Properties

Label 2160.4.h.a
Level 21602160
Weight 44
Character orbit 2160.h
Analytic conductor 127.444127.444
Analytic rank 00
Dimension 44
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2160,4,Mod(431,2160)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2160, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2160.431");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 2160=24335 2160 = 2^{4} \cdot 3^{3} \cdot 5
Weight: k k == 4 4
Character orbit: [χ][\chi] == 2160.h (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 127.444125612127.444125612
Analytic rank: 00
Dimension: 44
Coefficient field: Q(ζ12)\Q(\zeta_{12})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4x2+1 x^{4} - x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a11]\Z[a_1, \ldots, a_{11}]
Coefficient ring index: 2232 2^{2}\cdot 3^{2}
Twist minimal: yes
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+5β1q5+4β2q7+7β3q1147q1321β1q1712β2q19+7β3q2325q25+123β1q29+5β2q3120β3q35+1046q97+O(q100) q + 5 \beta_1 q^{5} + 4 \beta_{2} q^{7} + 7 \beta_{3} q^{11} - 47 q^{13} - 21 \beta_1 q^{17} - 12 \beta_{2} q^{19} + 7 \beta_{3} q^{23} - 25 q^{25} + 123 \beta_1 q^{29} + 5 \beta_{2} q^{31} - 20 \beta_{3} q^{35}+ \cdots - 1046 q^{97}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q188q13100q25712q37356q49+2168q61+928q73+420q854184q97+O(q100) 4 q - 188 q^{13} - 100 q^{25} - 712 q^{37} - 356 q^{49} + 2168 q^{61} + 928 q^{73} + 420 q^{85} - 4184 q^{97}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring

β1\beta_{1}== ζ123 \zeta_{12}^{3} Copy content Toggle raw display
β2\beta_{2}== 6ζ1223 6\zeta_{12}^{2} - 3 Copy content Toggle raw display
β3\beta_{3}== 3ζ123+6ζ12 -3\zeta_{12}^{3} + 6\zeta_{12} Copy content Toggle raw display
ζ12\zeta_{12}== (β3+3β1)/6 ( \beta_{3} + 3\beta_1 ) / 6 Copy content Toggle raw display
ζ122\zeta_{12}^{2}== (β2+3)/6 ( \beta_{2} + 3 ) / 6 Copy content Toggle raw display
ζ123\zeta_{12}^{3}== β1 \beta_1 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/2160Z)×\left(\mathbb{Z}/2160\mathbb{Z}\right)^\times.

nn 271271 12971297 16211621 20812081
χ(n)\chi(n) 1-1 11 11 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
431.1
0.866025 0.500000i
−0.866025 0.500000i
−0.866025 + 0.500000i
0.866025 + 0.500000i
0 0 0 5.00000i 0 20.7846i 0 0 0
431.2 0 0 0 5.00000i 0 20.7846i 0 0 0
431.3 0 0 0 5.00000i 0 20.7846i 0 0 0
431.4 0 0 0 5.00000i 0 20.7846i 0 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
4.b odd 2 1 inner
12.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2160.4.h.a 4
3.b odd 2 1 inner 2160.4.h.a 4
4.b odd 2 1 inner 2160.4.h.a 4
12.b even 2 1 inner 2160.4.h.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2160.4.h.a 4 1.a even 1 1 trivial
2160.4.h.a 4 3.b odd 2 1 inner
2160.4.h.a 4 4.b odd 2 1 inner
2160.4.h.a 4 12.b even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T72+432 T_{7}^{2} + 432 acting on S4new(2160,[χ])S_{4}^{\mathrm{new}}(2160, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4 T^{4} Copy content Toggle raw display
33 T4 T^{4} Copy content Toggle raw display
55 (T2+25)2 (T^{2} + 25)^{2} Copy content Toggle raw display
77 (T2+432)2 (T^{2} + 432)^{2} Copy content Toggle raw display
1111 (T21323)2 (T^{2} - 1323)^{2} Copy content Toggle raw display
1313 (T+47)4 (T + 47)^{4} Copy content Toggle raw display
1717 (T2+441)2 (T^{2} + 441)^{2} Copy content Toggle raw display
1919 (T2+3888)2 (T^{2} + 3888)^{2} Copy content Toggle raw display
2323 (T21323)2 (T^{2} - 1323)^{2} Copy content Toggle raw display
2929 (T2+15129)2 (T^{2} + 15129)^{2} Copy content Toggle raw display
3131 (T2+675)2 (T^{2} + 675)^{2} Copy content Toggle raw display
3737 (T+178)4 (T + 178)^{4} Copy content Toggle raw display
4141 (T2+116964)2 (T^{2} + 116964)^{2} Copy content Toggle raw display
4343 (T2+54675)2 (T^{2} + 54675)^{2} Copy content Toggle raw display
4747 (T293987)2 (T^{2} - 93987)^{2} Copy content Toggle raw display
5353 (T2+171396)2 (T^{2} + 171396)^{2} Copy content Toggle raw display
5959 (T2199692)2 (T^{2} - 199692)^{2} Copy content Toggle raw display
6161 (T542)4 (T - 542)^{4} Copy content Toggle raw display
6767 (T2+24300)2 (T^{2} + 24300)^{2} Copy content Toggle raw display
7171 (T2726192)2 (T^{2} - 726192)^{2} Copy content Toggle raw display
7373 (T232)4 (T - 232)^{4} Copy content Toggle raw display
7979 (T2+121203)2 (T^{2} + 121203)^{2} Copy content Toggle raw display
8383 (T2164268)2 (T^{2} - 164268)^{2} Copy content Toggle raw display
8989 (T2+1838736)2 (T^{2} + 1838736)^{2} Copy content Toggle raw display
9797 (T+1046)4 (T + 1046)^{4} Copy content Toggle raw display
show more
show less