Properties

Label 2175.1.h.c.1826.1
Level 21752175
Weight 11
Character 2175.1826
Self dual yes
Analytic conductor 1.0851.085
Analytic rank 00
Dimension 33
Projective image D9D_{9}
CM discriminant -87
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2175,1,Mod(1826,2175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2175, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2175.1826");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 2175=35229 2175 = 3 \cdot 5^{2} \cdot 29
Weight: k k == 1 1
Character orbit: [χ][\chi] == 2175.h (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 1.085466402481.08546640248
Analytic rank: 00
Dimension: 33
Coefficient field: Q(ζ18)+\Q(\zeta_{18})^+
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x33x1 x^{3} - 3x - 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D9D_{9}
Projective field: Galois closure of 9.1.895152515625.1

Embedding invariants

Embedding label 1826.1
Root 0.347296-0.347296 of defining polynomial
Character χ\chi == 2175.1826

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q1.53209q21.00000q3+1.34730q4+1.53209q60.347296q70.532089q8+1.00000q91.87939q111.34730q121.53209q13+0.532089q140.532089q16+1.87939q171.53209q18+0.347296q21+2.87939q22+0.532089q24+2.34730q261.00000q270.467911q28+1.00000q29+1.34730q32+1.87939q332.87939q34+1.34730q36+1.53209q391.00000q410.532089q422.53209q440.347296q47+0.532089q480.879385q491.87939q512.06418q52+1.53209q54+0.184793q561.53209q580.347296q631.53209q642.87939q66+1.87939q67+2.53209q680.532089q72+0.652704q772.34730q78+1.00000q81+1.53209q82+0.467911q841.00000q87+1.00000q88+1.53209q89+0.532089q91+0.532089q941.34730q96+1.34730q981.87939q99+O(q100)q-1.53209 q^{2} -1.00000 q^{3} +1.34730 q^{4} +1.53209 q^{6} -0.347296 q^{7} -0.532089 q^{8} +1.00000 q^{9} -1.87939 q^{11} -1.34730 q^{12} -1.53209 q^{13} +0.532089 q^{14} -0.532089 q^{16} +1.87939 q^{17} -1.53209 q^{18} +0.347296 q^{21} +2.87939 q^{22} +0.532089 q^{24} +2.34730 q^{26} -1.00000 q^{27} -0.467911 q^{28} +1.00000 q^{29} +1.34730 q^{32} +1.87939 q^{33} -2.87939 q^{34} +1.34730 q^{36} +1.53209 q^{39} -1.00000 q^{41} -0.532089 q^{42} -2.53209 q^{44} -0.347296 q^{47} +0.532089 q^{48} -0.879385 q^{49} -1.87939 q^{51} -2.06418 q^{52} +1.53209 q^{54} +0.184793 q^{56} -1.53209 q^{58} -0.347296 q^{63} -1.53209 q^{64} -2.87939 q^{66} +1.87939 q^{67} +2.53209 q^{68} -0.532089 q^{72} +0.652704 q^{77} -2.34730 q^{78} +1.00000 q^{81} +1.53209 q^{82} +0.467911 q^{84} -1.00000 q^{87} +1.00000 q^{88} +1.53209 q^{89} +0.532089 q^{91} +0.532089 q^{94} -1.34730 q^{96} +1.34730 q^{98} -1.87939 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 3q3q3+3q4+3q8+3q93q123q14+3q16+3q223q24+6q263q276q28+3q29+3q323q34+3q363q41+3q423q44++3q98+O(q100) 3 q - 3 q^{3} + 3 q^{4} + 3 q^{8} + 3 q^{9} - 3 q^{12} - 3 q^{14} + 3 q^{16} + 3 q^{22} - 3 q^{24} + 6 q^{26} - 3 q^{27} - 6 q^{28} + 3 q^{29} + 3 q^{32} - 3 q^{34} + 3 q^{36} - 3 q^{41} + 3 q^{42} - 3 q^{44}+ \cdots + 3 q^{98}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/2175Z)×\left(\mathbb{Z}/2175\mathbb{Z}\right)^\times.

nn 901901 14511451 20022002
χ(n)\chi(n) 1-1 1-1 11

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −1.53209 −1.53209 −0.766044 0.642788i 0.777778π-0.777778\pi
−0.766044 + 0.642788i 0.777778π0.777778\pi
33 −1.00000 −1.00000
44 1.34730 1.34730
55 0 0
66 1.53209 1.53209
77 −0.347296 −0.347296 −0.173648 0.984808i 0.555556π-0.555556\pi
−0.173648 + 0.984808i 0.555556π0.555556\pi
88 −0.532089 −0.532089
99 1.00000 1.00000
1010 0 0
1111 −1.87939 −1.87939 −0.939693 0.342020i 0.888889π-0.888889\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
1212 −1.34730 −1.34730
1313 −1.53209 −1.53209 −0.766044 0.642788i 0.777778π-0.777778\pi
−0.766044 + 0.642788i 0.777778π0.777778\pi
1414 0.532089 0.532089
1515 0 0
1616 −0.532089 −0.532089
1717 1.87939 1.87939 0.939693 0.342020i 0.111111π-0.111111\pi
0.939693 + 0.342020i 0.111111π0.111111\pi
1818 −1.53209 −1.53209
1919 0 0 1.00000 00
−1.00000 π\pi
2020 0 0
2121 0.347296 0.347296
2222 2.87939 2.87939
2323 0 0 1.00000 00
−1.00000 π\pi
2424 0.532089 0.532089
2525 0 0
2626 2.34730 2.34730
2727 −1.00000 −1.00000
2828 −0.467911 −0.467911
2929 1.00000 1.00000
3030 0 0
3131 0 0 1.00000 00
−1.00000 π\pi
3232 1.34730 1.34730
3333 1.87939 1.87939
3434 −2.87939 −2.87939
3535 0 0
3636 1.34730 1.34730
3737 0 0 1.00000 00
−1.00000 π\pi
3838 0 0
3939 1.53209 1.53209
4040 0 0
4141 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
4242 −0.532089 −0.532089
4343 0 0 1.00000 00
−1.00000 π\pi
4444 −2.53209 −2.53209
4545 0 0
4646 0 0
4747 −0.347296 −0.347296 −0.173648 0.984808i 0.555556π-0.555556\pi
−0.173648 + 0.984808i 0.555556π0.555556\pi
4848 0.532089 0.532089
4949 −0.879385 −0.879385
5050 0 0
5151 −1.87939 −1.87939
5252 −2.06418 −2.06418
5353 0 0 1.00000 00
−1.00000 π\pi
5454 1.53209 1.53209
5555 0 0
5656 0.184793 0.184793
5757 0 0
5858 −1.53209 −1.53209
5959 0 0 1.00000 00
−1.00000 π\pi
6060 0 0
6161 0 0 1.00000 00
−1.00000 π\pi
6262 0 0
6363 −0.347296 −0.347296
6464 −1.53209 −1.53209
6565 0 0
6666 −2.87939 −2.87939
6767 1.87939 1.87939 0.939693 0.342020i 0.111111π-0.111111\pi
0.939693 + 0.342020i 0.111111π0.111111\pi
6868 2.53209 2.53209
6969 0 0
7070 0 0
7171 0 0 1.00000 00
−1.00000 π\pi
7272 −0.532089 −0.532089
7373 0 0 1.00000 00
−1.00000 π\pi
7474 0 0
7575 0 0
7676 0 0
7777 0.652704 0.652704
7878 −2.34730 −2.34730
7979 0 0 1.00000 00
−1.00000 π\pi
8080 0 0
8181 1.00000 1.00000
8282 1.53209 1.53209
8383 0 0 1.00000 00
−1.00000 π\pi
8484 0.467911 0.467911
8585 0 0
8686 0 0
8787 −1.00000 −1.00000
8888 1.00000 1.00000
8989 1.53209 1.53209 0.766044 0.642788i 0.222222π-0.222222\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
9090 0 0
9191 0.532089 0.532089
9292 0 0
9393 0 0
9494 0.532089 0.532089
9595 0 0
9696 −1.34730 −1.34730
9797 0 0 1.00000 00
−1.00000 π\pi
9898 1.34730 1.34730
9999 −1.87939 −1.87939
100100 0 0
101101 1.53209 1.53209 0.766044 0.642788i 0.222222π-0.222222\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
102102 2.87939 2.87939
103103 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
104104 0.815207 0.815207
105105 0 0
106106 0 0
107107 0 0 1.00000 00
−1.00000 π\pi
108108 −1.34730 −1.34730
109109 1.53209 1.53209 0.766044 0.642788i 0.222222π-0.222222\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
110110 0 0
111111 0 0
112112 0.184793 0.184793
113113 −0.347296 −0.347296 −0.173648 0.984808i 0.555556π-0.555556\pi
−0.173648 + 0.984808i 0.555556π0.555556\pi
114114 0 0
115115 0 0
116116 1.34730 1.34730
117117 −1.53209 −1.53209
118118 0 0
119119 −0.652704 −0.652704
120120 0 0
121121 2.53209 2.53209
122122 0 0
123123 1.00000 1.00000
124124 0 0
125125 0 0
126126 0.532089 0.532089
127127 0 0 1.00000 00
−1.00000 π\pi
128128 1.00000 1.00000
129129 0 0
130130 0 0
131131 0.347296 0.347296 0.173648 0.984808i 0.444444π-0.444444\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
132132 2.53209 2.53209
133133 0 0
134134 −2.87939 −2.87939
135135 0 0
136136 −1.00000 −1.00000
137137 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
138138 0 0
139139 0.347296 0.347296 0.173648 0.984808i 0.444444π-0.444444\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
140140 0 0
141141 0.347296 0.347296
142142 0 0
143143 2.87939 2.87939
144144 −0.532089 −0.532089
145145 0 0
146146 0 0
147147 0.879385 0.879385
148148 0 0
149149 0 0 1.00000 00
−1.00000 π\pi
150150 0 0
151151 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
152152 0 0
153153 1.87939 1.87939
154154 −1.00000 −1.00000
155155 0 0
156156 2.06418 2.06418
157157 0 0 1.00000 00
−1.00000 π\pi
158158 0 0
159159 0 0
160160 0 0
161161 0 0
162162 −1.53209 −1.53209
163163 0 0 1.00000 00
−1.00000 π\pi
164164 −1.34730 −1.34730
165165 0 0
166166 0 0
167167 0 0 1.00000 00
−1.00000 π\pi
168168 −0.184793 −0.184793
169169 1.34730 1.34730
170170 0 0
171171 0 0
172172 0 0
173173 0 0 1.00000 00
−1.00000 π\pi
174174 1.53209 1.53209
175175 0 0
176176 1.00000 1.00000
177177 0 0
178178 −2.34730 −2.34730
179179 0 0 1.00000 00
−1.00000 π\pi
180180 0 0
181181 −1.87939 −1.87939 −0.939693 0.342020i 0.888889π-0.888889\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
182182 −0.815207 −0.815207
183183 0 0
184184 0 0
185185 0 0
186186 0 0
187187 −3.53209 −3.53209
188188 −0.467911 −0.467911
189189 0.347296 0.347296
190190 0 0
191191 2.00000 2.00000 1.00000 00
1.00000 00
192192 1.53209 1.53209
193193 0 0 1.00000 00
−1.00000 π\pi
194194 0 0
195195 0 0
196196 −1.18479 −1.18479
197197 0 0 1.00000 00
−1.00000 π\pi
198198 2.87939 2.87939
199199 1.53209 1.53209 0.766044 0.642788i 0.222222π-0.222222\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
200200 0 0
201201 −1.87939 −1.87939
202202 −2.34730 −2.34730
203203 −0.347296 −0.347296
204204 −2.53209 −2.53209
205205 0 0
206206 −1.53209 −1.53209
207207 0 0
208208 0.815207 0.815207
209209 0 0
210210 0 0
211211 0 0 1.00000 00
−1.00000 π\pi
212212 0 0
213213 0 0
214214 0 0
215215 0 0
216216 0.532089 0.532089
217217 0 0
218218 −2.34730 −2.34730
219219 0 0
220220 0 0
221221 −2.87939 −2.87939
222222 0 0
223223 1.87939 1.87939 0.939693 0.342020i 0.111111π-0.111111\pi
0.939693 + 0.342020i 0.111111π0.111111\pi
224224 −0.467911 −0.467911
225225 0 0
226226 0.532089 0.532089
227227 0 0 1.00000 00
−1.00000 π\pi
228228 0 0
229229 0 0 1.00000 00
−1.00000 π\pi
230230 0 0
231231 −0.652704 −0.652704
232232 −0.532089 −0.532089
233233 0 0 1.00000 00
−1.00000 π\pi
234234 2.34730 2.34730
235235 0 0
236236 0 0
237237 0 0
238238 1.00000 1.00000
239239 0 0 1.00000 00
−1.00000 π\pi
240240 0 0
241241 0.347296 0.347296 0.173648 0.984808i 0.444444π-0.444444\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
242242 −3.87939 −3.87939
243243 −1.00000 −1.00000
244244 0 0
245245 0 0
246246 −1.53209 −1.53209
247247 0 0
248248 0 0
249249 0 0
250250 0 0
251251 1.53209 1.53209 0.766044 0.642788i 0.222222π-0.222222\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
252252 −0.467911 −0.467911
253253 0 0
254254 0 0
255255 0 0
256256 0 0
257257 0 0 1.00000 00
−1.00000 π\pi
258258 0 0
259259 0 0
260260 0 0
261261 1.00000 1.00000
262262 −0.532089 −0.532089
263263 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
264264 −1.00000 −1.00000
265265 0 0
266266 0 0
267267 −1.53209 −1.53209
268268 2.53209 2.53209
269269 −1.87939 −1.87939 −0.939693 0.342020i 0.888889π-0.888889\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
270270 0 0
271271 0 0 1.00000 00
−1.00000 π\pi
272272 −1.00000 −1.00000
273273 −0.532089 −0.532089
274274 −1.53209 −1.53209
275275 0 0
276276 0 0
277277 1.87939 1.87939 0.939693 0.342020i 0.111111π-0.111111\pi
0.939693 + 0.342020i 0.111111π0.111111\pi
278278 −0.532089 −0.532089
279279 0 0
280280 0 0
281281 0 0 1.00000 00
−1.00000 π\pi
282282 −0.532089 −0.532089
283283 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
284284 0 0
285285 0 0
286286 −4.41147 −4.41147
287287 0.347296 0.347296
288288 1.34730 1.34730
289289 2.53209 2.53209
290290 0 0
291291 0 0
292292 0 0
293293 −1.53209 −1.53209 −0.766044 0.642788i 0.777778π-0.777778\pi
−0.766044 + 0.642788i 0.777778π0.777778\pi
294294 −1.34730 −1.34730
295295 0 0
296296 0 0
297297 1.87939 1.87939
298298 0 0
299299 0 0
300300 0 0
301301 0 0
302302 1.53209 1.53209
303303 −1.53209 −1.53209
304304 0 0
305305 0 0
306306 −2.87939 −2.87939
307307 0 0 1.00000 00
−1.00000 π\pi
308308 0.879385 0.879385
309309 −1.00000 −1.00000
310310 0 0
311311 0.347296 0.347296 0.173648 0.984808i 0.444444π-0.444444\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
312312 −0.815207 −0.815207
313313 −0.347296 −0.347296 −0.173648 0.984808i 0.555556π-0.555556\pi
−0.173648 + 0.984808i 0.555556π0.555556\pi
314314 0 0
315315 0 0
316316 0 0
317317 −1.53209 −1.53209 −0.766044 0.642788i 0.777778π-0.777778\pi
−0.766044 + 0.642788i 0.777778π0.777778\pi
318318 0 0
319319 −1.87939 −1.87939
320320 0 0
321321 0 0
322322 0 0
323323 0 0
324324 1.34730 1.34730
325325 0 0
326326 0 0
327327 −1.53209 −1.53209
328328 0.532089 0.532089
329329 0.120615 0.120615
330330 0 0
331331 0 0 1.00000 00
−1.00000 π\pi
332332 0 0
333333 0 0
334334 0 0
335335 0 0
336336 −0.184793 −0.184793
337337 0 0 1.00000 00
−1.00000 π\pi
338338 −2.06418 −2.06418
339339 0.347296 0.347296
340340 0 0
341341 0 0
342342 0 0
343343 0.652704 0.652704
344344 0 0
345345 0 0
346346 0 0
347347 0 0 1.00000 00
−1.00000 π\pi
348348 −1.34730 −1.34730
349349 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
350350 0 0
351351 1.53209 1.53209
352352 −2.53209 −2.53209
353353 0 0 1.00000 00
−1.00000 π\pi
354354 0 0
355355 0 0
356356 2.06418 2.06418
357357 0.652704 0.652704
358358 0 0
359359 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
360360 0 0
361361 1.00000 1.00000
362362 2.87939 2.87939
363363 −2.53209 −2.53209
364364 0.716881 0.716881
365365 0 0
366366 0 0
367367 0 0 1.00000 00
−1.00000 π\pi
368368 0 0
369369 −1.00000 −1.00000
370370 0 0
371371 0 0
372372 0 0
373373 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
374374 5.41147 5.41147
375375 0 0
376376 0.184793 0.184793
377377 −1.53209 −1.53209
378378 −0.532089 −0.532089
379379 0 0 1.00000 00
−1.00000 π\pi
380380 0 0
381381 0 0
382382 −3.06418 −3.06418
383383 0 0 1.00000 00
−1.00000 π\pi
384384 −1.00000 −1.00000
385385 0 0
386386 0 0
387387 0 0
388388 0 0
389389 1.53209 1.53209 0.766044 0.642788i 0.222222π-0.222222\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
390390 0 0
391391 0 0
392392 0.467911 0.467911
393393 −0.347296 −0.347296
394394 0 0
395395 0 0
396396 −2.53209 −2.53209
397397 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
398398 −2.34730 −2.34730
399399 0 0
400400 0 0
401401 0 0 1.00000 00
−1.00000 π\pi
402402 2.87939 2.87939
403403 0 0
404404 2.06418 2.06418
405405 0 0
406406 0.532089 0.532089
407407 0 0
408408 1.00000 1.00000
409409 0 0 1.00000 00
−1.00000 π\pi
410410 0 0
411411 −1.00000 −1.00000
412412 1.34730 1.34730
413413 0 0
414414 0 0
415415 0 0
416416 −2.06418 −2.06418
417417 −0.347296 −0.347296
418418 0 0
419419 0 0 1.00000 00
−1.00000 π\pi
420420 0 0
421421 0 0 1.00000 00
−1.00000 π\pi
422422 0 0
423423 −0.347296 −0.347296
424424 0 0
425425 0 0
426426 0 0
427427 0 0
428428 0 0
429429 −2.87939 −2.87939
430430 0 0
431431 0 0 1.00000 00
−1.00000 π\pi
432432 0.532089 0.532089
433433 0 0 1.00000 00
−1.00000 π\pi
434434 0 0
435435 0 0
436436 2.06418 2.06418
437437 0 0
438438 0 0
439439 −1.87939 −1.87939 −0.939693 0.342020i 0.888889π-0.888889\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
440440 0 0
441441 −0.879385 −0.879385
442442 4.41147 4.41147
443443 −1.53209 −1.53209 −0.766044 0.642788i 0.777778π-0.777778\pi
−0.766044 + 0.642788i 0.777778π0.777778\pi
444444 0 0
445445 0 0
446446 −2.87939 −2.87939
447447 0 0
448448 0.532089 0.532089
449449 0.347296 0.347296 0.173648 0.984808i 0.444444π-0.444444\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
450450 0 0
451451 1.87939 1.87939
452452 −0.467911 −0.467911
453453 1.00000 1.00000
454454 0 0
455455 0 0
456456 0 0
457457 −0.347296 −0.347296 −0.173648 0.984808i 0.555556π-0.555556\pi
−0.173648 + 0.984808i 0.555556π0.555556\pi
458458 0 0
459459 −1.87939 −1.87939
460460 0 0
461461 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
462462 1.00000 1.00000
463463 −1.53209 −1.53209 −0.766044 0.642788i 0.777778π-0.777778\pi
−0.766044 + 0.642788i 0.777778π0.777778\pi
464464 −0.532089 −0.532089
465465 0 0
466466 0 0
467467 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
468468 −2.06418 −2.06418
469469 −0.652704 −0.652704
470470 0 0
471471 0 0
472472 0 0
473473 0 0
474474 0 0
475475 0 0
476476 −0.879385 −0.879385
477477 0 0
478478 0 0
479479 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
480480 0 0
481481 0 0
482482 −0.532089 −0.532089
483483 0 0
484484 3.41147 3.41147
485485 0 0
486486 1.53209 1.53209
487487 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
488488 0 0
489489 0 0
490490 0 0
491491 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
492492 1.34730 1.34730
493493 1.87939 1.87939
494494 0 0
495495 0 0
496496 0 0
497497 0 0
498498 0 0
499499 1.53209 1.53209 0.766044 0.642788i 0.222222π-0.222222\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
500500 0 0
501501 0 0
502502 −2.34730 −2.34730
503503 −1.53209 −1.53209 −0.766044 0.642788i 0.777778π-0.777778\pi
−0.766044 + 0.642788i 0.777778π0.777778\pi
504504 0.184793 0.184793
505505 0 0
506506 0 0
507507 −1.34730 −1.34730
508508 0 0
509509 0 0 1.00000 00
−1.00000 π\pi
510510 0 0
511511 0 0
512512 −1.00000 −1.00000
513513 0 0
514514 0 0
515515 0 0
516516 0 0
517517 0.652704 0.652704
518518 0 0
519519 0 0
520520 0 0
521521 0 0 1.00000 00
−1.00000 π\pi
522522 −1.53209 −1.53209
523523 −1.53209 −1.53209 −0.766044 0.642788i 0.777778π-0.777778\pi
−0.766044 + 0.642788i 0.777778π0.777778\pi
524524 0.467911 0.467911
525525 0 0
526526 −1.53209 −1.53209
527527 0 0
528528 −1.00000 −1.00000
529529 1.00000 1.00000
530530 0 0
531531 0 0
532532 0 0
533533 1.53209 1.53209
534534 2.34730 2.34730
535535 0 0
536536 −1.00000 −1.00000
537537 0 0
538538 2.87939 2.87939
539539 1.65270 1.65270
540540 0 0
541541 0 0 1.00000 00
−1.00000 π\pi
542542 0 0
543543 1.87939 1.87939
544544 2.53209 2.53209
545545 0 0
546546 0.815207 0.815207
547547 1.87939 1.87939 0.939693 0.342020i 0.111111π-0.111111\pi
0.939693 + 0.342020i 0.111111π0.111111\pi
548548 1.34730 1.34730
549549 0 0
550550 0 0
551551 0 0
552552 0 0
553553 0 0
554554 −2.87939 −2.87939
555555 0 0
556556 0.467911 0.467911
557557 0 0 1.00000 00
−1.00000 π\pi
558558 0 0
559559 0 0
560560 0 0
561561 3.53209 3.53209
562562 0 0
563563 1.87939 1.87939 0.939693 0.342020i 0.111111π-0.111111\pi
0.939693 + 0.342020i 0.111111π0.111111\pi
564564 0.467911 0.467911
565565 0 0
566566 −1.53209 −1.53209
567567 −0.347296 −0.347296
568568 0 0
569569 0.347296 0.347296 0.173648 0.984808i 0.444444π-0.444444\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
570570 0 0
571571 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
572572 3.87939 3.87939
573573 −2.00000 −2.00000
574574 −0.532089 −0.532089
575575 0 0
576576 −1.53209 −1.53209
577577 0 0 1.00000 00
−1.00000 π\pi
578578 −3.87939 −3.87939
579579 0 0
580580 0 0
581581 0 0
582582 0 0
583583 0 0
584584 0 0
585585 0 0
586586 2.34730 2.34730
587587 0 0 1.00000 00
−1.00000 π\pi
588588 1.18479 1.18479
589589 0 0
590590 0 0
591591 0 0
592592 0 0
593593 0 0 1.00000 00
−1.00000 π\pi
594594 −2.87939 −2.87939
595595 0 0
596596 0 0
597597 −1.53209 −1.53209
598598 0 0
599599 0.347296 0.347296 0.173648 0.984808i 0.444444π-0.444444\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
600600 0 0
601601 0 0 1.00000 00
−1.00000 π\pi
602602 0 0
603603 1.87939 1.87939
604604 −1.34730 −1.34730
605605 0 0
606606 2.34730 2.34730
607607 0 0 1.00000 00
−1.00000 π\pi
608608 0 0
609609 0.347296 0.347296
610610 0 0
611611 0.532089 0.532089
612612 2.53209 2.53209
613613 −0.347296 −0.347296 −0.173648 0.984808i 0.555556π-0.555556\pi
−0.173648 + 0.984808i 0.555556π0.555556\pi
614614 0 0
615615 0 0
616616 −0.347296 −0.347296
617617 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
618618 1.53209 1.53209
619619 0 0 1.00000 00
−1.00000 π\pi
620620 0 0
621621 0 0
622622 −0.532089 −0.532089
623623 −0.532089 −0.532089
624624 −0.815207 −0.815207
625625 0 0
626626 0.532089 0.532089
627627 0 0
628628 0 0
629629 0 0
630630 0 0
631631 0.347296 0.347296 0.173648 0.984808i 0.444444π-0.444444\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
632632 0 0
633633 0 0
634634 2.34730 2.34730
635635 0 0
636636 0 0
637637 1.34730 1.34730
638638 2.87939 2.87939
639639 0 0
640640 0 0
641641 0.347296 0.347296 0.173648 0.984808i 0.444444π-0.444444\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
642642 0 0
643643 1.87939 1.87939 0.939693 0.342020i 0.111111π-0.111111\pi
0.939693 + 0.342020i 0.111111π0.111111\pi
644644 0 0
645645 0 0
646646 0 0
647647 0 0 1.00000 00
−1.00000 π\pi
648648 −0.532089 −0.532089
649649 0 0
650650 0 0
651651 0 0
652652 0 0
653653 1.87939 1.87939 0.939693 0.342020i 0.111111π-0.111111\pi
0.939693 + 0.342020i 0.111111π0.111111\pi
654654 2.34730 2.34730
655655 0 0
656656 0.532089 0.532089
657657 0 0
658658 −0.184793 −0.184793
659659 0.347296 0.347296 0.173648 0.984808i 0.444444π-0.444444\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
660660 0 0
661661 1.53209 1.53209 0.766044 0.642788i 0.222222π-0.222222\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
662662 0 0
663663 2.87939 2.87939
664664 0 0
665665 0 0
666666 0 0
667667 0 0
668668 0 0
669669 −1.87939 −1.87939
670670 0 0
671671 0 0
672672 0.467911 0.467911
673673 −1.53209 −1.53209 −0.766044 0.642788i 0.777778π-0.777778\pi
−0.766044 + 0.642788i 0.777778π0.777778\pi
674674 0 0
675675 0 0
676676 1.81521 1.81521
677677 1.87939 1.87939 0.939693 0.342020i 0.111111π-0.111111\pi
0.939693 + 0.342020i 0.111111π0.111111\pi
678678 −0.532089 −0.532089
679679 0 0
680680 0 0
681681 0 0
682682 0 0
683683 0 0 1.00000 00
−1.00000 π\pi
684684 0 0
685685 0 0
686686 −1.00000 −1.00000
687687 0 0
688688 0 0
689689 0 0
690690 0 0
691691 −1.87939 −1.87939 −0.939693 0.342020i 0.888889π-0.888889\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
692692 0 0
693693 0.652704 0.652704
694694 0 0
695695 0 0
696696 0.532089 0.532089
697697 −1.87939 −1.87939
698698 1.53209 1.53209
699699 0 0
700700 0 0
701701 0 0 1.00000 00
−1.00000 π\pi
702702 −2.34730 −2.34730
703703 0 0
704704 2.87939 2.87939
705705 0 0
706706 0 0
707707 −0.532089 −0.532089
708708 0 0
709709 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
710710 0 0
711711 0 0
712712 −0.815207 −0.815207
713713 0 0
714714 −1.00000 −1.00000
715715 0 0
716716 0 0
717717 0 0
718718 1.53209 1.53209
719719 0 0 1.00000 00
−1.00000 π\pi
720720 0 0
721721 −0.347296 −0.347296
722722 −1.53209 −1.53209
723723 −0.347296 −0.347296
724724 −2.53209 −2.53209
725725 0 0
726726 3.87939 3.87939
727727 0 0 1.00000 00
−1.00000 π\pi
728728 −0.283119 −0.283119
729729 1.00000 1.00000
730730 0 0
731731 0 0
732732 0 0
733733 0 0 1.00000 00
−1.00000 π\pi
734734 0 0
735735 0 0
736736 0 0
737737 −3.53209 −3.53209
738738 1.53209 1.53209
739739 0 0 1.00000 00
−1.00000 π\pi
740740 0 0
741741 0 0
742742 0 0
743743 −0.347296 −0.347296 −0.173648 0.984808i 0.555556π-0.555556\pi
−0.173648 + 0.984808i 0.555556π0.555556\pi
744744 0 0
745745 0 0
746746 3.06418 3.06418
747747 0 0
748748 −4.75877 −4.75877
749749 0 0
750750 0 0
751751 0 0 1.00000 00
−1.00000 π\pi
752752 0.184793 0.184793
753753 −1.53209 −1.53209
754754 2.34730 2.34730
755755 0 0
756756 0.467911 0.467911
757757 0 0 1.00000 00
−1.00000 π\pi
758758 0 0
759759 0 0
760760 0 0
761761 0 0 1.00000 00
−1.00000 π\pi
762762 0 0
763763 −0.532089 −0.532089
764764 2.69459 2.69459
765765 0 0
766766 0 0
767767 0 0
768768 0 0
769769 0 0 1.00000 00
−1.00000 π\pi
770770 0 0
771771 0 0
772772 0 0
773773 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
774774 0 0
775775 0 0
776776 0 0
777777 0 0
778778 −2.34730 −2.34730
779779 0 0
780780 0 0
781781 0 0
782782 0 0
783783 −1.00000 −1.00000
784784 0.467911 0.467911
785785 0 0
786786 0.532089 0.532089
787787 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
788788 0 0
789789 −1.00000 −1.00000
790790 0 0
791791 0.120615 0.120615
792792 1.00000 1.00000
793793 0 0
794794 −1.53209 −1.53209
795795 0 0
796796 2.06418 2.06418
797797 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
798798 0 0
799799 −0.652704 −0.652704
800800 0 0
801801 1.53209 1.53209
802802 0 0
803803 0 0
804804 −2.53209 −2.53209
805805 0 0
806806 0 0
807807 1.87939 1.87939
808808 −0.815207 −0.815207
809809 −1.87939 −1.87939 −0.939693 0.342020i 0.888889π-0.888889\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
810810 0 0
811811 −1.87939 −1.87939 −0.939693 0.342020i 0.888889π-0.888889\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
812812 −0.467911 −0.467911
813813 0 0
814814 0 0
815815 0 0
816816 1.00000 1.00000
817817 0 0
818818 0 0
819819 0.532089 0.532089
820820 0 0
821821 0 0 1.00000 00
−1.00000 π\pi
822822 1.53209 1.53209
823823 0 0 1.00000 00
−1.00000 π\pi
824824 −0.532089 −0.532089
825825 0 0
826826 0 0
827827 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
828828 0 0
829829 0 0 1.00000 00
−1.00000 π\pi
830830 0 0
831831 −1.87939 −1.87939
832832 2.34730 2.34730
833833 −1.65270 −1.65270
834834 0.532089 0.532089
835835 0 0
836836 0 0
837837 0 0
838838 0 0
839839 −1.87939 −1.87939 −0.939693 0.342020i 0.888889π-0.888889\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
840840 0 0
841841 1.00000 1.00000
842842 0 0
843843 0 0
844844 0 0
845845 0 0
846846 0.532089 0.532089
847847 −0.879385 −0.879385
848848 0 0
849849 −1.00000 −1.00000
850850 0 0
851851 0 0
852852 0 0
853853 0 0 1.00000 00
−1.00000 π\pi
854854 0 0
855855 0 0
856856 0 0
857857 0 0 1.00000 00
−1.00000 π\pi
858858 4.41147 4.41147
859859 0 0 1.00000 00
−1.00000 π\pi
860860 0 0
861861 −0.347296 −0.347296
862862 0 0
863863 0 0 1.00000 00
−1.00000 π\pi
864864 −1.34730 −1.34730
865865 0 0
866866 0 0
867867 −2.53209 −2.53209
868868 0 0
869869 0 0
870870 0 0
871871 −2.87939 −2.87939
872872 −0.815207 −0.815207
873873 0 0
874874 0 0
875875 0 0
876876 0 0
877877 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
878878 2.87939 2.87939
879879 1.53209 1.53209
880880 0 0
881881 0.347296 0.347296 0.173648 0.984808i 0.444444π-0.444444\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
882882 1.34730 1.34730
883883 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
884884 −3.87939 −3.87939
885885 0 0
886886 2.34730 2.34730
887887 −0.347296 −0.347296 −0.173648 0.984808i 0.555556π-0.555556\pi
−0.173648 + 0.984808i 0.555556π0.555556\pi
888888 0 0
889889 0 0
890890 0 0
891891 −1.87939 −1.87939
892892 2.53209 2.53209
893893 0 0
894894 0 0
895895 0 0
896896 −0.347296 −0.347296
897897 0 0
898898 −0.532089 −0.532089
899899 0 0
900900 0 0
901901 0 0
902902 −2.87939 −2.87939
903903 0 0
904904 0.184793 0.184793
905905 0 0
906906 −1.53209 −1.53209
907907 0 0 1.00000 00
−1.00000 π\pi
908908 0 0
909909 1.53209 1.53209
910910 0 0
911911 1.53209 1.53209 0.766044 0.642788i 0.222222π-0.222222\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
912912 0 0
913913 0 0
914914 0.532089 0.532089
915915 0 0
916916 0 0
917917 −0.120615 −0.120615
918918 2.87939 2.87939
919919 1.53209 1.53209 0.766044 0.642788i 0.222222π-0.222222\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
920920 0 0
921921 0 0
922922 1.53209 1.53209
923923 0 0
924924 −0.879385 −0.879385
925925 0 0
926926 2.34730 2.34730
927927 1.00000 1.00000
928928 1.34730 1.34730
929929 0 0 1.00000 00
−1.00000 π\pi
930930 0 0
931931 0 0
932932 0 0
933933 −0.347296 −0.347296
934934 −1.53209 −1.53209
935935 0 0
936936 0.815207 0.815207
937937 −1.53209 −1.53209 −0.766044 0.642788i 0.777778π-0.777778\pi
−0.766044 + 0.642788i 0.777778π0.777778\pi
938938 1.00000 1.00000
939939 0.347296 0.347296
940940 0 0
941941 0 0 1.00000 00
−1.00000 π\pi
942942 0 0
943943 0 0
944944 0 0
945945 0 0
946946 0 0
947947 1.87939 1.87939 0.939693 0.342020i 0.111111π-0.111111\pi
0.939693 + 0.342020i 0.111111π0.111111\pi
948948 0 0
949949 0 0
950950 0 0
951951 1.53209 1.53209
952952 0.347296 0.347296
953953 0 0 1.00000 00
−1.00000 π\pi
954954 0 0
955955 0 0
956956 0 0
957957 1.87939 1.87939
958958 1.53209 1.53209
959959 −0.347296 −0.347296
960960 0 0
961961 1.00000 1.00000
962962 0 0
963963 0 0
964964 0.467911 0.467911
965965 0 0
966966 0 0
967967 0 0 1.00000 00
−1.00000 π\pi
968968 −1.34730 −1.34730
969969 0 0
970970 0 0
971971 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
972972 −1.34730 −1.34730
973973 −0.120615 −0.120615
974974 3.06418 3.06418
975975 0 0
976976 0 0
977977 0 0 1.00000 00
−1.00000 π\pi
978978 0 0
979979 −2.87939 −2.87939
980980 0 0
981981 1.53209 1.53209
982982 1.53209 1.53209
983983 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
984984 −0.532089 −0.532089
985985 0 0
986986 −2.87939 −2.87939
987987 −0.120615 −0.120615
988988 0 0
989989 0 0
990990 0 0
991991 1.53209 1.53209 0.766044 0.642788i 0.222222π-0.222222\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
992992 0 0
993993 0 0
994994 0 0
995995 0 0
996996 0 0
997997 0 0 1.00000 00
−1.00000 π\pi
998998 −2.34730 −2.34730
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2175.1.h.c.1826.1 3
3.2 odd 2 2175.1.h.f.1826.3 yes 3
5.2 odd 4 2175.1.b.d.2174.2 6
5.3 odd 4 2175.1.b.d.2174.5 6
5.4 even 2 2175.1.h.e.1826.3 yes 3
15.2 even 4 2175.1.b.c.2174.5 6
15.8 even 4 2175.1.b.c.2174.2 6
15.14 odd 2 2175.1.h.d.1826.1 yes 3
29.28 even 2 2175.1.h.f.1826.3 yes 3
87.86 odd 2 CM 2175.1.h.c.1826.1 3
145.28 odd 4 2175.1.b.c.2174.2 6
145.57 odd 4 2175.1.b.c.2174.5 6
145.144 even 2 2175.1.h.d.1826.1 yes 3
435.173 even 4 2175.1.b.d.2174.5 6
435.347 even 4 2175.1.b.d.2174.2 6
435.434 odd 2 2175.1.h.e.1826.3 yes 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2175.1.b.c.2174.2 6 15.8 even 4
2175.1.b.c.2174.2 6 145.28 odd 4
2175.1.b.c.2174.5 6 15.2 even 4
2175.1.b.c.2174.5 6 145.57 odd 4
2175.1.b.d.2174.2 6 5.2 odd 4
2175.1.b.d.2174.2 6 435.347 even 4
2175.1.b.d.2174.5 6 5.3 odd 4
2175.1.b.d.2174.5 6 435.173 even 4
2175.1.h.c.1826.1 3 1.1 even 1 trivial
2175.1.h.c.1826.1 3 87.86 odd 2 CM
2175.1.h.d.1826.1 yes 3 15.14 odd 2
2175.1.h.d.1826.1 yes 3 145.144 even 2
2175.1.h.e.1826.3 yes 3 5.4 even 2
2175.1.h.e.1826.3 yes 3 435.434 odd 2
2175.1.h.f.1826.3 yes 3 3.2 odd 2
2175.1.h.f.1826.3 yes 3 29.28 even 2