Properties

Label 2175.2.a.bb.1.3
Level $2175$
Weight $2$
Character 2175.1
Self dual yes
Analytic conductor $17.367$
Analytic rank $0$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2175,2,Mod(1,2175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2175, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2175.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2175 = 3 \cdot 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2175.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(17.3674624396\)
Analytic rank: \(0\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - 2x^{6} - 10x^{5} + 19x^{4} + 24x^{3} - 44x^{2} - 3x + 14 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-0.560139\) of defining polynomial
Character \(\chi\) \(=\) 2175.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.560139 q^{2} +1.00000 q^{3} -1.68624 q^{4} -0.560139 q^{6} +4.36313 q^{7} +2.06481 q^{8} +1.00000 q^{9} -3.72689 q^{11} -1.68624 q^{12} -2.53237 q^{13} -2.44396 q^{14} +2.21591 q^{16} +5.11270 q^{17} -0.560139 q^{18} +2.09916 q^{19} +4.36313 q^{21} +2.08758 q^{22} +6.47404 q^{23} +2.06481 q^{24} +1.41848 q^{26} +1.00000 q^{27} -7.35730 q^{28} -1.00000 q^{29} -9.94570 q^{31} -5.37083 q^{32} -3.72689 q^{33} -2.86382 q^{34} -1.68624 q^{36} +5.37249 q^{37} -1.17582 q^{38} -2.53237 q^{39} +7.96557 q^{41} -2.44396 q^{42} -10.7771 q^{43} +6.28445 q^{44} -3.62636 q^{46} +9.38424 q^{47} +2.21591 q^{48} +12.0369 q^{49} +5.11270 q^{51} +4.27019 q^{52} -5.64265 q^{53} -0.560139 q^{54} +9.00902 q^{56} +2.09916 q^{57} +0.560139 q^{58} +4.24056 q^{59} +9.81848 q^{61} +5.57097 q^{62} +4.36313 q^{63} -1.42341 q^{64} +2.08758 q^{66} +0.520614 q^{67} -8.62126 q^{68} +6.47404 q^{69} +3.22415 q^{71} +2.06481 q^{72} -10.1718 q^{73} -3.00934 q^{74} -3.53970 q^{76} -16.2609 q^{77} +1.41848 q^{78} +1.81484 q^{79} +1.00000 q^{81} -4.46182 q^{82} -1.35377 q^{83} -7.35730 q^{84} +6.03667 q^{86} -1.00000 q^{87} -7.69532 q^{88} +14.2314 q^{89} -11.0490 q^{91} -10.9168 q^{92} -9.94570 q^{93} -5.25648 q^{94} -5.37083 q^{96} +14.0094 q^{97} -6.74233 q^{98} -3.72689 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q + 2 q^{2} + 7 q^{3} + 10 q^{4} + 2 q^{6} - q^{7} + 3 q^{8} + 7 q^{9} + 4 q^{11} + 10 q^{12} - q^{13} + 15 q^{14} + 12 q^{16} + 8 q^{17} + 2 q^{18} + 15 q^{19} - q^{21} + 3 q^{22} + 14 q^{23} + 3 q^{24}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.560139 −0.396078 −0.198039 0.980194i \(-0.563457\pi\)
−0.198039 + 0.980194i \(0.563457\pi\)
\(3\) 1.00000 0.577350
\(4\) −1.68624 −0.843122
\(5\) 0 0
\(6\) −0.560139 −0.228676
\(7\) 4.36313 1.64911 0.824554 0.565784i \(-0.191426\pi\)
0.824554 + 0.565784i \(0.191426\pi\)
\(8\) 2.06481 0.730020
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) −3.72689 −1.12370 −0.561850 0.827239i \(-0.689910\pi\)
−0.561850 + 0.827239i \(0.689910\pi\)
\(12\) −1.68624 −0.486777
\(13\) −2.53237 −0.702352 −0.351176 0.936309i \(-0.614218\pi\)
−0.351176 + 0.936309i \(0.614218\pi\)
\(14\) −2.44396 −0.653175
\(15\) 0 0
\(16\) 2.21591 0.553977
\(17\) 5.11270 1.24001 0.620006 0.784597i \(-0.287130\pi\)
0.620006 + 0.784597i \(0.287130\pi\)
\(18\) −0.560139 −0.132026
\(19\) 2.09916 0.481581 0.240791 0.970577i \(-0.422593\pi\)
0.240791 + 0.970577i \(0.422593\pi\)
\(20\) 0 0
\(21\) 4.36313 0.952113
\(22\) 2.08758 0.445073
\(23\) 6.47404 1.34993 0.674966 0.737849i \(-0.264158\pi\)
0.674966 + 0.737849i \(0.264158\pi\)
\(24\) 2.06481 0.421477
\(25\) 0 0
\(26\) 1.41848 0.278186
\(27\) 1.00000 0.192450
\(28\) −7.35730 −1.39040
\(29\) −1.00000 −0.185695
\(30\) 0 0
\(31\) −9.94570 −1.78630 −0.893150 0.449759i \(-0.851510\pi\)
−0.893150 + 0.449759i \(0.851510\pi\)
\(32\) −5.37083 −0.949438
\(33\) −3.72689 −0.648768
\(34\) −2.86382 −0.491141
\(35\) 0 0
\(36\) −1.68624 −0.281041
\(37\) 5.37249 0.883232 0.441616 0.897204i \(-0.354405\pi\)
0.441616 + 0.897204i \(0.354405\pi\)
\(38\) −1.17582 −0.190744
\(39\) −2.53237 −0.405503
\(40\) 0 0
\(41\) 7.96557 1.24401 0.622006 0.783012i \(-0.286318\pi\)
0.622006 + 0.783012i \(0.286318\pi\)
\(42\) −2.44396 −0.377111
\(43\) −10.7771 −1.64349 −0.821746 0.569854i \(-0.807000\pi\)
−0.821746 + 0.569854i \(0.807000\pi\)
\(44\) 6.28445 0.947416
\(45\) 0 0
\(46\) −3.62636 −0.534678
\(47\) 9.38424 1.36883 0.684416 0.729092i \(-0.260057\pi\)
0.684416 + 0.729092i \(0.260057\pi\)
\(48\) 2.21591 0.319839
\(49\) 12.0369 1.71955
\(50\) 0 0
\(51\) 5.11270 0.715921
\(52\) 4.27019 0.592169
\(53\) −5.64265 −0.775077 −0.387539 0.921853i \(-0.626675\pi\)
−0.387539 + 0.921853i \(0.626675\pi\)
\(54\) −0.560139 −0.0762252
\(55\) 0 0
\(56\) 9.00902 1.20388
\(57\) 2.09916 0.278041
\(58\) 0.560139 0.0735498
\(59\) 4.24056 0.552073 0.276037 0.961147i \(-0.410979\pi\)
0.276037 + 0.961147i \(0.410979\pi\)
\(60\) 0 0
\(61\) 9.81848 1.25713 0.628564 0.777758i \(-0.283643\pi\)
0.628564 + 0.777758i \(0.283643\pi\)
\(62\) 5.57097 0.707514
\(63\) 4.36313 0.549702
\(64\) −1.42341 −0.177926
\(65\) 0 0
\(66\) 2.08758 0.256963
\(67\) 0.520614 0.0636031 0.0318015 0.999494i \(-0.489876\pi\)
0.0318015 + 0.999494i \(0.489876\pi\)
\(68\) −8.62126 −1.04548
\(69\) 6.47404 0.779383
\(70\) 0 0
\(71\) 3.22415 0.382636 0.191318 0.981528i \(-0.438724\pi\)
0.191318 + 0.981528i \(0.438724\pi\)
\(72\) 2.06481 0.243340
\(73\) −10.1718 −1.19052 −0.595262 0.803532i \(-0.702952\pi\)
−0.595262 + 0.803532i \(0.702952\pi\)
\(74\) −3.00934 −0.349829
\(75\) 0 0
\(76\) −3.53970 −0.406032
\(77\) −16.2609 −1.85310
\(78\) 1.41848 0.160611
\(79\) 1.81484 0.204185 0.102093 0.994775i \(-0.467446\pi\)
0.102093 + 0.994775i \(0.467446\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) −4.46182 −0.492726
\(83\) −1.35377 −0.148595 −0.0742976 0.997236i \(-0.523671\pi\)
−0.0742976 + 0.997236i \(0.523671\pi\)
\(84\) −7.35730 −0.802747
\(85\) 0 0
\(86\) 6.03667 0.650951
\(87\) −1.00000 −0.107211
\(88\) −7.69532 −0.820323
\(89\) 14.2314 1.50853 0.754263 0.656572i \(-0.227994\pi\)
0.754263 + 0.656572i \(0.227994\pi\)
\(90\) 0 0
\(91\) −11.0490 −1.15825
\(92\) −10.9168 −1.13816
\(93\) −9.94570 −1.03132
\(94\) −5.25648 −0.542164
\(95\) 0 0
\(96\) −5.37083 −0.548159
\(97\) 14.0094 1.42244 0.711221 0.702968i \(-0.248142\pi\)
0.711221 + 0.702968i \(0.248142\pi\)
\(98\) −6.74233 −0.681078
\(99\) −3.72689 −0.374567
\(100\) 0 0
\(101\) −1.82364 −0.181459 −0.0907294 0.995876i \(-0.528920\pi\)
−0.0907294 + 0.995876i \(0.528920\pi\)
\(102\) −2.86382 −0.283561
\(103\) 10.6248 1.04689 0.523445 0.852059i \(-0.324647\pi\)
0.523445 + 0.852059i \(0.324647\pi\)
\(104\) −5.22885 −0.512731
\(105\) 0 0
\(106\) 3.16067 0.306991
\(107\) −12.2121 −1.18059 −0.590293 0.807189i \(-0.700988\pi\)
−0.590293 + 0.807189i \(0.700988\pi\)
\(108\) −1.68624 −0.162259
\(109\) −7.10102 −0.680155 −0.340077 0.940397i \(-0.610453\pi\)
−0.340077 + 0.940397i \(0.610453\pi\)
\(110\) 0 0
\(111\) 5.37249 0.509934
\(112\) 9.66829 0.913568
\(113\) 2.21008 0.207907 0.103953 0.994582i \(-0.466851\pi\)
0.103953 + 0.994582i \(0.466851\pi\)
\(114\) −1.17582 −0.110126
\(115\) 0 0
\(116\) 1.68624 0.156564
\(117\) −2.53237 −0.234117
\(118\) −2.37530 −0.218664
\(119\) 22.3074 2.04491
\(120\) 0 0
\(121\) 2.88971 0.262701
\(122\) −5.49971 −0.497920
\(123\) 7.96557 0.718231
\(124\) 16.7709 1.50607
\(125\) 0 0
\(126\) −2.44396 −0.217725
\(127\) −12.1699 −1.07990 −0.539950 0.841697i \(-0.681557\pi\)
−0.539950 + 0.841697i \(0.681557\pi\)
\(128\) 11.5390 1.01991
\(129\) −10.7771 −0.948870
\(130\) 0 0
\(131\) 0.754636 0.0659329 0.0329664 0.999456i \(-0.489505\pi\)
0.0329664 + 0.999456i \(0.489505\pi\)
\(132\) 6.28445 0.546991
\(133\) 9.15892 0.794179
\(134\) −0.291616 −0.0251918
\(135\) 0 0
\(136\) 10.5567 0.905234
\(137\) 19.2792 1.64713 0.823567 0.567219i \(-0.191981\pi\)
0.823567 + 0.567219i \(0.191981\pi\)
\(138\) −3.62636 −0.308697
\(139\) 21.1062 1.79020 0.895102 0.445862i \(-0.147103\pi\)
0.895102 + 0.445862i \(0.147103\pi\)
\(140\) 0 0
\(141\) 9.38424 0.790296
\(142\) −1.80597 −0.151554
\(143\) 9.43785 0.789233
\(144\) 2.21591 0.184659
\(145\) 0 0
\(146\) 5.69765 0.471540
\(147\) 12.0369 0.992786
\(148\) −9.05933 −0.744672
\(149\) −7.12028 −0.583316 −0.291658 0.956523i \(-0.594207\pi\)
−0.291658 + 0.956523i \(0.594207\pi\)
\(150\) 0 0
\(151\) 5.46682 0.444884 0.222442 0.974946i \(-0.428597\pi\)
0.222442 + 0.974946i \(0.428597\pi\)
\(152\) 4.33437 0.351564
\(153\) 5.11270 0.413337
\(154\) 9.10836 0.733973
\(155\) 0 0
\(156\) 4.27019 0.341889
\(157\) −14.6519 −1.16935 −0.584675 0.811268i \(-0.698778\pi\)
−0.584675 + 0.811268i \(0.698778\pi\)
\(158\) −1.01656 −0.0808732
\(159\) −5.64265 −0.447491
\(160\) 0 0
\(161\) 28.2471 2.22618
\(162\) −0.560139 −0.0440087
\(163\) 13.9352 1.09149 0.545743 0.837952i \(-0.316247\pi\)
0.545743 + 0.837952i \(0.316247\pi\)
\(164\) −13.4319 −1.04885
\(165\) 0 0
\(166\) 0.758297 0.0588553
\(167\) 25.1850 1.94887 0.974436 0.224663i \(-0.0721282\pi\)
0.974436 + 0.224663i \(0.0721282\pi\)
\(168\) 9.00902 0.695061
\(169\) −6.58712 −0.506702
\(170\) 0 0
\(171\) 2.09916 0.160527
\(172\) 18.1728 1.38566
\(173\) 12.7333 0.968097 0.484048 0.875041i \(-0.339166\pi\)
0.484048 + 0.875041i \(0.339166\pi\)
\(174\) 0.560139 0.0424640
\(175\) 0 0
\(176\) −8.25845 −0.622504
\(177\) 4.24056 0.318740
\(178\) −7.97157 −0.597494
\(179\) −7.19567 −0.537830 −0.268915 0.963164i \(-0.586665\pi\)
−0.268915 + 0.963164i \(0.586665\pi\)
\(180\) 0 0
\(181\) 6.47508 0.481289 0.240644 0.970613i \(-0.422641\pi\)
0.240644 + 0.970613i \(0.422641\pi\)
\(182\) 6.18899 0.458759
\(183\) 9.81848 0.725803
\(184\) 13.3677 0.985477
\(185\) 0 0
\(186\) 5.57097 0.408483
\(187\) −19.0545 −1.39340
\(188\) −15.8241 −1.15409
\(189\) 4.36313 0.317371
\(190\) 0 0
\(191\) 18.0212 1.30397 0.651983 0.758234i \(-0.273937\pi\)
0.651983 + 0.758234i \(0.273937\pi\)
\(192\) −1.42341 −0.102725
\(193\) −10.6003 −0.763025 −0.381512 0.924364i \(-0.624597\pi\)
−0.381512 + 0.924364i \(0.624597\pi\)
\(194\) −7.84723 −0.563398
\(195\) 0 0
\(196\) −20.2971 −1.44979
\(197\) −2.28624 −0.162888 −0.0814441 0.996678i \(-0.525953\pi\)
−0.0814441 + 0.996678i \(0.525953\pi\)
\(198\) 2.08758 0.148358
\(199\) −22.7385 −1.61189 −0.805946 0.591989i \(-0.798343\pi\)
−0.805946 + 0.591989i \(0.798343\pi\)
\(200\) 0 0
\(201\) 0.520614 0.0367213
\(202\) 1.02149 0.0718718
\(203\) −4.36313 −0.306232
\(204\) −8.62126 −0.603609
\(205\) 0 0
\(206\) −5.95135 −0.414650
\(207\) 6.47404 0.449977
\(208\) −5.61149 −0.389087
\(209\) −7.82336 −0.541153
\(210\) 0 0
\(211\) 16.9446 1.16651 0.583256 0.812289i \(-0.301779\pi\)
0.583256 + 0.812289i \(0.301779\pi\)
\(212\) 9.51488 0.653485
\(213\) 3.22415 0.220915
\(214\) 6.84046 0.467604
\(215\) 0 0
\(216\) 2.06481 0.140492
\(217\) −43.3944 −2.94580
\(218\) 3.97756 0.269394
\(219\) −10.1718 −0.687350
\(220\) 0 0
\(221\) −12.9472 −0.870925
\(222\) −3.00934 −0.201974
\(223\) 7.13150 0.477560 0.238780 0.971074i \(-0.423252\pi\)
0.238780 + 0.971074i \(0.423252\pi\)
\(224\) −23.4336 −1.56573
\(225\) 0 0
\(226\) −1.23795 −0.0823474
\(227\) 2.42109 0.160693 0.0803467 0.996767i \(-0.474397\pi\)
0.0803467 + 0.996767i \(0.474397\pi\)
\(228\) −3.53970 −0.234423
\(229\) 14.4538 0.955132 0.477566 0.878596i \(-0.341519\pi\)
0.477566 + 0.878596i \(0.341519\pi\)
\(230\) 0 0
\(231\) −16.2609 −1.06989
\(232\) −2.06481 −0.135561
\(233\) 10.0591 0.658994 0.329497 0.944157i \(-0.393121\pi\)
0.329497 + 0.944157i \(0.393121\pi\)
\(234\) 1.41848 0.0927287
\(235\) 0 0
\(236\) −7.15061 −0.465465
\(237\) 1.81484 0.117886
\(238\) −12.4952 −0.809945
\(239\) −14.3621 −0.929006 −0.464503 0.885572i \(-0.653767\pi\)
−0.464503 + 0.885572i \(0.653767\pi\)
\(240\) 0 0
\(241\) 8.58457 0.552981 0.276490 0.961017i \(-0.410829\pi\)
0.276490 + 0.961017i \(0.410829\pi\)
\(242\) −1.61864 −0.104050
\(243\) 1.00000 0.0641500
\(244\) −16.5564 −1.05991
\(245\) 0 0
\(246\) −4.46182 −0.284476
\(247\) −5.31585 −0.338240
\(248\) −20.5360 −1.30404
\(249\) −1.35377 −0.0857915
\(250\) 0 0
\(251\) 20.6767 1.30510 0.652552 0.757744i \(-0.273699\pi\)
0.652552 + 0.757744i \(0.273699\pi\)
\(252\) −7.35730 −0.463466
\(253\) −24.1281 −1.51692
\(254\) 6.81681 0.427725
\(255\) 0 0
\(256\) −3.61662 −0.226039
\(257\) −22.6024 −1.40990 −0.704949 0.709258i \(-0.749030\pi\)
−0.704949 + 0.709258i \(0.749030\pi\)
\(258\) 6.03667 0.375827
\(259\) 23.4409 1.45654
\(260\) 0 0
\(261\) −1.00000 −0.0618984
\(262\) −0.422701 −0.0261146
\(263\) 18.7013 1.15317 0.576585 0.817037i \(-0.304385\pi\)
0.576585 + 0.817037i \(0.304385\pi\)
\(264\) −7.69532 −0.473614
\(265\) 0 0
\(266\) −5.13027 −0.314557
\(267\) 14.2314 0.870948
\(268\) −0.877882 −0.0536252
\(269\) 28.1751 1.71787 0.858933 0.512088i \(-0.171128\pi\)
0.858933 + 0.512088i \(0.171128\pi\)
\(270\) 0 0
\(271\) −19.1366 −1.16246 −0.581232 0.813738i \(-0.697429\pi\)
−0.581232 + 0.813738i \(0.697429\pi\)
\(272\) 11.3293 0.686938
\(273\) −11.0490 −0.668718
\(274\) −10.7990 −0.652393
\(275\) 0 0
\(276\) −10.9168 −0.657115
\(277\) 18.7312 1.12545 0.562725 0.826644i \(-0.309753\pi\)
0.562725 + 0.826644i \(0.309753\pi\)
\(278\) −11.8224 −0.709060
\(279\) −9.94570 −0.595433
\(280\) 0 0
\(281\) −9.02236 −0.538229 −0.269114 0.963108i \(-0.586731\pi\)
−0.269114 + 0.963108i \(0.586731\pi\)
\(282\) −5.25648 −0.313019
\(283\) −23.2193 −1.38025 −0.690123 0.723692i \(-0.742444\pi\)
−0.690123 + 0.723692i \(0.742444\pi\)
\(284\) −5.43670 −0.322609
\(285\) 0 0
\(286\) −5.28651 −0.312598
\(287\) 34.7548 2.05151
\(288\) −5.37083 −0.316479
\(289\) 9.13969 0.537629
\(290\) 0 0
\(291\) 14.0094 0.821248
\(292\) 17.1522 1.00376
\(293\) 4.66226 0.272372 0.136186 0.990683i \(-0.456516\pi\)
0.136186 + 0.990683i \(0.456516\pi\)
\(294\) −6.74233 −0.393221
\(295\) 0 0
\(296\) 11.0932 0.644777
\(297\) −3.72689 −0.216256
\(298\) 3.98834 0.231039
\(299\) −16.3946 −0.948127
\(300\) 0 0
\(301\) −47.0218 −2.71029
\(302\) −3.06218 −0.176209
\(303\) −1.82364 −0.104765
\(304\) 4.65156 0.266785
\(305\) 0 0
\(306\) −2.86382 −0.163714
\(307\) −27.9383 −1.59452 −0.797262 0.603633i \(-0.793719\pi\)
−0.797262 + 0.603633i \(0.793719\pi\)
\(308\) 27.4199 1.56239
\(309\) 10.6248 0.604422
\(310\) 0 0
\(311\) −34.7023 −1.96779 −0.983895 0.178748i \(-0.942795\pi\)
−0.983895 + 0.178748i \(0.942795\pi\)
\(312\) −5.22885 −0.296025
\(313\) −19.1085 −1.08008 −0.540038 0.841641i \(-0.681590\pi\)
−0.540038 + 0.841641i \(0.681590\pi\)
\(314\) 8.20711 0.463154
\(315\) 0 0
\(316\) −3.06026 −0.172153
\(317\) −16.7578 −0.941214 −0.470607 0.882343i \(-0.655965\pi\)
−0.470607 + 0.882343i \(0.655965\pi\)
\(318\) 3.16067 0.177241
\(319\) 3.72689 0.208666
\(320\) 0 0
\(321\) −12.2121 −0.681612
\(322\) −15.8223 −0.881742
\(323\) 10.7324 0.597167
\(324\) −1.68624 −0.0936802
\(325\) 0 0
\(326\) −7.80563 −0.432314
\(327\) −7.10102 −0.392687
\(328\) 16.4474 0.908154
\(329\) 40.9446 2.25735
\(330\) 0 0
\(331\) 2.42129 0.133086 0.0665430 0.997784i \(-0.478803\pi\)
0.0665430 + 0.997784i \(0.478803\pi\)
\(332\) 2.28278 0.125284
\(333\) 5.37249 0.294411
\(334\) −14.1071 −0.771906
\(335\) 0 0
\(336\) 9.66829 0.527449
\(337\) −5.94477 −0.323832 −0.161916 0.986805i \(-0.551767\pi\)
−0.161916 + 0.986805i \(0.551767\pi\)
\(338\) 3.68970 0.200693
\(339\) 2.21008 0.120035
\(340\) 0 0
\(341\) 37.0665 2.00727
\(342\) −1.17582 −0.0635813
\(343\) 21.9766 1.18662
\(344\) −22.2526 −1.19978
\(345\) 0 0
\(346\) −7.13243 −0.383442
\(347\) −24.4339 −1.31168 −0.655841 0.754899i \(-0.727686\pi\)
−0.655841 + 0.754899i \(0.727686\pi\)
\(348\) 1.68624 0.0903922
\(349\) −15.3090 −0.819472 −0.409736 0.912204i \(-0.634379\pi\)
−0.409736 + 0.912204i \(0.634379\pi\)
\(350\) 0 0
\(351\) −2.53237 −0.135168
\(352\) 20.0165 1.06688
\(353\) 17.8418 0.949621 0.474810 0.880088i \(-0.342517\pi\)
0.474810 + 0.880088i \(0.342517\pi\)
\(354\) −2.37530 −0.126246
\(355\) 0 0
\(356\) −23.9976 −1.27187
\(357\) 22.3074 1.18063
\(358\) 4.03058 0.213023
\(359\) −13.7962 −0.728136 −0.364068 0.931372i \(-0.618612\pi\)
−0.364068 + 0.931372i \(0.618612\pi\)
\(360\) 0 0
\(361\) −14.5935 −0.768079
\(362\) −3.62694 −0.190628
\(363\) 2.88971 0.151671
\(364\) 18.6314 0.976549
\(365\) 0 0
\(366\) −5.49971 −0.287474
\(367\) −0.0965282 −0.00503873 −0.00251936 0.999997i \(-0.500802\pi\)
−0.00251936 + 0.999997i \(0.500802\pi\)
\(368\) 14.3459 0.747831
\(369\) 7.96557 0.414671
\(370\) 0 0
\(371\) −24.6196 −1.27819
\(372\) 16.7709 0.869530
\(373\) −36.5838 −1.89424 −0.947119 0.320882i \(-0.896021\pi\)
−0.947119 + 0.320882i \(0.896021\pi\)
\(374\) 10.6731 0.551895
\(375\) 0 0
\(376\) 19.3767 0.999275
\(377\) 2.53237 0.130423
\(378\) −2.44396 −0.125704
\(379\) −0.562286 −0.0288827 −0.0144413 0.999896i \(-0.504597\pi\)
−0.0144413 + 0.999896i \(0.504597\pi\)
\(380\) 0 0
\(381\) −12.1699 −0.623480
\(382\) −10.0944 −0.516472
\(383\) −3.31052 −0.169159 −0.0845797 0.996417i \(-0.526955\pi\)
−0.0845797 + 0.996417i \(0.526955\pi\)
\(384\) 11.5390 0.588846
\(385\) 0 0
\(386\) 5.93763 0.302217
\(387\) −10.7771 −0.547831
\(388\) −23.6233 −1.19929
\(389\) −8.36922 −0.424336 −0.212168 0.977233i \(-0.568052\pi\)
−0.212168 + 0.977233i \(0.568052\pi\)
\(390\) 0 0
\(391\) 33.0998 1.67393
\(392\) 24.8539 1.25531
\(393\) 0.754636 0.0380664
\(394\) 1.28061 0.0645164
\(395\) 0 0
\(396\) 6.28445 0.315805
\(397\) −1.72859 −0.0867555 −0.0433778 0.999059i \(-0.513812\pi\)
−0.0433778 + 0.999059i \(0.513812\pi\)
\(398\) 12.7367 0.638435
\(399\) 9.15892 0.458520
\(400\) 0 0
\(401\) −20.6867 −1.03304 −0.516522 0.856274i \(-0.672774\pi\)
−0.516522 + 0.856274i \(0.672774\pi\)
\(402\) −0.291616 −0.0145445
\(403\) 25.1861 1.25461
\(404\) 3.07510 0.152992
\(405\) 0 0
\(406\) 2.44396 0.121292
\(407\) −20.0227 −0.992487
\(408\) 10.5567 0.522637
\(409\) −36.4935 −1.80449 −0.902243 0.431228i \(-0.858081\pi\)
−0.902243 + 0.431228i \(0.858081\pi\)
\(410\) 0 0
\(411\) 19.2792 0.950973
\(412\) −17.9160 −0.882656
\(413\) 18.5021 0.910428
\(414\) −3.62636 −0.178226
\(415\) 0 0
\(416\) 13.6009 0.666840
\(417\) 21.1062 1.03357
\(418\) 4.38217 0.214339
\(419\) −28.1697 −1.37618 −0.688090 0.725625i \(-0.741551\pi\)
−0.688090 + 0.725625i \(0.741551\pi\)
\(420\) 0 0
\(421\) −11.1213 −0.542017 −0.271008 0.962577i \(-0.587357\pi\)
−0.271008 + 0.962577i \(0.587357\pi\)
\(422\) −9.49130 −0.462029
\(423\) 9.38424 0.456277
\(424\) −11.6510 −0.565822
\(425\) 0 0
\(426\) −1.80597 −0.0874996
\(427\) 42.8393 2.07314
\(428\) 20.5925 0.995378
\(429\) 9.43785 0.455664
\(430\) 0 0
\(431\) 6.56816 0.316377 0.158189 0.987409i \(-0.449435\pi\)
0.158189 + 0.987409i \(0.449435\pi\)
\(432\) 2.21591 0.106613
\(433\) 1.10855 0.0532734 0.0266367 0.999645i \(-0.491520\pi\)
0.0266367 + 0.999645i \(0.491520\pi\)
\(434\) 24.3069 1.16677
\(435\) 0 0
\(436\) 11.9741 0.573453
\(437\) 13.5901 0.650102
\(438\) 5.69765 0.272244
\(439\) 26.4625 1.26299 0.631494 0.775381i \(-0.282442\pi\)
0.631494 + 0.775381i \(0.282442\pi\)
\(440\) 0 0
\(441\) 12.0369 0.573185
\(442\) 7.25224 0.344954
\(443\) −10.7820 −0.512267 −0.256133 0.966641i \(-0.582449\pi\)
−0.256133 + 0.966641i \(0.582449\pi\)
\(444\) −9.05933 −0.429937
\(445\) 0 0
\(446\) −3.99463 −0.189151
\(447\) −7.12028 −0.336778
\(448\) −6.21050 −0.293418
\(449\) −3.56594 −0.168287 −0.0841436 0.996454i \(-0.526815\pi\)
−0.0841436 + 0.996454i \(0.526815\pi\)
\(450\) 0 0
\(451\) −29.6868 −1.39790
\(452\) −3.72674 −0.175291
\(453\) 5.46682 0.256854
\(454\) −1.35615 −0.0636471
\(455\) 0 0
\(456\) 4.33437 0.202976
\(457\) 0.384118 0.0179683 0.00898415 0.999960i \(-0.497140\pi\)
0.00898415 + 0.999960i \(0.497140\pi\)
\(458\) −8.09612 −0.378307
\(459\) 5.11270 0.238640
\(460\) 0 0
\(461\) 0.168528 0.00784912 0.00392456 0.999992i \(-0.498751\pi\)
0.00392456 + 0.999992i \(0.498751\pi\)
\(462\) 9.10836 0.423759
\(463\) −11.6694 −0.542325 −0.271163 0.962534i \(-0.587408\pi\)
−0.271163 + 0.962534i \(0.587408\pi\)
\(464\) −2.21591 −0.102871
\(465\) 0 0
\(466\) −5.63450 −0.261013
\(467\) 14.6874 0.679651 0.339826 0.940488i \(-0.389632\pi\)
0.339826 + 0.940488i \(0.389632\pi\)
\(468\) 4.27019 0.197390
\(469\) 2.27150 0.104888
\(470\) 0 0
\(471\) −14.6519 −0.675124
\(472\) 8.75594 0.403025
\(473\) 40.1651 1.84679
\(474\) −1.01656 −0.0466922
\(475\) 0 0
\(476\) −37.6157 −1.72411
\(477\) −5.64265 −0.258359
\(478\) 8.04476 0.367959
\(479\) 12.8124 0.585412 0.292706 0.956202i \(-0.405444\pi\)
0.292706 + 0.956202i \(0.405444\pi\)
\(480\) 0 0
\(481\) −13.6051 −0.620340
\(482\) −4.80855 −0.219023
\(483\) 28.2471 1.28529
\(484\) −4.87276 −0.221489
\(485\) 0 0
\(486\) −0.560139 −0.0254084
\(487\) −12.9556 −0.587076 −0.293538 0.955947i \(-0.594833\pi\)
−0.293538 + 0.955947i \(0.594833\pi\)
\(488\) 20.2733 0.917728
\(489\) 13.9352 0.630170
\(490\) 0 0
\(491\) −18.6710 −0.842609 −0.421304 0.906919i \(-0.638428\pi\)
−0.421304 + 0.906919i \(0.638428\pi\)
\(492\) −13.4319 −0.605557
\(493\) −5.11270 −0.230264
\(494\) 2.97762 0.133969
\(495\) 0 0
\(496\) −22.0388 −0.989570
\(497\) 14.0674 0.631008
\(498\) 0.758297 0.0339801
\(499\) −31.9283 −1.42931 −0.714653 0.699479i \(-0.753415\pi\)
−0.714653 + 0.699479i \(0.753415\pi\)
\(500\) 0 0
\(501\) 25.1850 1.12518
\(502\) −11.5818 −0.516923
\(503\) −23.7384 −1.05844 −0.529221 0.848484i \(-0.677516\pi\)
−0.529221 + 0.848484i \(0.677516\pi\)
\(504\) 9.00902 0.401294
\(505\) 0 0
\(506\) 13.5151 0.600818
\(507\) −6.58712 −0.292544
\(508\) 20.5213 0.910487
\(509\) −9.32935 −0.413516 −0.206758 0.978392i \(-0.566291\pi\)
−0.206758 + 0.978392i \(0.566291\pi\)
\(510\) 0 0
\(511\) −44.3811 −1.96330
\(512\) −21.0521 −0.930382
\(513\) 2.09916 0.0926804
\(514\) 12.6605 0.558430
\(515\) 0 0
\(516\) 18.1728 0.800014
\(517\) −34.9740 −1.53816
\(518\) −13.1301 −0.576905
\(519\) 12.7333 0.558931
\(520\) 0 0
\(521\) 7.78334 0.340994 0.170497 0.985358i \(-0.445463\pi\)
0.170497 + 0.985358i \(0.445463\pi\)
\(522\) 0.560139 0.0245166
\(523\) −21.8373 −0.954879 −0.477439 0.878665i \(-0.658435\pi\)
−0.477439 + 0.878665i \(0.658435\pi\)
\(524\) −1.27250 −0.0555895
\(525\) 0 0
\(526\) −10.4753 −0.456746
\(527\) −50.8494 −2.21503
\(528\) −8.25845 −0.359403
\(529\) 18.9133 0.822315
\(530\) 0 0
\(531\) 4.24056 0.184024
\(532\) −15.4442 −0.669590
\(533\) −20.1717 −0.873735
\(534\) −7.97157 −0.344963
\(535\) 0 0
\(536\) 1.07497 0.0464315
\(537\) −7.19567 −0.310516
\(538\) −15.7820 −0.680409
\(539\) −44.8602 −1.93226
\(540\) 0 0
\(541\) 8.09048 0.347837 0.173918 0.984760i \(-0.444357\pi\)
0.173918 + 0.984760i \(0.444357\pi\)
\(542\) 10.7191 0.460426
\(543\) 6.47508 0.277872
\(544\) −27.4595 −1.17731
\(545\) 0 0
\(546\) 6.18899 0.264865
\(547\) −26.3530 −1.12677 −0.563386 0.826194i \(-0.690502\pi\)
−0.563386 + 0.826194i \(0.690502\pi\)
\(548\) −32.5094 −1.38873
\(549\) 9.81848 0.419042
\(550\) 0 0
\(551\) −2.09916 −0.0894274
\(552\) 13.3677 0.568966
\(553\) 7.91836 0.336723
\(554\) −10.4921 −0.445766
\(555\) 0 0
\(556\) −35.5902 −1.50936
\(557\) −45.0121 −1.90722 −0.953612 0.301038i \(-0.902667\pi\)
−0.953612 + 0.301038i \(0.902667\pi\)
\(558\) 5.57097 0.235838
\(559\) 27.2915 1.15431
\(560\) 0 0
\(561\) −19.0545 −0.804480
\(562\) 5.05377 0.213181
\(563\) 11.0447 0.465480 0.232740 0.972539i \(-0.425231\pi\)
0.232740 + 0.972539i \(0.425231\pi\)
\(564\) −15.8241 −0.666316
\(565\) 0 0
\(566\) 13.0061 0.546685
\(567\) 4.36313 0.183234
\(568\) 6.65725 0.279332
\(569\) 44.8201 1.87896 0.939479 0.342607i \(-0.111310\pi\)
0.939479 + 0.342607i \(0.111310\pi\)
\(570\) 0 0
\(571\) 17.4506 0.730287 0.365143 0.930951i \(-0.381020\pi\)
0.365143 + 0.930951i \(0.381020\pi\)
\(572\) −15.9145 −0.665420
\(573\) 18.0212 0.752845
\(574\) −19.4675 −0.812558
\(575\) 0 0
\(576\) −1.42341 −0.0593085
\(577\) −7.31868 −0.304681 −0.152340 0.988328i \(-0.548681\pi\)
−0.152340 + 0.988328i \(0.548681\pi\)
\(578\) −5.11950 −0.212943
\(579\) −10.6003 −0.440533
\(580\) 0 0
\(581\) −5.90666 −0.245049
\(582\) −7.84723 −0.325278
\(583\) 21.0295 0.870954
\(584\) −21.0029 −0.869107
\(585\) 0 0
\(586\) −2.61151 −0.107881
\(587\) −8.44561 −0.348587 −0.174294 0.984694i \(-0.555764\pi\)
−0.174294 + 0.984694i \(0.555764\pi\)
\(588\) −20.2971 −0.837040
\(589\) −20.8777 −0.860249
\(590\) 0 0
\(591\) −2.28624 −0.0940435
\(592\) 11.9049 0.489290
\(593\) −21.1951 −0.870377 −0.435189 0.900339i \(-0.643318\pi\)
−0.435189 + 0.900339i \(0.643318\pi\)
\(594\) 2.08758 0.0856543
\(595\) 0 0
\(596\) 12.0065 0.491807
\(597\) −22.7385 −0.930627
\(598\) 9.18328 0.375532
\(599\) 37.1252 1.51689 0.758447 0.651735i \(-0.225959\pi\)
0.758447 + 0.651735i \(0.225959\pi\)
\(600\) 0 0
\(601\) 40.9314 1.66963 0.834813 0.550534i \(-0.185576\pi\)
0.834813 + 0.550534i \(0.185576\pi\)
\(602\) 26.3388 1.07349
\(603\) 0.520614 0.0212010
\(604\) −9.21840 −0.375091
\(605\) 0 0
\(606\) 1.02149 0.0414952
\(607\) −17.6432 −0.716114 −0.358057 0.933700i \(-0.616561\pi\)
−0.358057 + 0.933700i \(0.616561\pi\)
\(608\) −11.2743 −0.457232
\(609\) −4.36313 −0.176803
\(610\) 0 0
\(611\) −23.7643 −0.961402
\(612\) −8.62126 −0.348494
\(613\) 5.40476 0.218296 0.109148 0.994026i \(-0.465188\pi\)
0.109148 + 0.994026i \(0.465188\pi\)
\(614\) 15.6493 0.631556
\(615\) 0 0
\(616\) −33.5756 −1.35280
\(617\) 5.47583 0.220449 0.110224 0.993907i \(-0.464843\pi\)
0.110224 + 0.993907i \(0.464843\pi\)
\(618\) −5.95135 −0.239398
\(619\) 7.53825 0.302988 0.151494 0.988458i \(-0.451592\pi\)
0.151494 + 0.988458i \(0.451592\pi\)
\(620\) 0 0
\(621\) 6.47404 0.259794
\(622\) 19.4381 0.779398
\(623\) 62.0935 2.48772
\(624\) −5.61149 −0.224639
\(625\) 0 0
\(626\) 10.7034 0.427794
\(627\) −7.82336 −0.312435
\(628\) 24.7067 0.985905
\(629\) 27.4679 1.09522
\(630\) 0 0
\(631\) 7.52265 0.299472 0.149736 0.988726i \(-0.452158\pi\)
0.149736 + 0.988726i \(0.452158\pi\)
\(632\) 3.74729 0.149059
\(633\) 16.9446 0.673485
\(634\) 9.38672 0.372794
\(635\) 0 0
\(636\) 9.51488 0.377290
\(637\) −30.4818 −1.20773
\(638\) −2.08758 −0.0826479
\(639\) 3.22415 0.127545
\(640\) 0 0
\(641\) −27.1885 −1.07388 −0.536941 0.843620i \(-0.680420\pi\)
−0.536941 + 0.843620i \(0.680420\pi\)
\(642\) 6.84046 0.269971
\(643\) −9.59932 −0.378560 −0.189280 0.981923i \(-0.560615\pi\)
−0.189280 + 0.981923i \(0.560615\pi\)
\(644\) −47.6315 −1.87694
\(645\) 0 0
\(646\) −6.01163 −0.236525
\(647\) 36.3223 1.42798 0.713989 0.700157i \(-0.246887\pi\)
0.713989 + 0.700157i \(0.246887\pi\)
\(648\) 2.06481 0.0811134
\(649\) −15.8041 −0.620365
\(650\) 0 0
\(651\) −43.3944 −1.70076
\(652\) −23.4981 −0.920257
\(653\) −12.3135 −0.481866 −0.240933 0.970542i \(-0.577453\pi\)
−0.240933 + 0.970542i \(0.577453\pi\)
\(654\) 3.97756 0.155535
\(655\) 0 0
\(656\) 17.6510 0.689155
\(657\) −10.1718 −0.396841
\(658\) −22.9347 −0.894087
\(659\) −12.8085 −0.498947 −0.249473 0.968382i \(-0.580258\pi\)
−0.249473 + 0.968382i \(0.580258\pi\)
\(660\) 0 0
\(661\) −14.1700 −0.551148 −0.275574 0.961280i \(-0.588868\pi\)
−0.275574 + 0.961280i \(0.588868\pi\)
\(662\) −1.35626 −0.0527125
\(663\) −12.9472 −0.502829
\(664\) −2.79527 −0.108478
\(665\) 0 0
\(666\) −3.00934 −0.116610
\(667\) −6.47404 −0.250676
\(668\) −42.4680 −1.64314
\(669\) 7.13150 0.275720
\(670\) 0 0
\(671\) −36.5924 −1.41263
\(672\) −23.4336 −0.903972
\(673\) 4.26452 0.164385 0.0821927 0.996616i \(-0.473808\pi\)
0.0821927 + 0.996616i \(0.473808\pi\)
\(674\) 3.32990 0.128263
\(675\) 0 0
\(676\) 11.1075 0.427212
\(677\) 30.5652 1.17472 0.587358 0.809327i \(-0.300168\pi\)
0.587358 + 0.809327i \(0.300168\pi\)
\(678\) −1.23795 −0.0475433
\(679\) 61.1250 2.34576
\(680\) 0 0
\(681\) 2.42109 0.0927764
\(682\) −20.7624 −0.795034
\(683\) 34.6493 1.32582 0.662909 0.748700i \(-0.269321\pi\)
0.662909 + 0.748700i \(0.269321\pi\)
\(684\) −3.53970 −0.135344
\(685\) 0 0
\(686\) −12.3099 −0.469995
\(687\) 14.4538 0.551446
\(688\) −23.8811 −0.910457
\(689\) 14.2892 0.544377
\(690\) 0 0
\(691\) 36.5754 1.39140 0.695698 0.718335i \(-0.255095\pi\)
0.695698 + 0.718335i \(0.255095\pi\)
\(692\) −21.4715 −0.816224
\(693\) −16.2609 −0.617701
\(694\) 13.6864 0.519528
\(695\) 0 0
\(696\) −2.06481 −0.0782664
\(697\) 40.7255 1.54259
\(698\) 8.57517 0.324575
\(699\) 10.0591 0.380470
\(700\) 0 0
\(701\) 30.4230 1.14906 0.574530 0.818483i \(-0.305185\pi\)
0.574530 + 0.818483i \(0.305185\pi\)
\(702\) 1.41848 0.0535369
\(703\) 11.2777 0.425348
\(704\) 5.30487 0.199935
\(705\) 0 0
\(706\) −9.99386 −0.376124
\(707\) −7.95677 −0.299245
\(708\) −7.15061 −0.268736
\(709\) −3.88470 −0.145893 −0.0729464 0.997336i \(-0.523240\pi\)
−0.0729464 + 0.997336i \(0.523240\pi\)
\(710\) 0 0
\(711\) 1.81484 0.0680617
\(712\) 29.3851 1.10125
\(713\) −64.3889 −2.41138
\(714\) −12.4952 −0.467622
\(715\) 0 0
\(716\) 12.1337 0.453456
\(717\) −14.3621 −0.536362
\(718\) 7.72779 0.288399
\(719\) −8.31279 −0.310015 −0.155007 0.987913i \(-0.549540\pi\)
−0.155007 + 0.987913i \(0.549540\pi\)
\(720\) 0 0
\(721\) 46.3573 1.72643
\(722\) 8.17439 0.304219
\(723\) 8.58457 0.319263
\(724\) −10.9186 −0.405785
\(725\) 0 0
\(726\) −1.61864 −0.0600734
\(727\) −10.5865 −0.392633 −0.196316 0.980541i \(-0.562898\pi\)
−0.196316 + 0.980541i \(0.562898\pi\)
\(728\) −22.8141 −0.845549
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −55.1000 −2.03795
\(732\) −16.5564 −0.611940
\(733\) −22.7841 −0.841549 −0.420775 0.907165i \(-0.638242\pi\)
−0.420775 + 0.907165i \(0.638242\pi\)
\(734\) 0.0540692 0.00199573
\(735\) 0 0
\(736\) −34.7710 −1.28168
\(737\) −1.94027 −0.0714708
\(738\) −4.46182 −0.164242
\(739\) 28.1480 1.03544 0.517720 0.855550i \(-0.326781\pi\)
0.517720 + 0.855550i \(0.326781\pi\)
\(740\) 0 0
\(741\) −5.31585 −0.195283
\(742\) 13.7904 0.506261
\(743\) −47.6786 −1.74916 −0.874579 0.484883i \(-0.838862\pi\)
−0.874579 + 0.484883i \(0.838862\pi\)
\(744\) −20.5360 −0.752885
\(745\) 0 0
\(746\) 20.4920 0.750266
\(747\) −1.35377 −0.0495317
\(748\) 32.1305 1.17481
\(749\) −53.2829 −1.94691
\(750\) 0 0
\(751\) 10.8278 0.395111 0.197556 0.980292i \(-0.436700\pi\)
0.197556 + 0.980292i \(0.436700\pi\)
\(752\) 20.7946 0.758302
\(753\) 20.6767 0.753502
\(754\) −1.41848 −0.0516579
\(755\) 0 0
\(756\) −7.35730 −0.267582
\(757\) 45.1777 1.64201 0.821007 0.570919i \(-0.193413\pi\)
0.821007 + 0.570919i \(0.193413\pi\)
\(758\) 0.314958 0.0114398
\(759\) −24.1281 −0.875793
\(760\) 0 0
\(761\) −8.52024 −0.308858 −0.154429 0.988004i \(-0.549354\pi\)
−0.154429 + 0.988004i \(0.549354\pi\)
\(762\) 6.81681 0.246947
\(763\) −30.9827 −1.12165
\(764\) −30.3881 −1.09940
\(765\) 0 0
\(766\) 1.85435 0.0670003
\(767\) −10.7386 −0.387750
\(768\) −3.61662 −0.130503
\(769\) 17.7232 0.639114 0.319557 0.947567i \(-0.396466\pi\)
0.319557 + 0.947567i \(0.396466\pi\)
\(770\) 0 0
\(771\) −22.6024 −0.814005
\(772\) 17.8747 0.643323
\(773\) −29.8111 −1.07223 −0.536116 0.844144i \(-0.680109\pi\)
−0.536116 + 0.844144i \(0.680109\pi\)
\(774\) 6.03667 0.216984
\(775\) 0 0
\(776\) 28.9268 1.03841
\(777\) 23.4409 0.840936
\(778\) 4.68793 0.168070
\(779\) 16.7210 0.599093
\(780\) 0 0
\(781\) −12.0161 −0.429968
\(782\) −18.5405 −0.663007
\(783\) −1.00000 −0.0357371
\(784\) 26.6726 0.952594
\(785\) 0 0
\(786\) −0.422701 −0.0150772
\(787\) 4.46894 0.159301 0.0796503 0.996823i \(-0.474620\pi\)
0.0796503 + 0.996823i \(0.474620\pi\)
\(788\) 3.85517 0.137335
\(789\) 18.7013 0.665783
\(790\) 0 0
\(791\) 9.64287 0.342861
\(792\) −7.69532 −0.273441
\(793\) −24.8640 −0.882946
\(794\) 0.968252 0.0343620
\(795\) 0 0
\(796\) 38.3427 1.35902
\(797\) −13.4589 −0.476737 −0.238368 0.971175i \(-0.576613\pi\)
−0.238368 + 0.971175i \(0.576613\pi\)
\(798\) −5.13027 −0.181610
\(799\) 47.9788 1.69737
\(800\) 0 0
\(801\) 14.2314 0.502842
\(802\) 11.5874 0.409166
\(803\) 37.9093 1.33779
\(804\) −0.877882 −0.0309605
\(805\) 0 0
\(806\) −14.1077 −0.496924
\(807\) 28.1751 0.991810
\(808\) −3.76546 −0.132469
\(809\) −47.1877 −1.65903 −0.829516 0.558484i \(-0.811383\pi\)
−0.829516 + 0.558484i \(0.811383\pi\)
\(810\) 0 0
\(811\) 32.6796 1.14754 0.573769 0.819017i \(-0.305481\pi\)
0.573769 + 0.819017i \(0.305481\pi\)
\(812\) 7.35730 0.258191
\(813\) −19.1366 −0.671149
\(814\) 11.2155 0.393102
\(815\) 0 0
\(816\) 11.3293 0.396604
\(817\) −22.6229 −0.791475
\(818\) 20.4414 0.714717
\(819\) −11.0490 −0.386085
\(820\) 0 0
\(821\) 20.0420 0.699470 0.349735 0.936849i \(-0.386272\pi\)
0.349735 + 0.936849i \(0.386272\pi\)
\(822\) −10.7990 −0.376659
\(823\) 1.64700 0.0574108 0.0287054 0.999588i \(-0.490862\pi\)
0.0287054 + 0.999588i \(0.490862\pi\)
\(824\) 21.9381 0.764251
\(825\) 0 0
\(826\) −10.3637 −0.360601
\(827\) −1.65948 −0.0577057 −0.0288528 0.999584i \(-0.509185\pi\)
−0.0288528 + 0.999584i \(0.509185\pi\)
\(828\) −10.9168 −0.379386
\(829\) −30.2298 −1.04992 −0.524962 0.851126i \(-0.675920\pi\)
−0.524962 + 0.851126i \(0.675920\pi\)
\(830\) 0 0
\(831\) 18.7312 0.649779
\(832\) 3.60458 0.124966
\(833\) 61.5410 2.13227
\(834\) −11.8224 −0.409376
\(835\) 0 0
\(836\) 13.1921 0.456258
\(837\) −9.94570 −0.343774
\(838\) 15.7789 0.545075
\(839\) −1.43638 −0.0495895 −0.0247947 0.999693i \(-0.507893\pi\)
−0.0247947 + 0.999693i \(0.507893\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) 6.22944 0.214681
\(843\) −9.02236 −0.310746
\(844\) −28.5727 −0.983511
\(845\) 0 0
\(846\) −5.25648 −0.180721
\(847\) 12.6082 0.433222
\(848\) −12.5036 −0.429375
\(849\) −23.2193 −0.796886
\(850\) 0 0
\(851\) 34.7817 1.19230
\(852\) −5.43670 −0.186258
\(853\) 0.913705 0.0312847 0.0156423 0.999878i \(-0.495021\pi\)
0.0156423 + 0.999878i \(0.495021\pi\)
\(854\) −23.9959 −0.821124
\(855\) 0 0
\(856\) −25.2156 −0.861852
\(857\) 53.1479 1.81550 0.907748 0.419516i \(-0.137800\pi\)
0.907748 + 0.419516i \(0.137800\pi\)
\(858\) −5.28651 −0.180478
\(859\) −10.2236 −0.348826 −0.174413 0.984673i \(-0.555803\pi\)
−0.174413 + 0.984673i \(0.555803\pi\)
\(860\) 0 0
\(861\) 34.7548 1.18444
\(862\) −3.67908 −0.125310
\(863\) −45.2465 −1.54021 −0.770104 0.637918i \(-0.779796\pi\)
−0.770104 + 0.637918i \(0.779796\pi\)
\(864\) −5.37083 −0.182720
\(865\) 0 0
\(866\) −0.620940 −0.0211004
\(867\) 9.13969 0.310400
\(868\) 73.1735 2.48367
\(869\) −6.76370 −0.229443
\(870\) 0 0
\(871\) −1.31838 −0.0446718
\(872\) −14.6623 −0.496527
\(873\) 14.0094 0.474148
\(874\) −7.61234 −0.257491
\(875\) 0 0
\(876\) 17.1522 0.579520
\(877\) 19.3183 0.652332 0.326166 0.945312i \(-0.394243\pi\)
0.326166 + 0.945312i \(0.394243\pi\)
\(878\) −14.8227 −0.500242
\(879\) 4.66226 0.157254
\(880\) 0 0
\(881\) 5.54756 0.186902 0.0934510 0.995624i \(-0.470210\pi\)
0.0934510 + 0.995624i \(0.470210\pi\)
\(882\) −6.74233 −0.227026
\(883\) −32.1271 −1.08116 −0.540581 0.841292i \(-0.681795\pi\)
−0.540581 + 0.841292i \(0.681795\pi\)
\(884\) 21.8322 0.734296
\(885\) 0 0
\(886\) 6.03940 0.202898
\(887\) −18.8095 −0.631560 −0.315780 0.948832i \(-0.602266\pi\)
−0.315780 + 0.948832i \(0.602266\pi\)
\(888\) 11.0932 0.372262
\(889\) −53.0986 −1.78087
\(890\) 0 0
\(891\) −3.72689 −0.124856
\(892\) −12.0254 −0.402642
\(893\) 19.6991 0.659204
\(894\) 3.98834 0.133390
\(895\) 0 0
\(896\) 50.3460 1.68194
\(897\) −16.3946 −0.547401
\(898\) 1.99742 0.0666549
\(899\) 9.94570 0.331708
\(900\) 0 0
\(901\) −28.8492 −0.961105
\(902\) 16.6287 0.553676
\(903\) −47.0218 −1.56479
\(904\) 4.56340 0.151776
\(905\) 0 0
\(906\) −3.06218 −0.101734
\(907\) 3.04313 0.101045 0.0505227 0.998723i \(-0.483911\pi\)
0.0505227 + 0.998723i \(0.483911\pi\)
\(908\) −4.08255 −0.135484
\(909\) −1.82364 −0.0604863
\(910\) 0 0
\(911\) −52.8072 −1.74958 −0.874790 0.484501i \(-0.839001\pi\)
−0.874790 + 0.484501i \(0.839001\pi\)
\(912\) 4.65156 0.154028
\(913\) 5.04534 0.166976
\(914\) −0.215160 −0.00711685
\(915\) 0 0
\(916\) −24.3726 −0.805293
\(917\) 3.29257 0.108730
\(918\) −2.86382 −0.0945202
\(919\) 33.4001 1.10177 0.550884 0.834582i \(-0.314291\pi\)
0.550884 + 0.834582i \(0.314291\pi\)
\(920\) 0 0
\(921\) −27.9383 −0.920599
\(922\) −0.0943990 −0.00310886
\(923\) −8.16473 −0.268745
\(924\) 27.4199 0.902047
\(925\) 0 0
\(926\) 6.53651 0.214803
\(927\) 10.6248 0.348963
\(928\) 5.37083 0.176306
\(929\) −4.79788 −0.157413 −0.0787067 0.996898i \(-0.525079\pi\)
−0.0787067 + 0.996898i \(0.525079\pi\)
\(930\) 0 0
\(931\) 25.2674 0.828106
\(932\) −16.9621 −0.555613
\(933\) −34.7023 −1.13610
\(934\) −8.22698 −0.269195
\(935\) 0 0
\(936\) −5.22885 −0.170910
\(937\) −27.5261 −0.899238 −0.449619 0.893220i \(-0.648440\pi\)
−0.449619 + 0.893220i \(0.648440\pi\)
\(938\) −1.27236 −0.0415440
\(939\) −19.1085 −0.623582
\(940\) 0 0
\(941\) 16.6083 0.541415 0.270707 0.962662i \(-0.412742\pi\)
0.270707 + 0.962662i \(0.412742\pi\)
\(942\) 8.20711 0.267402
\(943\) 51.5694 1.67933
\(944\) 9.39669 0.305836
\(945\) 0 0
\(946\) −22.4980 −0.731473
\(947\) 37.8994 1.23156 0.615782 0.787916i \(-0.288840\pi\)
0.615782 + 0.787916i \(0.288840\pi\)
\(948\) −3.06026 −0.0993926
\(949\) 25.7588 0.836167
\(950\) 0 0
\(951\) −16.7578 −0.543410
\(952\) 46.0604 1.49283
\(953\) 39.3478 1.27460 0.637301 0.770615i \(-0.280051\pi\)
0.637301 + 0.770615i \(0.280051\pi\)
\(954\) 3.16067 0.102330
\(955\) 0 0
\(956\) 24.2180 0.783265
\(957\) 3.72689 0.120473
\(958\) −7.17671 −0.231869
\(959\) 84.1176 2.71630
\(960\) 0 0
\(961\) 67.9169 2.19087
\(962\) 7.62075 0.245703
\(963\) −12.2121 −0.393529
\(964\) −14.4757 −0.466230
\(965\) 0 0
\(966\) −15.8223 −0.509074
\(967\) −34.8122 −1.11949 −0.559743 0.828666i \(-0.689100\pi\)
−0.559743 + 0.828666i \(0.689100\pi\)
\(968\) 5.96671 0.191777
\(969\) 10.7324 0.344774
\(970\) 0 0
\(971\) −16.7398 −0.537207 −0.268603 0.963251i \(-0.586562\pi\)
−0.268603 + 0.963251i \(0.586562\pi\)
\(972\) −1.68624 −0.0540863
\(973\) 92.0890 2.95224
\(974\) 7.25696 0.232528
\(975\) 0 0
\(976\) 21.7569 0.696420
\(977\) −12.8886 −0.412344 −0.206172 0.978516i \(-0.566101\pi\)
−0.206172 + 0.978516i \(0.566101\pi\)
\(978\) −7.80563 −0.249597
\(979\) −53.0389 −1.69513
\(980\) 0 0
\(981\) −7.10102 −0.226718
\(982\) 10.4583 0.333739
\(983\) 20.3218 0.648166 0.324083 0.946029i \(-0.394944\pi\)
0.324083 + 0.946029i \(0.394944\pi\)
\(984\) 16.4474 0.524323
\(985\) 0 0
\(986\) 2.86382 0.0912027
\(987\) 40.9446 1.30328
\(988\) 8.96383 0.285177
\(989\) −69.7714 −2.21860
\(990\) 0 0
\(991\) −13.1802 −0.418683 −0.209341 0.977843i \(-0.567132\pi\)
−0.209341 + 0.977843i \(0.567132\pi\)
\(992\) 53.4167 1.69598
\(993\) 2.42129 0.0768373
\(994\) −7.87968 −0.249928
\(995\) 0 0
\(996\) 2.28278 0.0723327
\(997\) 57.5645 1.82309 0.911543 0.411206i \(-0.134892\pi\)
0.911543 + 0.411206i \(0.134892\pi\)
\(998\) 17.8843 0.566116
\(999\) 5.37249 0.169978
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2175.2.a.bb.1.3 yes 7
3.2 odd 2 6525.2.a.bu.1.5 7
5.2 odd 4 2175.2.c.o.349.7 14
5.3 odd 4 2175.2.c.o.349.8 14
5.4 even 2 2175.2.a.ba.1.5 7
15.14 odd 2 6525.2.a.bx.1.3 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2175.2.a.ba.1.5 7 5.4 even 2
2175.2.a.bb.1.3 yes 7 1.1 even 1 trivial
2175.2.c.o.349.7 14 5.2 odd 4
2175.2.c.o.349.8 14 5.3 odd 4
6525.2.a.bu.1.5 7 3.2 odd 2
6525.2.a.bx.1.3 7 15.14 odd 2