | 0 | 0 | ||||||||
\(910\) | 0 | 0 | ||||||||
\(911\) | −4552.96 | −0.165583 | −0.0827915 | − | 0.996567i | \(-0.526384\pi\) | ||||
−0.0827915 | + | 0.996567i | \(0.526384\pi\) | |||||||
\(912\) | 0 | 0 | ||||||||
\(913\) | 26869.0 | 0.973969 | ||||||||
\(914\) | 0 | 0 | ||||||||
\(915\) | 0 | 0 | ||||||||
\(916\) | 0 | 0 | ||||||||
\(917\) | −43148.5 | −1.55386 | ||||||||
\(918\) | 0 | 0 | ||||||||
\(919\) | −19814.0 | −0.711211 | −0.355605 | − | 0.934636i | \(-0.615725\pi\) | ||||
−0.355605 | + | 0.934636i | \(0.615725\pi\) | |||||||
\(920\) | 0 | 0 | ||||||||
\(921\) | 0 | 0 | ||||||||
\(922\) | 0 | 0 | ||||||||
\(923\) | 7982.94 | 0.284682 | ||||||||
\(924\) | 0 | 0 | ||||||||
\(925\) | 1679.53 | 0.0597002 | ||||||||
\(926\) | 0 | 0 | ||||||||
\(927\) | 0 | 0 | ||||||||
\(928\) | 0 | 0 | ||||||||
\(929\) | 40202.9 | 1.41982 | 0.709911 | − | 0.704291i | \(-0.248735\pi\) | ||||
0.709911 | + | 0.704291i | \(0.248735\pi\) | |||||||
\(930\) | 0 | 0 | ||||||||
\(931\) | 18940.1 | 0.666742 | ||||||||
\(932\) | 0 | 0 | ||||||||
\(933\) | 0 | 0 | ||||||||
\(934\) | 0 | 0 | ||||||||
\(935\) | 8322.09 | 0.291082 | ||||||||
\(936\) | 0 | 0 | ||||||||
\(937\) | 24587.9 | 0.857260 | 0.428630 | − | 0.903480i | \(-0.358996\pi\) | ||||
0.428630 | + | 0.903480i | \(0.358996\pi\) | |||||||
\(938\) | 0 | 0 | ||||||||
\(939\) | 0 | 0 | ||||||||
\(940\) | 0 | 0 | ||||||||
\(941\) | −33462.1 | −1.15923 | −0.579614 | − | 0.814891i | \(-0.696797\pi\) | ||||
−0.579614 | + | 0.814891i | \(0.696797\pi\) | |||||||
\(942\) | 0 | 0 | ||||||||
\(943\) | −963.596 | −0.0332757 | ||||||||
\(944\) | 0 | 0 | ||||||||
\(945\) | 0 | 0 | ||||||||
\(946\) | 0 | 0 | ||||||||
\(947\) | 8385.17 | 0.287731 | 0.143866 | − | 0.989597i | \(-0.454047\pi\) | ||||
0.143866 | + | 0.989597i | \(0.454047\pi\) | |||||||
\(948\) | 0 | 0 | ||||||||
\(949\) | −62256.9 | −2.12955 | ||||||||
\(950\) | 0 | 0 | ||||||||
\(951\) | 0 | 0 | ||||||||
\(952\) | 0 | 0 | ||||||||
\(953\) | −55532.0 | −1.88758 | −0.943788 | − | 0.330552i | \(-0.892765\pi\) | ||||
−0.943788 | + | 0.330552i | \(0.892765\pi\) | |||||||
\(954\) | 0 | 0 | ||||||||
\(955\) | −8261.23 | −0.279924 | ||||||||
\(956\) | 0 | 0 | ||||||||
\(957\) | 0 | 0 | ||||||||
\(958\) | 0 | 0 | ||||||||
\(959\) | −44950.0 | −1.51357 | ||||||||
\(960\) | 0 | 0 | ||||||||
\(961\) | 19789.3 | 0.664272 | ||||||||
\(962\) | 0 | 0 | ||||||||
\(963\) | 0 | 0 | ||||||||
\(964\) | 0 | 0 | ||||||||
\(965\) | −23683.3 | −0.790043 | ||||||||
\(966\) | 0 | 0 | ||||||||
\(967\) | 44080.8 | 1.46592 | 0.732960 | − | 0.680272i | \(-0.238138\pi\) | ||||
0.732960 | + | 0.680272i | \(0.238138\pi\) | |||||||
\(968\) | 0 | 0 | ||||||||
\(969\) | 0 | 0 | ||||||||
\(970\) | 0 | 0 | ||||||||
\(971\) | −29721.4 | −0.982291 | −0.491146 | − | 0.871077i | \(-0.663422\pi\) | ||||
−0.491146 | + | 0.871077i | \(0.663422\pi\) | |||||||
\(972\) | 0 | 0 | ||||||||
\(973\) | −33444.2 | −1.10192 | ||||||||
\(974\) | 0 | 0 | ||||||||
\(975\) | 0 | 0 | ||||||||
\(976\) | 0 | 0 | ||||||||
\(977\) | −462.881 | −0.0151575 | −0.00757876 | − | 0.999971i | \(-0.502412\pi\) | ||||
−0.00757876 | + | 0.999971i | \(0.502412\pi\) | |||||||
\(978\) | 0 | 0 | ||||||||
\(979\) | −10080.9 | −0.329096 | ||||||||
\(980\) | 0 | 0 | ||||||||
\(981\) | 0 | 0 | ||||||||
\(982\) | 0 | 0 | ||||||||
\(983\) | −27389.7 | −0.888703 | −0.444351 | − | 0.895853i | \(-0.646566\pi\) | ||||
−0.444351 | + | 0.895853i | \(0.646566\pi\) | |||||||
\(984\) | 0 | 0 | ||||||||
\(985\) | 10534.0 | 0.340752 | ||||||||
\(986\) | 0 | 0 | ||||||||
\(987\) | 0 | 0 | ||||||||
\(988\) | 0 | 0 | ||||||||
\(989\) | 3677.18 | 0.118228 | ||||||||
\(990\) | 0 | 0 | ||||||||
\(991\) | −32596.6 | −1.04487 | −0.522435 | − | 0.852679i | \(-0.674976\pi\) | ||||
−0.522435 | + | 0.852679i | \(0.674976\pi\) | |||||||
\(992\) | 0 | 0 | ||||||||
\(993\) | 0 | 0 | ||||||||
\(994\) | 0 | 0 | ||||||||
\(995\) | 4455.75 | 0.141966 | ||||||||
\(996\) | 0 | 0 | ||||||||
\(997\) | −26630.6 | −0.845936 | −0.422968 | − | 0.906145i | \(-0.639012\pi\) | ||||
−0.422968 | + | 0.906145i | \(0.639012\pi\) | |||||||
\(998\) | 0 | 0 | ||||||||
\(999\) | 0 | 0 |
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
Twists
By twisting character | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Type | Twist | Min | Dim | |
1.1 | even | 1 | trivial | 2160.4.a.bf.1.3 | 3 | ||
3.2 | odd | 2 | 2160.4.a.bn.1.3 | 3 | |||
4.3 | odd | 2 | 1080.4.a.h.1.1 | ✓ | 3 | ||
12.11 | even | 2 | 1080.4.a.n.1.1 | yes | 3 |
By twisted newform | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Type | |
1080.4.a.h.1.1 | ✓ | 3 | 4.3 | odd | 2 | ||
1080.4.a.n.1.1 | yes | 3 | 12.11 | even | 2 | ||
2160.4.a.bf.1.3 | 3 | 1.1 | even | 1 | trivial | ||
2160.4.a.bn.1.3 | 3 | 3.2 | odd | 2 |