Properties

Label 2160.4.a.bp.1.1
Level $2160$
Weight $4$
Character 2160.1
Self dual yes
Analytic conductor $127.444$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2160,4,Mod(1,2160)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2160, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2160.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2160 = 2^{4} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2160.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(127.444125612\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.1765.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 11x + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 1080)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-3.48079\) of defining polynomial
Character \(\chi\) \(=\) 2160.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+5.00000 q^{5} -24.7900 q^{7} -8.16892 q^{11} -46.7694 q^{13} -60.3173 q^{17} +111.802 q^{19} +36.9268 q^{23} +25.0000 q^{25} -33.2627 q^{29} +124.274 q^{31} -123.950 q^{35} -438.610 q^{37} -508.071 q^{41} +48.5247 q^{43} -248.030 q^{47} +271.543 q^{49} +320.404 q^{53} -40.8446 q^{55} -652.268 q^{59} +693.019 q^{61} -233.847 q^{65} +12.0308 q^{67} +1168.30 q^{71} -122.195 q^{73} +202.507 q^{77} +441.669 q^{79} +428.581 q^{83} -301.586 q^{85} +1549.24 q^{89} +1159.41 q^{91} +559.008 q^{95} -500.136 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 15 q^{5} + 27 q^{11} - 3 q^{13} - 15 q^{17} + 78 q^{19} + 105 q^{23} + 75 q^{25} - 117 q^{29} + 207 q^{31} - 120 q^{37} - 300 q^{41} + 483 q^{43} + 303 q^{47} - 15 q^{49} + 492 q^{53} + 135 q^{55}+ \cdots - 1392 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 5.00000 0.447214
\(6\) 0 0
\(7\) −24.7900 −1.33853 −0.669267 0.743022i \(-0.733392\pi\)
−0.669267 + 0.743022i \(0.733392\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −8.16892 −0.223911 −0.111956 0.993713i \(-0.535711\pi\)
−0.111956 + 0.993713i \(0.535711\pi\)
\(12\) 0 0
\(13\) −46.7694 −0.997808 −0.498904 0.866657i \(-0.666264\pi\)
−0.498904 + 0.866657i \(0.666264\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −60.3173 −0.860535 −0.430267 0.902701i \(-0.641581\pi\)
−0.430267 + 0.902701i \(0.641581\pi\)
\(18\) 0 0
\(19\) 111.802 1.34995 0.674975 0.737841i \(-0.264155\pi\)
0.674975 + 0.737841i \(0.264155\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 36.9268 0.334772 0.167386 0.985891i \(-0.446467\pi\)
0.167386 + 0.985891i \(0.446467\pi\)
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −33.2627 −0.212991 −0.106495 0.994313i \(-0.533963\pi\)
−0.106495 + 0.994313i \(0.533963\pi\)
\(30\) 0 0
\(31\) 124.274 0.720010 0.360005 0.932950i \(-0.382775\pi\)
0.360005 + 0.932950i \(0.382775\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −123.950 −0.598610
\(36\) 0 0
\(37\) −438.610 −1.94884 −0.974419 0.224741i \(-0.927846\pi\)
−0.974419 + 0.224741i \(0.927846\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −508.071 −1.93530 −0.967651 0.252291i \(-0.918816\pi\)
−0.967651 + 0.252291i \(0.918816\pi\)
\(42\) 0 0
\(43\) 48.5247 0.172092 0.0860459 0.996291i \(-0.472577\pi\)
0.0860459 + 0.996291i \(0.472577\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −248.030 −0.769763 −0.384881 0.922966i \(-0.625758\pi\)
−0.384881 + 0.922966i \(0.625758\pi\)
\(48\) 0 0
\(49\) 271.543 0.791672
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 320.404 0.830394 0.415197 0.909732i \(-0.363713\pi\)
0.415197 + 0.909732i \(0.363713\pi\)
\(54\) 0 0
\(55\) −40.8446 −0.100136
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −652.268 −1.43929 −0.719645 0.694343i \(-0.755695\pi\)
−0.719645 + 0.694343i \(0.755695\pi\)
\(60\) 0 0
\(61\) 693.019 1.45462 0.727311 0.686308i \(-0.240770\pi\)
0.727311 + 0.686308i \(0.240770\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −233.847 −0.446233
\(66\) 0 0
\(67\) 12.0308 0.0219373 0.0109686 0.999940i \(-0.496509\pi\)
0.0109686 + 0.999940i \(0.496509\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 1168.30 1.95284 0.976421 0.215877i \(-0.0692609\pi\)
0.976421 + 0.215877i \(0.0692609\pi\)
\(72\) 0 0
\(73\) −122.195 −0.195915 −0.0979575 0.995191i \(-0.531231\pi\)
−0.0979575 + 0.995191i \(0.531231\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 202.507 0.299712
\(78\) 0 0
\(79\) 441.669 0.629008 0.314504 0.949256i \(-0.398162\pi\)
0.314504 + 0.949256i \(0.398162\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 428.581 0.566782 0.283391 0.959004i \(-0.408541\pi\)
0.283391 + 0.959004i \(0.408541\pi\)
\(84\) 0 0
\(85\) −301.586 −0.384843
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 1549.24 1.84515 0.922577 0.385813i \(-0.126079\pi\)
0.922577 + 0.385813i \(0.126079\pi\)
\(90\) 0 0
\(91\) 1159.41 1.33560
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 559.008 0.603716
\(96\) 0 0
\(97\) −500.136 −0.523516 −0.261758 0.965134i \(-0.584302\pi\)
−0.261758 + 0.965134i \(0.584302\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 535.936 0.527997 0.263998 0.964523i \(-0.414959\pi\)
0.263998 + 0.964523i \(0.414959\pi\)
\(102\) 0 0
\(103\) 134.905 0.129055 0.0645273 0.997916i \(-0.479446\pi\)
0.0645273 + 0.997916i \(0.479446\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −808.631 −0.730592 −0.365296 0.930891i \(-0.619032\pi\)
−0.365296 + 0.930891i \(0.619032\pi\)
\(108\) 0 0
\(109\) −1073.96 −0.943730 −0.471865 0.881671i \(-0.656419\pi\)
−0.471865 + 0.881671i \(0.656419\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −523.376 −0.435709 −0.217854 0.975981i \(-0.569906\pi\)
−0.217854 + 0.975981i \(0.569906\pi\)
\(114\) 0 0
\(115\) 184.634 0.149715
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 1495.26 1.15185
\(120\) 0 0
\(121\) −1264.27 −0.949864
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 125.000 0.0894427
\(126\) 0 0
\(127\) 114.730 0.0801622 0.0400811 0.999196i \(-0.487238\pi\)
0.0400811 + 0.999196i \(0.487238\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −499.073 −0.332857 −0.166428 0.986054i \(-0.553223\pi\)
−0.166428 + 0.986054i \(0.553223\pi\)
\(132\) 0 0
\(133\) −2771.56 −1.80695
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 1887.38 1.17701 0.588504 0.808495i \(-0.299717\pi\)
0.588504 + 0.808495i \(0.299717\pi\)
\(138\) 0 0
\(139\) 1784.90 1.08916 0.544580 0.838709i \(-0.316689\pi\)
0.544580 + 0.838709i \(0.316689\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 382.056 0.223420
\(144\) 0 0
\(145\) −166.313 −0.0952522
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 996.321 0.547797 0.273899 0.961759i \(-0.411687\pi\)
0.273899 + 0.961759i \(0.411687\pi\)
\(150\) 0 0
\(151\) 3487.14 1.87933 0.939666 0.342093i \(-0.111136\pi\)
0.939666 + 0.342093i \(0.111136\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 621.371 0.321998
\(156\) 0 0
\(157\) −1785.99 −0.907880 −0.453940 0.891032i \(-0.649982\pi\)
−0.453940 + 0.891032i \(0.649982\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −915.415 −0.448104
\(162\) 0 0
\(163\) 396.237 0.190403 0.0952014 0.995458i \(-0.469650\pi\)
0.0952014 + 0.995458i \(0.469650\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 1749.48 0.810654 0.405327 0.914172i \(-0.367158\pi\)
0.405327 + 0.914172i \(0.367158\pi\)
\(168\) 0 0
\(169\) −9.61953 −0.00437849
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 2998.95 1.31796 0.658978 0.752162i \(-0.270989\pi\)
0.658978 + 0.752162i \(0.270989\pi\)
\(174\) 0 0
\(175\) −619.750 −0.267707
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 682.749 0.285090 0.142545 0.989788i \(-0.454471\pi\)
0.142545 + 0.989788i \(0.454471\pi\)
\(180\) 0 0
\(181\) 59.3943 0.0243909 0.0121954 0.999926i \(-0.496118\pi\)
0.0121954 + 0.999926i \(0.496118\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −2193.05 −0.871546
\(186\) 0 0
\(187\) 492.727 0.192683
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 3618.13 1.37067 0.685336 0.728227i \(-0.259655\pi\)
0.685336 + 0.728227i \(0.259655\pi\)
\(192\) 0 0
\(193\) 1536.37 0.573007 0.286504 0.958079i \(-0.407507\pi\)
0.286504 + 0.958079i \(0.407507\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −136.471 −0.0493561 −0.0246780 0.999695i \(-0.507856\pi\)
−0.0246780 + 0.999695i \(0.507856\pi\)
\(198\) 0 0
\(199\) 123.255 0.0439061 0.0219531 0.999759i \(-0.493012\pi\)
0.0219531 + 0.999759i \(0.493012\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 824.581 0.285095
\(204\) 0 0
\(205\) −2540.36 −0.865494
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −913.298 −0.302269
\(210\) 0 0
\(211\) −4128.55 −1.34702 −0.673509 0.739179i \(-0.735214\pi\)
−0.673509 + 0.739179i \(0.735214\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 242.624 0.0769618
\(216\) 0 0
\(217\) −3080.76 −0.963758
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 2821.01 0.858649
\(222\) 0 0
\(223\) 3094.00 0.929102 0.464551 0.885546i \(-0.346216\pi\)
0.464551 + 0.885546i \(0.346216\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 1399.26 0.409128 0.204564 0.978853i \(-0.434422\pi\)
0.204564 + 0.978853i \(0.434422\pi\)
\(228\) 0 0
\(229\) 4787.68 1.38157 0.690784 0.723061i \(-0.257265\pi\)
0.690784 + 0.723061i \(0.257265\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 5117.74 1.43894 0.719472 0.694521i \(-0.244384\pi\)
0.719472 + 0.694521i \(0.244384\pi\)
\(234\) 0 0
\(235\) −1240.15 −0.344248
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −2813.92 −0.761580 −0.380790 0.924662i \(-0.624348\pi\)
−0.380790 + 0.924662i \(0.624348\pi\)
\(240\) 0 0
\(241\) −3543.20 −0.947045 −0.473522 0.880782i \(-0.657018\pi\)
−0.473522 + 0.880782i \(0.657018\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 1357.72 0.354046
\(246\) 0 0
\(247\) −5228.90 −1.34699
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 3446.10 0.866597 0.433299 0.901250i \(-0.357350\pi\)
0.433299 + 0.901250i \(0.357350\pi\)
\(252\) 0 0
\(253\) −301.652 −0.0749593
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −1354.83 −0.328841 −0.164421 0.986390i \(-0.552575\pi\)
−0.164421 + 0.986390i \(0.552575\pi\)
\(258\) 0 0
\(259\) 10873.1 2.60858
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −344.218 −0.0807050 −0.0403525 0.999186i \(-0.512848\pi\)
−0.0403525 + 0.999186i \(0.512848\pi\)
\(264\) 0 0
\(265\) 1602.02 0.371363
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −203.341 −0.0460889 −0.0230445 0.999734i \(-0.507336\pi\)
−0.0230445 + 0.999734i \(0.507336\pi\)
\(270\) 0 0
\(271\) 1586.34 0.355584 0.177792 0.984068i \(-0.443105\pi\)
0.177792 + 0.984068i \(0.443105\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −204.223 −0.0447822
\(276\) 0 0
\(277\) −4330.18 −0.939260 −0.469630 0.882863i \(-0.655613\pi\)
−0.469630 + 0.882863i \(0.655613\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 6569.00 1.39457 0.697284 0.716795i \(-0.254391\pi\)
0.697284 + 0.716795i \(0.254391\pi\)
\(282\) 0 0
\(283\) 997.534 0.209531 0.104765 0.994497i \(-0.466591\pi\)
0.104765 + 0.994497i \(0.466591\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 12595.1 2.59047
\(288\) 0 0
\(289\) −1274.82 −0.259480
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −182.221 −0.0363326 −0.0181663 0.999835i \(-0.505783\pi\)
−0.0181663 + 0.999835i \(0.505783\pi\)
\(294\) 0 0
\(295\) −3261.34 −0.643670
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −1727.05 −0.334039
\(300\) 0 0
\(301\) −1202.93 −0.230351
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 3465.09 0.650527
\(306\) 0 0
\(307\) −1671.12 −0.310670 −0.155335 0.987862i \(-0.549646\pi\)
−0.155335 + 0.987862i \(0.549646\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −9271.81 −1.69053 −0.845267 0.534345i \(-0.820558\pi\)
−0.845267 + 0.534345i \(0.820558\pi\)
\(312\) 0 0
\(313\) −572.410 −0.103369 −0.0516845 0.998663i \(-0.516459\pi\)
−0.0516845 + 0.998663i \(0.516459\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −6048.37 −1.07164 −0.535820 0.844332i \(-0.679998\pi\)
−0.535820 + 0.844332i \(0.679998\pi\)
\(318\) 0 0
\(319\) 271.720 0.0476909
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −6743.57 −1.16168
\(324\) 0 0
\(325\) −1169.24 −0.199562
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 6148.65 1.03035
\(330\) 0 0
\(331\) −8537.53 −1.41772 −0.708860 0.705350i \(-0.750790\pi\)
−0.708860 + 0.705350i \(0.750790\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 60.1541 0.00981065
\(336\) 0 0
\(337\) 3638.91 0.588202 0.294101 0.955774i \(-0.404980\pi\)
0.294101 + 0.955774i \(0.404980\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −1015.19 −0.161218
\(342\) 0 0
\(343\) 1771.41 0.278854
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 7965.23 1.23226 0.616132 0.787643i \(-0.288699\pi\)
0.616132 + 0.787643i \(0.288699\pi\)
\(348\) 0 0
\(349\) 7699.35 1.18091 0.590454 0.807072i \(-0.298949\pi\)
0.590454 + 0.807072i \(0.298949\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −11674.7 −1.76029 −0.880144 0.474706i \(-0.842554\pi\)
−0.880144 + 0.474706i \(0.842554\pi\)
\(354\) 0 0
\(355\) 5841.50 0.873337
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 2547.12 0.374463 0.187231 0.982316i \(-0.440049\pi\)
0.187231 + 0.982316i \(0.440049\pi\)
\(360\) 0 0
\(361\) 5640.59 0.822363
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −610.973 −0.0876158
\(366\) 0 0
\(367\) 11020.0 1.56742 0.783708 0.621130i \(-0.213326\pi\)
0.783708 + 0.621130i \(0.213326\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −7942.81 −1.11151
\(372\) 0 0
\(373\) 8430.05 1.17022 0.585109 0.810955i \(-0.301052\pi\)
0.585109 + 0.810955i \(0.301052\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 1555.68 0.212524
\(378\) 0 0
\(379\) −1675.32 −0.227059 −0.113529 0.993535i \(-0.536216\pi\)
−0.113529 + 0.993535i \(0.536216\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 12124.4 1.61757 0.808783 0.588108i \(-0.200127\pi\)
0.808783 + 0.588108i \(0.200127\pi\)
\(384\) 0 0
\(385\) 1012.54 0.134035
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 15159.1 1.97583 0.987916 0.154992i \(-0.0495351\pi\)
0.987916 + 0.154992i \(0.0495351\pi\)
\(390\) 0 0
\(391\) −2227.32 −0.288083
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 2208.34 0.281301
\(396\) 0 0
\(397\) −3884.64 −0.491095 −0.245547 0.969385i \(-0.578968\pi\)
−0.245547 + 0.969385i \(0.578968\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 7056.99 0.878825 0.439413 0.898285i \(-0.355187\pi\)
0.439413 + 0.898285i \(0.355187\pi\)
\(402\) 0 0
\(403\) −5812.24 −0.718432
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 3582.97 0.436366
\(408\) 0 0
\(409\) 7034.26 0.850420 0.425210 0.905095i \(-0.360200\pi\)
0.425210 + 0.905095i \(0.360200\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 16169.7 1.92654
\(414\) 0 0
\(415\) 2142.91 0.253473
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 6153.56 0.717473 0.358737 0.933439i \(-0.383208\pi\)
0.358737 + 0.933439i \(0.383208\pi\)
\(420\) 0 0
\(421\) −13024.0 −1.50772 −0.753862 0.657033i \(-0.771811\pi\)
−0.753862 + 0.657033i \(0.771811\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −1507.93 −0.172107
\(426\) 0 0
\(427\) −17179.9 −1.94706
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 11614.6 1.29805 0.649023 0.760769i \(-0.275178\pi\)
0.649023 + 0.760769i \(0.275178\pi\)
\(432\) 0 0
\(433\) 1245.75 0.138260 0.0691301 0.997608i \(-0.477978\pi\)
0.0691301 + 0.997608i \(0.477978\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 4128.47 0.451926
\(438\) 0 0
\(439\) −7984.30 −0.868041 −0.434020 0.900903i \(-0.642905\pi\)
−0.434020 + 0.900903i \(0.642905\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 13840.8 1.48442 0.742210 0.670167i \(-0.233778\pi\)
0.742210 + 0.670167i \(0.233778\pi\)
\(444\) 0 0
\(445\) 7746.18 0.825178
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 7756.38 0.815247 0.407624 0.913150i \(-0.366358\pi\)
0.407624 + 0.913150i \(0.366358\pi\)
\(450\) 0 0
\(451\) 4150.39 0.433336
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 5797.07 0.597298
\(456\) 0 0
\(457\) 16107.6 1.64875 0.824377 0.566041i \(-0.191526\pi\)
0.824377 + 0.566041i \(0.191526\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 6272.71 0.633730 0.316865 0.948471i \(-0.397370\pi\)
0.316865 + 0.948471i \(0.397370\pi\)
\(462\) 0 0
\(463\) −18657.9 −1.87280 −0.936399 0.350937i \(-0.885863\pi\)
−0.936399 + 0.350937i \(0.885863\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 16289.5 1.61411 0.807054 0.590478i \(-0.201061\pi\)
0.807054 + 0.590478i \(0.201061\pi\)
\(468\) 0 0
\(469\) −298.244 −0.0293638
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −396.394 −0.0385333
\(474\) 0 0
\(475\) 2795.04 0.269990
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −11328.9 −1.08065 −0.540324 0.841457i \(-0.681698\pi\)
−0.540324 + 0.841457i \(0.681698\pi\)
\(480\) 0 0
\(481\) 20513.5 1.94457
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −2500.68 −0.234124
\(486\) 0 0
\(487\) −14122.4 −1.31406 −0.657029 0.753866i \(-0.728187\pi\)
−0.657029 + 0.753866i \(0.728187\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 5220.81 0.479861 0.239931 0.970790i \(-0.422875\pi\)
0.239931 + 0.970790i \(0.422875\pi\)
\(492\) 0 0
\(493\) 2006.31 0.183286
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −28962.1 −2.61394
\(498\) 0 0
\(499\) −17934.3 −1.60892 −0.804459 0.594008i \(-0.797545\pi\)
−0.804459 + 0.594008i \(0.797545\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −7305.37 −0.647576 −0.323788 0.946130i \(-0.604956\pi\)
−0.323788 + 0.946130i \(0.604956\pi\)
\(504\) 0 0
\(505\) 2679.68 0.236127
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 6083.17 0.529728 0.264864 0.964286i \(-0.414673\pi\)
0.264864 + 0.964286i \(0.414673\pi\)
\(510\) 0 0
\(511\) 3029.20 0.262239
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 674.527 0.0577150
\(516\) 0 0
\(517\) 2026.13 0.172358
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 10005.0 0.841316 0.420658 0.907219i \(-0.361799\pi\)
0.420658 + 0.907219i \(0.361799\pi\)
\(522\) 0 0
\(523\) 12931.9 1.08121 0.540607 0.841276i \(-0.318195\pi\)
0.540607 + 0.841276i \(0.318195\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −7495.89 −0.619594
\(528\) 0 0
\(529\) −10803.4 −0.887927
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 23762.2 1.93106
\(534\) 0 0
\(535\) −4043.15 −0.326730
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −2218.22 −0.177264
\(540\) 0 0
\(541\) 13088.9 1.04017 0.520087 0.854113i \(-0.325900\pi\)
0.520087 + 0.854113i \(0.325900\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −5369.79 −0.422049
\(546\) 0 0
\(547\) 4522.72 0.353524 0.176762 0.984254i \(-0.443438\pi\)
0.176762 + 0.984254i \(0.443438\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −3718.82 −0.287526
\(552\) 0 0
\(553\) −10949.0 −0.841948
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −5477.36 −0.416667 −0.208333 0.978058i \(-0.566804\pi\)
−0.208333 + 0.978058i \(0.566804\pi\)
\(558\) 0 0
\(559\) −2269.47 −0.171715
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −17369.7 −1.30026 −0.650129 0.759824i \(-0.725285\pi\)
−0.650129 + 0.759824i \(0.725285\pi\)
\(564\) 0 0
\(565\) −2616.88 −0.194855
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −7997.66 −0.589243 −0.294622 0.955614i \(-0.595194\pi\)
−0.294622 + 0.955614i \(0.595194\pi\)
\(570\) 0 0
\(571\) −14623.1 −1.07173 −0.535864 0.844305i \(-0.680014\pi\)
−0.535864 + 0.844305i \(0.680014\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 923.170 0.0669545
\(576\) 0 0
\(577\) −3818.29 −0.275490 −0.137745 0.990468i \(-0.543985\pi\)
−0.137745 + 0.990468i \(0.543985\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −10624.5 −0.758657
\(582\) 0 0
\(583\) −2617.35 −0.185934
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 19568.8 1.37597 0.687983 0.725726i \(-0.258496\pi\)
0.687983 + 0.725726i \(0.258496\pi\)
\(588\) 0 0
\(589\) 13894.1 0.971977
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 5170.99 0.358090 0.179045 0.983841i \(-0.442699\pi\)
0.179045 + 0.983841i \(0.442699\pi\)
\(594\) 0 0
\(595\) 7476.32 0.515125
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −10252.3 −0.699327 −0.349663 0.936875i \(-0.613704\pi\)
−0.349663 + 0.936875i \(0.613704\pi\)
\(600\) 0 0
\(601\) −21251.0 −1.44234 −0.721168 0.692760i \(-0.756395\pi\)
−0.721168 + 0.692760i \(0.756395\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −6321.34 −0.424792
\(606\) 0 0
\(607\) 18653.8 1.24734 0.623669 0.781689i \(-0.285641\pi\)
0.623669 + 0.781689i \(0.285641\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 11600.2 0.768076
\(612\) 0 0
\(613\) 6156.56 0.405646 0.202823 0.979215i \(-0.434988\pi\)
0.202823 + 0.979215i \(0.434988\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −16106.4 −1.05092 −0.525461 0.850818i \(-0.676107\pi\)
−0.525461 + 0.850818i \(0.676107\pi\)
\(618\) 0 0
\(619\) 27462.5 1.78322 0.891608 0.452807i \(-0.149577\pi\)
0.891608 + 0.452807i \(0.149577\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −38405.6 −2.46980
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 26455.7 1.67704
\(630\) 0 0
\(631\) 9282.80 0.585646 0.292823 0.956167i \(-0.405405\pi\)
0.292823 + 0.956167i \(0.405405\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 573.648 0.0358496
\(636\) 0 0
\(637\) −12699.9 −0.789937
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −22076.4 −1.36032 −0.680160 0.733064i \(-0.738090\pi\)
−0.680160 + 0.733064i \(0.738090\pi\)
\(642\) 0 0
\(643\) −25416.1 −1.55881 −0.779403 0.626523i \(-0.784478\pi\)
−0.779403 + 0.626523i \(0.784478\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −15054.7 −0.914777 −0.457389 0.889267i \(-0.651215\pi\)
−0.457389 + 0.889267i \(0.651215\pi\)
\(648\) 0 0
\(649\) 5328.32 0.322273
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −14629.6 −0.876726 −0.438363 0.898798i \(-0.644442\pi\)
−0.438363 + 0.898798i \(0.644442\pi\)
\(654\) 0 0
\(655\) −2495.37 −0.148858
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −5302.96 −0.313466 −0.156733 0.987641i \(-0.550096\pi\)
−0.156733 + 0.987641i \(0.550096\pi\)
\(660\) 0 0
\(661\) 7326.18 0.431098 0.215549 0.976493i \(-0.430846\pi\)
0.215549 + 0.976493i \(0.430846\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −13857.8 −0.808094
\(666\) 0 0
\(667\) −1228.28 −0.0713034
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −5661.22 −0.325706
\(672\) 0 0
\(673\) −27965.1 −1.60174 −0.800872 0.598836i \(-0.795630\pi\)
−0.800872 + 0.598836i \(0.795630\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 17423.1 0.989103 0.494551 0.869148i \(-0.335332\pi\)
0.494551 + 0.869148i \(0.335332\pi\)
\(678\) 0 0
\(679\) 12398.4 0.700744
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 18318.0 1.02624 0.513118 0.858318i \(-0.328490\pi\)
0.513118 + 0.858318i \(0.328490\pi\)
\(684\) 0 0
\(685\) 9436.91 0.526374
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −14985.1 −0.828574
\(690\) 0 0
\(691\) −27603.8 −1.51968 −0.759838 0.650112i \(-0.774722\pi\)
−0.759838 + 0.650112i \(0.774722\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 8924.50 0.487087
\(696\) 0 0
\(697\) 30645.5 1.66540
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −8448.22 −0.455185 −0.227593 0.973756i \(-0.573085\pi\)
−0.227593 + 0.973756i \(0.573085\pi\)
\(702\) 0 0
\(703\) −49037.2 −2.63083
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −13285.9 −0.706741
\(708\) 0 0
\(709\) 14440.0 0.764889 0.382444 0.923979i \(-0.375082\pi\)
0.382444 + 0.923979i \(0.375082\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 4589.05 0.241040
\(714\) 0 0
\(715\) 1910.28 0.0999166
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −24213.5 −1.25593 −0.627964 0.778242i \(-0.716112\pi\)
−0.627964 + 0.778242i \(0.716112\pi\)
\(720\) 0 0
\(721\) −3344.31 −0.172744
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −831.567 −0.0425981
\(726\) 0 0
\(727\) 10688.4 0.545271 0.272636 0.962117i \(-0.412105\pi\)
0.272636 + 0.962117i \(0.412105\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −2926.88 −0.148091
\(732\) 0 0
\(733\) −18715.7 −0.943085 −0.471542 0.881843i \(-0.656303\pi\)
−0.471542 + 0.881843i \(0.656303\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −98.2788 −0.00491200
\(738\) 0 0
\(739\) −13155.2 −0.654832 −0.327416 0.944880i \(-0.606178\pi\)
−0.327416 + 0.944880i \(0.606178\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −20680.3 −1.02111 −0.510557 0.859844i \(-0.670561\pi\)
−0.510557 + 0.859844i \(0.670561\pi\)
\(744\) 0 0
\(745\) 4981.60 0.244982
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 20045.9 0.977921
\(750\) 0 0
\(751\) 76.2198 0.00370346 0.00185173 0.999998i \(-0.499411\pi\)
0.00185173 + 0.999998i \(0.499411\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 17435.7 0.840463
\(756\) 0 0
\(757\) 15781.3 0.757701 0.378851 0.925458i \(-0.376319\pi\)
0.378851 + 0.925458i \(0.376319\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −32298.0 −1.53851 −0.769253 0.638944i \(-0.779371\pi\)
−0.769253 + 0.638944i \(0.779371\pi\)
\(762\) 0 0
\(763\) 26623.4 1.26321
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 30506.2 1.43613
\(768\) 0 0
\(769\) −6530.51 −0.306237 −0.153119 0.988208i \(-0.548932\pi\)
−0.153119 + 0.988208i \(0.548932\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 8952.60 0.416562 0.208281 0.978069i \(-0.433213\pi\)
0.208281 + 0.978069i \(0.433213\pi\)
\(774\) 0 0
\(775\) 3106.86 0.144002
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −56803.2 −2.61256
\(780\) 0 0
\(781\) −9543.75 −0.437263
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −8929.93 −0.406016
\(786\) 0 0
\(787\) 15275.5 0.691886 0.345943 0.938256i \(-0.387559\pi\)
0.345943 + 0.938256i \(0.387559\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 12974.5 0.583211
\(792\) 0 0
\(793\) −32412.1 −1.45143
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −42475.4 −1.88777 −0.943887 0.330267i \(-0.892861\pi\)
−0.943887 + 0.330267i \(0.892861\pi\)
\(798\) 0 0
\(799\) 14960.5 0.662408
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 998.197 0.0438675
\(804\) 0 0
\(805\) −4577.07 −0.200398
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 39893.7 1.73373 0.866864 0.498544i \(-0.166132\pi\)
0.866864 + 0.498544i \(0.166132\pi\)
\(810\) 0 0
\(811\) 8645.69 0.374342 0.187171 0.982327i \(-0.440068\pi\)
0.187171 + 0.982327i \(0.440068\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 1981.18 0.0851508
\(816\) 0 0
\(817\) 5425.14 0.232315
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 42123.4 1.79064 0.895320 0.445424i \(-0.146947\pi\)
0.895320 + 0.445424i \(0.146947\pi\)
\(822\) 0 0
\(823\) −17950.5 −0.760287 −0.380143 0.924928i \(-0.624125\pi\)
−0.380143 + 0.924928i \(0.624125\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 19430.2 0.816994 0.408497 0.912760i \(-0.366053\pi\)
0.408497 + 0.912760i \(0.366053\pi\)
\(828\) 0 0
\(829\) −23552.0 −0.986724 −0.493362 0.869824i \(-0.664232\pi\)
−0.493362 + 0.869824i \(0.664232\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −16378.8 −0.681261
\(834\) 0 0
\(835\) 8747.42 0.362535
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 15526.2 0.638883 0.319442 0.947606i \(-0.396505\pi\)
0.319442 + 0.947606i \(0.396505\pi\)
\(840\) 0 0
\(841\) −23282.6 −0.954635
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −48.0977 −0.00195812
\(846\) 0 0
\(847\) 31341.2 1.27142
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −16196.4 −0.652417
\(852\) 0 0
\(853\) −6582.11 −0.264205 −0.132103 0.991236i \(-0.542173\pi\)
−0.132103 + 0.991236i \(0.542173\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −41261.8 −1.64466 −0.822332 0.569009i \(-0.807327\pi\)
−0.822332 + 0.569009i \(0.807327\pi\)
\(858\) 0 0
\(859\) 2460.09 0.0977149 0.0488575 0.998806i \(-0.484442\pi\)
0.0488575 + 0.998806i \(0.484442\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 38478.8 1.51777 0.758884 0.651226i \(-0.225745\pi\)
0.758884 + 0.651226i \(0.225745\pi\)
\(864\) 0 0
\(865\) 14994.8 0.589408
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −3607.95 −0.140842
\(870\) 0 0
\(871\) −562.675 −0.0218892
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −3098.75 −0.119722
\(876\) 0 0
\(877\) 28139.7 1.08348 0.541739 0.840547i \(-0.317766\pi\)
0.541739 + 0.840547i \(0.317766\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −14885.8 −0.569257 −0.284629 0.958638i \(-0.591870\pi\)
−0.284629 + 0.958638i \(0.591870\pi\)
\(882\) 0 0
\(883\) 22144.8 0.843979 0.421989 0.906601i \(-0.361332\pi\)
0.421989 + 0.906601i \(0.361332\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 24626.1 0.932202 0.466101 0.884732i \(-0.345658\pi\)
0.466101 + 0.884732i \(0.345658\pi\)
\(888\) 0 0
\(889\) −2844.14 −0.107300
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −27730.1 −1.03914
\(894\) 0 0
\(895\) 3413.75 0.127496
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −4133.69 −0.153355
\(900\) 0 0
\(901\) −19325.9 −0.714583
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 296.972 0.0109079
\(906\) 0 0
\(907\) 18461.8 0.675871 0.337935 0.941169i \(-0.390271\pi\)
0.337935 + 0.941169i \(0.390271\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −44797.5 −1.62921 −0.814603 0.580018i \(-0.803045\pi\)
−0.814603 + 0.580018i \(0.803045\pi\)
\(912\) 0 0
\(913\) −3501.05 −0.126909
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 12372.0 0.445540
\(918\) 0 0
\(919\) 46730.6 1.67737 0.838684 0.544618i \(-0.183325\pi\)
0.838684 + 0.544618i \(0.183325\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −54640.7 −1.94856
\(924\) 0 0
\(925\) −10965.2 −0.389767
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −8092.99 −0.285815 −0.142908 0.989736i \(-0.545645\pi\)
−0.142908 + 0.989736i \(0.545645\pi\)
\(930\) 0 0
\(931\) 30359.0 1.06872
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 2463.64 0.0861706
\(936\) 0 0
\(937\) −40337.2 −1.40636 −0.703180 0.711012i \(-0.748237\pi\)
−0.703180 + 0.711012i \(0.748237\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 17800.7 0.616668 0.308334 0.951278i \(-0.400229\pi\)
0.308334 + 0.951278i \(0.400229\pi\)
\(942\) 0 0
\(943\) −18761.4 −0.647886
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 3077.80 0.105612 0.0528062 0.998605i \(-0.483183\pi\)
0.0528062 + 0.998605i \(0.483183\pi\)
\(948\) 0 0
\(949\) 5714.97 0.195486
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −15297.9 −0.519986 −0.259993 0.965611i \(-0.583720\pi\)
−0.259993 + 0.965611i \(0.583720\pi\)
\(954\) 0 0
\(955\) 18090.6 0.612983
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −46788.2 −1.57546
\(960\) 0 0
\(961\) −14346.9 −0.481585
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 7681.85 0.256257
\(966\) 0 0
\(967\) 22338.3 0.742865 0.371433 0.928460i \(-0.378867\pi\)
0.371433 + 0.928460i \(0.378867\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −14686.2 −0.485378 −0.242689 0.970104i \(-0.578030\pi\)
−0.242689 + 0.970104i \(0.578030\pi\)
\(972\) 0 0
\(973\) −44247.6 −1.45788
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −31945.7 −1.04609 −0.523047 0.852304i \(-0.675205\pi\)
−0.523047 + 0.852304i \(0.675205\pi\)
\(978\) 0 0
\(979\) −12655.6 −0.413151
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 18534.7 0.601389 0.300694 0.953721i \(-0.402782\pi\)
0.300694 + 0.953721i \(0.402782\pi\)
\(984\) 0 0
\(985\) −682.354 −0.0220727
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 1791.86 0.0576116
\(990\) 0 0
\(991\) 31869.1 1.02155 0.510775 0.859714i \(-0.329359\pi\)
0.510775 + 0.859714i \(0.329359\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 616.275 0.0196354
\(996\) 0 0
\(997\) 7832.72 0.248811 0.124406 0.992231i \(-0.460298\pi\)
0.124406 + 0.992231i \(0.460298\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2160.4.a.bp.1.1 3
3.2 odd 2 2160.4.a.bh.1.1 3
4.3 odd 2 1080.4.a.l.1.3 yes 3
12.11 even 2 1080.4.a.f.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1080.4.a.f.1.3 3 12.11 even 2
1080.4.a.l.1.3 yes 3 4.3 odd 2
2160.4.a.bh.1.1 3 3.2 odd 2
2160.4.a.bp.1.1 3 1.1 even 1 trivial