Properties

Label 2175.2.a.q.1.2
Level $2175$
Weight $2$
Character 2175.1
Self dual yes
Analytic conductor $17.367$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2175,2,Mod(1,2175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2175, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2175.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2175 = 3 \cdot 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2175.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(17.3674624396\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{10})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 435)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(1.61803\) of defining polynomial
Character \(\chi\) \(=\) 2175.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.61803 q^{2} -1.00000 q^{3} +0.618034 q^{4} -1.61803 q^{6} +3.00000 q^{7} -2.23607 q^{8} +1.00000 q^{9} +3.47214 q^{11} -0.618034 q^{12} +1.76393 q^{13} +4.85410 q^{14} -4.85410 q^{16} +5.47214 q^{17} +1.61803 q^{18} -5.70820 q^{19} -3.00000 q^{21} +5.61803 q^{22} +2.23607 q^{24} +2.85410 q^{26} -1.00000 q^{27} +1.85410 q^{28} +1.00000 q^{29} -8.00000 q^{31} -3.38197 q^{32} -3.47214 q^{33} +8.85410 q^{34} +0.618034 q^{36} +8.00000 q^{37} -9.23607 q^{38} -1.76393 q^{39} +4.47214 q^{41} -4.85410 q^{42} +1.23607 q^{43} +2.14590 q^{44} +6.70820 q^{47} +4.85410 q^{48} +2.00000 q^{49} -5.47214 q^{51} +1.09017 q^{52} +11.2361 q^{53} -1.61803 q^{54} -6.70820 q^{56} +5.70820 q^{57} +1.61803 q^{58} +0.763932 q^{59} +7.70820 q^{61} -12.9443 q^{62} +3.00000 q^{63} +4.23607 q^{64} -5.61803 q^{66} +2.52786 q^{67} +3.38197 q^{68} +2.76393 q^{71} -2.23607 q^{72} +8.00000 q^{73} +12.9443 q^{74} -3.52786 q^{76} +10.4164 q^{77} -2.85410 q^{78} +16.1803 q^{79} +1.00000 q^{81} +7.23607 q^{82} -9.70820 q^{83} -1.85410 q^{84} +2.00000 q^{86} -1.00000 q^{87} -7.76393 q^{88} -11.1803 q^{89} +5.29180 q^{91} +8.00000 q^{93} +10.8541 q^{94} +3.38197 q^{96} -7.23607 q^{97} +3.23607 q^{98} +3.47214 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{2} - 2 q^{3} - q^{4} - q^{6} + 6 q^{7} + 2 q^{9} - 2 q^{11} + q^{12} + 8 q^{13} + 3 q^{14} - 3 q^{16} + 2 q^{17} + q^{18} + 2 q^{19} - 6 q^{21} + 9 q^{22} - q^{26} - 2 q^{27} - 3 q^{28} + 2 q^{29}+ \cdots - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.61803 1.14412 0.572061 0.820211i \(-0.306144\pi\)
0.572061 + 0.820211i \(0.306144\pi\)
\(3\) −1.00000 −0.577350
\(4\) 0.618034 0.309017
\(5\) 0 0
\(6\) −1.61803 −0.660560
\(7\) 3.00000 1.13389 0.566947 0.823754i \(-0.308125\pi\)
0.566947 + 0.823754i \(0.308125\pi\)
\(8\) −2.23607 −0.790569
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 3.47214 1.04689 0.523444 0.852060i \(-0.324647\pi\)
0.523444 + 0.852060i \(0.324647\pi\)
\(12\) −0.618034 −0.178411
\(13\) 1.76393 0.489227 0.244613 0.969621i \(-0.421339\pi\)
0.244613 + 0.969621i \(0.421339\pi\)
\(14\) 4.85410 1.29731
\(15\) 0 0
\(16\) −4.85410 −1.21353
\(17\) 5.47214 1.32719 0.663594 0.748093i \(-0.269030\pi\)
0.663594 + 0.748093i \(0.269030\pi\)
\(18\) 1.61803 0.381374
\(19\) −5.70820 −1.30955 −0.654776 0.755823i \(-0.727237\pi\)
−0.654776 + 0.755823i \(0.727237\pi\)
\(20\) 0 0
\(21\) −3.00000 −0.654654
\(22\) 5.61803 1.19777
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 2.23607 0.456435
\(25\) 0 0
\(26\) 2.85410 0.559735
\(27\) −1.00000 −0.192450
\(28\) 1.85410 0.350392
\(29\) 1.00000 0.185695
\(30\) 0 0
\(31\) −8.00000 −1.43684 −0.718421 0.695608i \(-0.755135\pi\)
−0.718421 + 0.695608i \(0.755135\pi\)
\(32\) −3.38197 −0.597853
\(33\) −3.47214 −0.604421
\(34\) 8.85410 1.51847
\(35\) 0 0
\(36\) 0.618034 0.103006
\(37\) 8.00000 1.31519 0.657596 0.753371i \(-0.271573\pi\)
0.657596 + 0.753371i \(0.271573\pi\)
\(38\) −9.23607 −1.49829
\(39\) −1.76393 −0.282455
\(40\) 0 0
\(41\) 4.47214 0.698430 0.349215 0.937043i \(-0.386448\pi\)
0.349215 + 0.937043i \(0.386448\pi\)
\(42\) −4.85410 −0.749004
\(43\) 1.23607 0.188499 0.0942493 0.995549i \(-0.469955\pi\)
0.0942493 + 0.995549i \(0.469955\pi\)
\(44\) 2.14590 0.323506
\(45\) 0 0
\(46\) 0 0
\(47\) 6.70820 0.978492 0.489246 0.872146i \(-0.337272\pi\)
0.489246 + 0.872146i \(0.337272\pi\)
\(48\) 4.85410 0.700629
\(49\) 2.00000 0.285714
\(50\) 0 0
\(51\) −5.47214 −0.766252
\(52\) 1.09017 0.151179
\(53\) 11.2361 1.54339 0.771696 0.635991i \(-0.219409\pi\)
0.771696 + 0.635991i \(0.219409\pi\)
\(54\) −1.61803 −0.220187
\(55\) 0 0
\(56\) −6.70820 −0.896421
\(57\) 5.70820 0.756070
\(58\) 1.61803 0.212458
\(59\) 0.763932 0.0994555 0.0497277 0.998763i \(-0.484165\pi\)
0.0497277 + 0.998763i \(0.484165\pi\)
\(60\) 0 0
\(61\) 7.70820 0.986934 0.493467 0.869764i \(-0.335729\pi\)
0.493467 + 0.869764i \(0.335729\pi\)
\(62\) −12.9443 −1.64392
\(63\) 3.00000 0.377964
\(64\) 4.23607 0.529508
\(65\) 0 0
\(66\) −5.61803 −0.691532
\(67\) 2.52786 0.308828 0.154414 0.988006i \(-0.450651\pi\)
0.154414 + 0.988006i \(0.450651\pi\)
\(68\) 3.38197 0.410124
\(69\) 0 0
\(70\) 0 0
\(71\) 2.76393 0.328018 0.164009 0.986459i \(-0.447557\pi\)
0.164009 + 0.986459i \(0.447557\pi\)
\(72\) −2.23607 −0.263523
\(73\) 8.00000 0.936329 0.468165 0.883641i \(-0.344915\pi\)
0.468165 + 0.883641i \(0.344915\pi\)
\(74\) 12.9443 1.50474
\(75\) 0 0
\(76\) −3.52786 −0.404674
\(77\) 10.4164 1.18706
\(78\) −2.85410 −0.323163
\(79\) 16.1803 1.82043 0.910215 0.414136i \(-0.135916\pi\)
0.910215 + 0.414136i \(0.135916\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 7.23607 0.799090
\(83\) −9.70820 −1.06561 −0.532807 0.846237i \(-0.678863\pi\)
−0.532807 + 0.846237i \(0.678863\pi\)
\(84\) −1.85410 −0.202299
\(85\) 0 0
\(86\) 2.00000 0.215666
\(87\) −1.00000 −0.107211
\(88\) −7.76393 −0.827638
\(89\) −11.1803 −1.18511 −0.592557 0.805529i \(-0.701881\pi\)
−0.592557 + 0.805529i \(0.701881\pi\)
\(90\) 0 0
\(91\) 5.29180 0.554731
\(92\) 0 0
\(93\) 8.00000 0.829561
\(94\) 10.8541 1.11952
\(95\) 0 0
\(96\) 3.38197 0.345170
\(97\) −7.23607 −0.734711 −0.367356 0.930081i \(-0.619737\pi\)
−0.367356 + 0.930081i \(0.619737\pi\)
\(98\) 3.23607 0.326892
\(99\) 3.47214 0.348963
\(100\) 0 0
\(101\) −0.236068 −0.0234896 −0.0117448 0.999931i \(-0.503739\pi\)
−0.0117448 + 0.999931i \(0.503739\pi\)
\(102\) −8.85410 −0.876687
\(103\) 19.4164 1.91316 0.956578 0.291477i \(-0.0941468\pi\)
0.956578 + 0.291477i \(0.0941468\pi\)
\(104\) −3.94427 −0.386768
\(105\) 0 0
\(106\) 18.1803 1.76583
\(107\) −16.4721 −1.59242 −0.796211 0.605019i \(-0.793165\pi\)
−0.796211 + 0.605019i \(0.793165\pi\)
\(108\) −0.618034 −0.0594703
\(109\) 10.4164 0.997711 0.498855 0.866685i \(-0.333754\pi\)
0.498855 + 0.866685i \(0.333754\pi\)
\(110\) 0 0
\(111\) −8.00000 −0.759326
\(112\) −14.5623 −1.37601
\(113\) −9.94427 −0.935478 −0.467739 0.883867i \(-0.654931\pi\)
−0.467739 + 0.883867i \(0.654931\pi\)
\(114\) 9.23607 0.865037
\(115\) 0 0
\(116\) 0.618034 0.0573830
\(117\) 1.76393 0.163076
\(118\) 1.23607 0.113789
\(119\) 16.4164 1.50489
\(120\) 0 0
\(121\) 1.05573 0.0959753
\(122\) 12.4721 1.12917
\(123\) −4.47214 −0.403239
\(124\) −4.94427 −0.444009
\(125\) 0 0
\(126\) 4.85410 0.432438
\(127\) 6.00000 0.532414 0.266207 0.963916i \(-0.414230\pi\)
0.266207 + 0.963916i \(0.414230\pi\)
\(128\) 13.6180 1.20368
\(129\) −1.23607 −0.108830
\(130\) 0 0
\(131\) −5.47214 −0.478103 −0.239051 0.971007i \(-0.576836\pi\)
−0.239051 + 0.971007i \(0.576836\pi\)
\(132\) −2.14590 −0.186776
\(133\) −17.1246 −1.48489
\(134\) 4.09017 0.353337
\(135\) 0 0
\(136\) −12.2361 −1.04923
\(137\) −6.94427 −0.593289 −0.296645 0.954988i \(-0.595868\pi\)
−0.296645 + 0.954988i \(0.595868\pi\)
\(138\) 0 0
\(139\) 12.7082 1.07790 0.538948 0.842339i \(-0.318822\pi\)
0.538948 + 0.842339i \(0.318822\pi\)
\(140\) 0 0
\(141\) −6.70820 −0.564933
\(142\) 4.47214 0.375293
\(143\) 6.12461 0.512166
\(144\) −4.85410 −0.404508
\(145\) 0 0
\(146\) 12.9443 1.07128
\(147\) −2.00000 −0.164957
\(148\) 4.94427 0.406417
\(149\) −2.18034 −0.178620 −0.0893102 0.996004i \(-0.528466\pi\)
−0.0893102 + 0.996004i \(0.528466\pi\)
\(150\) 0 0
\(151\) −6.47214 −0.526695 −0.263347 0.964701i \(-0.584827\pi\)
−0.263347 + 0.964701i \(0.584827\pi\)
\(152\) 12.7639 1.03529
\(153\) 5.47214 0.442396
\(154\) 16.8541 1.35814
\(155\) 0 0
\(156\) −1.09017 −0.0872835
\(157\) −1.70820 −0.136330 −0.0681648 0.997674i \(-0.521714\pi\)
−0.0681648 + 0.997674i \(0.521714\pi\)
\(158\) 26.1803 2.08280
\(159\) −11.2361 −0.891078
\(160\) 0 0
\(161\) 0 0
\(162\) 1.61803 0.127125
\(163\) −25.1246 −1.96791 −0.983956 0.178413i \(-0.942904\pi\)
−0.983956 + 0.178413i \(0.942904\pi\)
\(164\) 2.76393 0.215827
\(165\) 0 0
\(166\) −15.7082 −1.21919
\(167\) −17.8885 −1.38426 −0.692129 0.721774i \(-0.743327\pi\)
−0.692129 + 0.721774i \(0.743327\pi\)
\(168\) 6.70820 0.517549
\(169\) −9.88854 −0.760657
\(170\) 0 0
\(171\) −5.70820 −0.436517
\(172\) 0.763932 0.0582493
\(173\) −7.41641 −0.563859 −0.281930 0.959435i \(-0.590974\pi\)
−0.281930 + 0.959435i \(0.590974\pi\)
\(174\) −1.61803 −0.122663
\(175\) 0 0
\(176\) −16.8541 −1.27043
\(177\) −0.763932 −0.0574206
\(178\) −18.0902 −1.35592
\(179\) −18.1803 −1.35886 −0.679431 0.733739i \(-0.737773\pi\)
−0.679431 + 0.733739i \(0.737773\pi\)
\(180\) 0 0
\(181\) −18.4164 −1.36888 −0.684440 0.729069i \(-0.739953\pi\)
−0.684440 + 0.729069i \(0.739953\pi\)
\(182\) 8.56231 0.634680
\(183\) −7.70820 −0.569807
\(184\) 0 0
\(185\) 0 0
\(186\) 12.9443 0.949120
\(187\) 19.0000 1.38942
\(188\) 4.14590 0.302371
\(189\) −3.00000 −0.218218
\(190\) 0 0
\(191\) 12.0000 0.868290 0.434145 0.900843i \(-0.357051\pi\)
0.434145 + 0.900843i \(0.357051\pi\)
\(192\) −4.23607 −0.305712
\(193\) 6.00000 0.431889 0.215945 0.976406i \(-0.430717\pi\)
0.215945 + 0.976406i \(0.430717\pi\)
\(194\) −11.7082 −0.840600
\(195\) 0 0
\(196\) 1.23607 0.0882906
\(197\) 2.94427 0.209771 0.104885 0.994484i \(-0.466552\pi\)
0.104885 + 0.994484i \(0.466552\pi\)
\(198\) 5.61803 0.399256
\(199\) 7.29180 0.516902 0.258451 0.966024i \(-0.416788\pi\)
0.258451 + 0.966024i \(0.416788\pi\)
\(200\) 0 0
\(201\) −2.52786 −0.178302
\(202\) −0.381966 −0.0268750
\(203\) 3.00000 0.210559
\(204\) −3.38197 −0.236785
\(205\) 0 0
\(206\) 31.4164 2.18888
\(207\) 0 0
\(208\) −8.56231 −0.593689
\(209\) −19.8197 −1.37095
\(210\) 0 0
\(211\) 7.88854 0.543070 0.271535 0.962429i \(-0.412469\pi\)
0.271535 + 0.962429i \(0.412469\pi\)
\(212\) 6.94427 0.476935
\(213\) −2.76393 −0.189382
\(214\) −26.6525 −1.82193
\(215\) 0 0
\(216\) 2.23607 0.152145
\(217\) −24.0000 −1.62923
\(218\) 16.8541 1.14150
\(219\) −8.00000 −0.540590
\(220\) 0 0
\(221\) 9.65248 0.649296
\(222\) −12.9443 −0.868763
\(223\) 13.0000 0.870544 0.435272 0.900299i \(-0.356652\pi\)
0.435272 + 0.900299i \(0.356652\pi\)
\(224\) −10.1459 −0.677901
\(225\) 0 0
\(226\) −16.0902 −1.07030
\(227\) 28.1803 1.87039 0.935197 0.354127i \(-0.115222\pi\)
0.935197 + 0.354127i \(0.115222\pi\)
\(228\) 3.52786 0.233639
\(229\) −17.4164 −1.15091 −0.575454 0.817834i \(-0.695175\pi\)
−0.575454 + 0.817834i \(0.695175\pi\)
\(230\) 0 0
\(231\) −10.4164 −0.685349
\(232\) −2.23607 −0.146805
\(233\) 25.4164 1.66508 0.832542 0.553962i \(-0.186885\pi\)
0.832542 + 0.553962i \(0.186885\pi\)
\(234\) 2.85410 0.186578
\(235\) 0 0
\(236\) 0.472136 0.0307334
\(237\) −16.1803 −1.05103
\(238\) 26.5623 1.72178
\(239\) −23.8885 −1.54522 −0.772611 0.634880i \(-0.781050\pi\)
−0.772611 + 0.634880i \(0.781050\pi\)
\(240\) 0 0
\(241\) 7.00000 0.450910 0.225455 0.974254i \(-0.427613\pi\)
0.225455 + 0.974254i \(0.427613\pi\)
\(242\) 1.70820 0.109808
\(243\) −1.00000 −0.0641500
\(244\) 4.76393 0.304979
\(245\) 0 0
\(246\) −7.23607 −0.461355
\(247\) −10.0689 −0.640668
\(248\) 17.8885 1.13592
\(249\) 9.70820 0.615232
\(250\) 0 0
\(251\) 10.8885 0.687279 0.343639 0.939102i \(-0.388340\pi\)
0.343639 + 0.939102i \(0.388340\pi\)
\(252\) 1.85410 0.116797
\(253\) 0 0
\(254\) 9.70820 0.609147
\(255\) 0 0
\(256\) 13.5623 0.847644
\(257\) −3.70820 −0.231311 −0.115656 0.993289i \(-0.536897\pi\)
−0.115656 + 0.993289i \(0.536897\pi\)
\(258\) −2.00000 −0.124515
\(259\) 24.0000 1.49129
\(260\) 0 0
\(261\) 1.00000 0.0618984
\(262\) −8.85410 −0.547008
\(263\) −24.0000 −1.47990 −0.739952 0.672660i \(-0.765152\pi\)
−0.739952 + 0.672660i \(0.765152\pi\)
\(264\) 7.76393 0.477837
\(265\) 0 0
\(266\) −27.7082 −1.69890
\(267\) 11.1803 0.684226
\(268\) 1.56231 0.0954330
\(269\) −25.7639 −1.57085 −0.785427 0.618954i \(-0.787557\pi\)
−0.785427 + 0.618954i \(0.787557\pi\)
\(270\) 0 0
\(271\) −30.3607 −1.84428 −0.922140 0.386856i \(-0.873561\pi\)
−0.922140 + 0.386856i \(0.873561\pi\)
\(272\) −26.5623 −1.61058
\(273\) −5.29180 −0.320274
\(274\) −11.2361 −0.678796
\(275\) 0 0
\(276\) 0 0
\(277\) 4.70820 0.282889 0.141444 0.989946i \(-0.454825\pi\)
0.141444 + 0.989946i \(0.454825\pi\)
\(278\) 20.5623 1.23325
\(279\) −8.00000 −0.478947
\(280\) 0 0
\(281\) 17.1246 1.02157 0.510784 0.859709i \(-0.329355\pi\)
0.510784 + 0.859709i \(0.329355\pi\)
\(282\) −10.8541 −0.646352
\(283\) −9.52786 −0.566373 −0.283186 0.959065i \(-0.591391\pi\)
−0.283186 + 0.959065i \(0.591391\pi\)
\(284\) 1.70820 0.101363
\(285\) 0 0
\(286\) 9.90983 0.585981
\(287\) 13.4164 0.791946
\(288\) −3.38197 −0.199284
\(289\) 12.9443 0.761428
\(290\) 0 0
\(291\) 7.23607 0.424186
\(292\) 4.94427 0.289342
\(293\) 0.0557281 0.00325567 0.00162783 0.999999i \(-0.499482\pi\)
0.00162783 + 0.999999i \(0.499482\pi\)
\(294\) −3.23607 −0.188731
\(295\) 0 0
\(296\) −17.8885 −1.03975
\(297\) −3.47214 −0.201474
\(298\) −3.52786 −0.204364
\(299\) 0 0
\(300\) 0 0
\(301\) 3.70820 0.213737
\(302\) −10.4721 −0.602604
\(303\) 0.236068 0.0135618
\(304\) 27.7082 1.58917
\(305\) 0 0
\(306\) 8.85410 0.506155
\(307\) −7.05573 −0.402692 −0.201346 0.979520i \(-0.564532\pi\)
−0.201346 + 0.979520i \(0.564532\pi\)
\(308\) 6.43769 0.366822
\(309\) −19.4164 −1.10456
\(310\) 0 0
\(311\) 14.5279 0.823800 0.411900 0.911229i \(-0.364865\pi\)
0.411900 + 0.911229i \(0.364865\pi\)
\(312\) 3.94427 0.223300
\(313\) 21.1803 1.19718 0.598592 0.801054i \(-0.295727\pi\)
0.598592 + 0.801054i \(0.295727\pi\)
\(314\) −2.76393 −0.155978
\(315\) 0 0
\(316\) 10.0000 0.562544
\(317\) 1.58359 0.0889434 0.0444717 0.999011i \(-0.485840\pi\)
0.0444717 + 0.999011i \(0.485840\pi\)
\(318\) −18.1803 −1.01950
\(319\) 3.47214 0.194402
\(320\) 0 0
\(321\) 16.4721 0.919385
\(322\) 0 0
\(323\) −31.2361 −1.73802
\(324\) 0.618034 0.0343352
\(325\) 0 0
\(326\) −40.6525 −2.25153
\(327\) −10.4164 −0.576029
\(328\) −10.0000 −0.552158
\(329\) 20.1246 1.10951
\(330\) 0 0
\(331\) 19.8885 1.09317 0.546587 0.837403i \(-0.315927\pi\)
0.546587 + 0.837403i \(0.315927\pi\)
\(332\) −6.00000 −0.329293
\(333\) 8.00000 0.438397
\(334\) −28.9443 −1.58376
\(335\) 0 0
\(336\) 14.5623 0.794439
\(337\) 11.5279 0.627963 0.313981 0.949429i \(-0.398337\pi\)
0.313981 + 0.949429i \(0.398337\pi\)
\(338\) −16.0000 −0.870285
\(339\) 9.94427 0.540099
\(340\) 0 0
\(341\) −27.7771 −1.50421
\(342\) −9.23607 −0.499429
\(343\) −15.0000 −0.809924
\(344\) −2.76393 −0.149021
\(345\) 0 0
\(346\) −12.0000 −0.645124
\(347\) −26.4721 −1.42110 −0.710549 0.703647i \(-0.751554\pi\)
−0.710549 + 0.703647i \(0.751554\pi\)
\(348\) −0.618034 −0.0331301
\(349\) −1.05573 −0.0565118 −0.0282559 0.999601i \(-0.508995\pi\)
−0.0282559 + 0.999601i \(0.508995\pi\)
\(350\) 0 0
\(351\) −1.76393 −0.0941517
\(352\) −11.7426 −0.625885
\(353\) −12.4721 −0.663825 −0.331912 0.943310i \(-0.607694\pi\)
−0.331912 + 0.943310i \(0.607694\pi\)
\(354\) −1.23607 −0.0656963
\(355\) 0 0
\(356\) −6.90983 −0.366220
\(357\) −16.4164 −0.868848
\(358\) −29.4164 −1.55471
\(359\) −31.4164 −1.65809 −0.829047 0.559178i \(-0.811117\pi\)
−0.829047 + 0.559178i \(0.811117\pi\)
\(360\) 0 0
\(361\) 13.5836 0.714926
\(362\) −29.7984 −1.56617
\(363\) −1.05573 −0.0554114
\(364\) 3.27051 0.171421
\(365\) 0 0
\(366\) −12.4721 −0.651929
\(367\) 11.4164 0.595932 0.297966 0.954577i \(-0.403692\pi\)
0.297966 + 0.954577i \(0.403692\pi\)
\(368\) 0 0
\(369\) 4.47214 0.232810
\(370\) 0 0
\(371\) 33.7082 1.75004
\(372\) 4.94427 0.256349
\(373\) 19.8885 1.02979 0.514895 0.857253i \(-0.327831\pi\)
0.514895 + 0.857253i \(0.327831\pi\)
\(374\) 30.7426 1.58966
\(375\) 0 0
\(376\) −15.0000 −0.773566
\(377\) 1.76393 0.0908471
\(378\) −4.85410 −0.249668
\(379\) −10.9443 −0.562169 −0.281085 0.959683i \(-0.590694\pi\)
−0.281085 + 0.959683i \(0.590694\pi\)
\(380\) 0 0
\(381\) −6.00000 −0.307389
\(382\) 19.4164 0.993430
\(383\) −38.0689 −1.94523 −0.972615 0.232424i \(-0.925334\pi\)
−0.972615 + 0.232424i \(0.925334\pi\)
\(384\) −13.6180 −0.694942
\(385\) 0 0
\(386\) 9.70820 0.494135
\(387\) 1.23607 0.0628329
\(388\) −4.47214 −0.227038
\(389\) 17.7639 0.900667 0.450334 0.892860i \(-0.351305\pi\)
0.450334 + 0.892860i \(0.351305\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −4.47214 −0.225877
\(393\) 5.47214 0.276033
\(394\) 4.76393 0.240003
\(395\) 0 0
\(396\) 2.14590 0.107835
\(397\) 33.4164 1.67712 0.838561 0.544808i \(-0.183398\pi\)
0.838561 + 0.544808i \(0.183398\pi\)
\(398\) 11.7984 0.591399
\(399\) 17.1246 0.857303
\(400\) 0 0
\(401\) −5.34752 −0.267043 −0.133521 0.991046i \(-0.542628\pi\)
−0.133521 + 0.991046i \(0.542628\pi\)
\(402\) −4.09017 −0.203999
\(403\) −14.1115 −0.702942
\(404\) −0.145898 −0.00725870
\(405\) 0 0
\(406\) 4.85410 0.240905
\(407\) 27.7771 1.37686
\(408\) 12.2361 0.605776
\(409\) −22.6525 −1.12009 −0.560046 0.828461i \(-0.689217\pi\)
−0.560046 + 0.828461i \(0.689217\pi\)
\(410\) 0 0
\(411\) 6.94427 0.342536
\(412\) 12.0000 0.591198
\(413\) 2.29180 0.112772
\(414\) 0 0
\(415\) 0 0
\(416\) −5.96556 −0.292486
\(417\) −12.7082 −0.622323
\(418\) −32.0689 −1.56854
\(419\) −10.3607 −0.506152 −0.253076 0.967446i \(-0.581442\pi\)
−0.253076 + 0.967446i \(0.581442\pi\)
\(420\) 0 0
\(421\) −24.1803 −1.17848 −0.589239 0.807959i \(-0.700572\pi\)
−0.589239 + 0.807959i \(0.700572\pi\)
\(422\) 12.7639 0.621338
\(423\) 6.70820 0.326164
\(424\) −25.1246 −1.22016
\(425\) 0 0
\(426\) −4.47214 −0.216676
\(427\) 23.1246 1.11908
\(428\) −10.1803 −0.492085
\(429\) −6.12461 −0.295699
\(430\) 0 0
\(431\) 25.5279 1.22963 0.614817 0.788670i \(-0.289230\pi\)
0.614817 + 0.788670i \(0.289230\pi\)
\(432\) 4.85410 0.233543
\(433\) −26.6525 −1.28084 −0.640418 0.768026i \(-0.721239\pi\)
−0.640418 + 0.768026i \(0.721239\pi\)
\(434\) −38.8328 −1.86403
\(435\) 0 0
\(436\) 6.43769 0.308310
\(437\) 0 0
\(438\) −12.9443 −0.618501
\(439\) 30.1246 1.43777 0.718885 0.695129i \(-0.244653\pi\)
0.718885 + 0.695129i \(0.244653\pi\)
\(440\) 0 0
\(441\) 2.00000 0.0952381
\(442\) 15.6180 0.742874
\(443\) −28.2361 −1.34154 −0.670768 0.741667i \(-0.734035\pi\)
−0.670768 + 0.741667i \(0.734035\pi\)
\(444\) −4.94427 −0.234645
\(445\) 0 0
\(446\) 21.0344 0.996010
\(447\) 2.18034 0.103127
\(448\) 12.7082 0.600406
\(449\) 6.23607 0.294298 0.147149 0.989114i \(-0.452990\pi\)
0.147149 + 0.989114i \(0.452990\pi\)
\(450\) 0 0
\(451\) 15.5279 0.731179
\(452\) −6.14590 −0.289079
\(453\) 6.47214 0.304087
\(454\) 45.5967 2.13996
\(455\) 0 0
\(456\) −12.7639 −0.597726
\(457\) 34.1246 1.59628 0.798141 0.602471i \(-0.205817\pi\)
0.798141 + 0.602471i \(0.205817\pi\)
\(458\) −28.1803 −1.31678
\(459\) −5.47214 −0.255417
\(460\) 0 0
\(461\) −42.3607 −1.97293 −0.986467 0.163961i \(-0.947573\pi\)
−0.986467 + 0.163961i \(0.947573\pi\)
\(462\) −16.8541 −0.784124
\(463\) 11.4721 0.533155 0.266578 0.963813i \(-0.414107\pi\)
0.266578 + 0.963813i \(0.414107\pi\)
\(464\) −4.85410 −0.225346
\(465\) 0 0
\(466\) 41.1246 1.90506
\(467\) −4.94427 −0.228794 −0.114397 0.993435i \(-0.536494\pi\)
−0.114397 + 0.993435i \(0.536494\pi\)
\(468\) 1.09017 0.0503931
\(469\) 7.58359 0.350178
\(470\) 0 0
\(471\) 1.70820 0.0787099
\(472\) −1.70820 −0.0786265
\(473\) 4.29180 0.197337
\(474\) −26.1803 −1.20250
\(475\) 0 0
\(476\) 10.1459 0.465036
\(477\) 11.2361 0.514464
\(478\) −38.6525 −1.76792
\(479\) 2.47214 0.112955 0.0564774 0.998404i \(-0.482013\pi\)
0.0564774 + 0.998404i \(0.482013\pi\)
\(480\) 0 0
\(481\) 14.1115 0.643427
\(482\) 11.3262 0.515896
\(483\) 0 0
\(484\) 0.652476 0.0296580
\(485\) 0 0
\(486\) −1.61803 −0.0733955
\(487\) 12.0000 0.543772 0.271886 0.962329i \(-0.412353\pi\)
0.271886 + 0.962329i \(0.412353\pi\)
\(488\) −17.2361 −0.780240
\(489\) 25.1246 1.13617
\(490\) 0 0
\(491\) −9.88854 −0.446264 −0.223132 0.974788i \(-0.571628\pi\)
−0.223132 + 0.974788i \(0.571628\pi\)
\(492\) −2.76393 −0.124608
\(493\) 5.47214 0.246453
\(494\) −16.2918 −0.733003
\(495\) 0 0
\(496\) 38.8328 1.74364
\(497\) 8.29180 0.371938
\(498\) 15.7082 0.703901
\(499\) −28.2361 −1.26402 −0.632010 0.774960i \(-0.717770\pi\)
−0.632010 + 0.774960i \(0.717770\pi\)
\(500\) 0 0
\(501\) 17.8885 0.799201
\(502\) 17.6180 0.786331
\(503\) −18.5967 −0.829188 −0.414594 0.910006i \(-0.636076\pi\)
−0.414594 + 0.910006i \(0.636076\pi\)
\(504\) −6.70820 −0.298807
\(505\) 0 0
\(506\) 0 0
\(507\) 9.88854 0.439166
\(508\) 3.70820 0.164525
\(509\) −16.1803 −0.717181 −0.358590 0.933495i \(-0.616743\pi\)
−0.358590 + 0.933495i \(0.616743\pi\)
\(510\) 0 0
\(511\) 24.0000 1.06170
\(512\) −5.29180 −0.233867
\(513\) 5.70820 0.252023
\(514\) −6.00000 −0.264649
\(515\) 0 0
\(516\) −0.763932 −0.0336302
\(517\) 23.2918 1.02437
\(518\) 38.8328 1.70622
\(519\) 7.41641 0.325544
\(520\) 0 0
\(521\) −25.2361 −1.10561 −0.552806 0.833310i \(-0.686443\pi\)
−0.552806 + 0.833310i \(0.686443\pi\)
\(522\) 1.61803 0.0708194
\(523\) −23.8328 −1.04214 −0.521068 0.853515i \(-0.674466\pi\)
−0.521068 + 0.853515i \(0.674466\pi\)
\(524\) −3.38197 −0.147742
\(525\) 0 0
\(526\) −38.8328 −1.69319
\(527\) −43.7771 −1.90696
\(528\) 16.8541 0.733481
\(529\) −23.0000 −1.00000
\(530\) 0 0
\(531\) 0.763932 0.0331518
\(532\) −10.5836 −0.458857
\(533\) 7.88854 0.341691
\(534\) 18.0902 0.782838
\(535\) 0 0
\(536\) −5.65248 −0.244150
\(537\) 18.1803 0.784540
\(538\) −41.6869 −1.79725
\(539\) 6.94427 0.299111
\(540\) 0 0
\(541\) −6.36068 −0.273467 −0.136733 0.990608i \(-0.543660\pi\)
−0.136733 + 0.990608i \(0.543660\pi\)
\(542\) −49.1246 −2.11008
\(543\) 18.4164 0.790324
\(544\) −18.5066 −0.793463
\(545\) 0 0
\(546\) −8.56231 −0.366433
\(547\) −18.5279 −0.792194 −0.396097 0.918209i \(-0.629636\pi\)
−0.396097 + 0.918209i \(0.629636\pi\)
\(548\) −4.29180 −0.183336
\(549\) 7.70820 0.328978
\(550\) 0 0
\(551\) −5.70820 −0.243178
\(552\) 0 0
\(553\) 48.5410 2.06417
\(554\) 7.61803 0.323659
\(555\) 0 0
\(556\) 7.85410 0.333088
\(557\) −7.23607 −0.306602 −0.153301 0.988180i \(-0.548990\pi\)
−0.153301 + 0.988180i \(0.548990\pi\)
\(558\) −12.9443 −0.547975
\(559\) 2.18034 0.0922186
\(560\) 0 0
\(561\) −19.0000 −0.802181
\(562\) 27.7082 1.16880
\(563\) −3.87539 −0.163328 −0.0816641 0.996660i \(-0.526023\pi\)
−0.0816641 + 0.996660i \(0.526023\pi\)
\(564\) −4.14590 −0.174574
\(565\) 0 0
\(566\) −15.4164 −0.648000
\(567\) 3.00000 0.125988
\(568\) −6.18034 −0.259321
\(569\) 17.1803 0.720237 0.360119 0.932907i \(-0.382736\pi\)
0.360119 + 0.932907i \(0.382736\pi\)
\(570\) 0 0
\(571\) −20.0000 −0.836974 −0.418487 0.908223i \(-0.637439\pi\)
−0.418487 + 0.908223i \(0.637439\pi\)
\(572\) 3.78522 0.158268
\(573\) −12.0000 −0.501307
\(574\) 21.7082 0.906083
\(575\) 0 0
\(576\) 4.23607 0.176503
\(577\) −33.3050 −1.38650 −0.693252 0.720696i \(-0.743823\pi\)
−0.693252 + 0.720696i \(0.743823\pi\)
\(578\) 20.9443 0.871167
\(579\) −6.00000 −0.249351
\(580\) 0 0
\(581\) −29.1246 −1.20829
\(582\) 11.7082 0.485321
\(583\) 39.0132 1.61576
\(584\) −17.8885 −0.740233
\(585\) 0 0
\(586\) 0.0901699 0.00372489
\(587\) 24.1803 0.998029 0.499015 0.866594i \(-0.333695\pi\)
0.499015 + 0.866594i \(0.333695\pi\)
\(588\) −1.23607 −0.0509746
\(589\) 45.6656 1.88162
\(590\) 0 0
\(591\) −2.94427 −0.121111
\(592\) −38.8328 −1.59602
\(593\) −6.65248 −0.273184 −0.136592 0.990627i \(-0.543615\pi\)
−0.136592 + 0.990627i \(0.543615\pi\)
\(594\) −5.61803 −0.230511
\(595\) 0 0
\(596\) −1.34752 −0.0551967
\(597\) −7.29180 −0.298433
\(598\) 0 0
\(599\) 26.8885 1.09864 0.549318 0.835613i \(-0.314888\pi\)
0.549318 + 0.835613i \(0.314888\pi\)
\(600\) 0 0
\(601\) 43.8885 1.79025 0.895126 0.445814i \(-0.147086\pi\)
0.895126 + 0.445814i \(0.147086\pi\)
\(602\) 6.00000 0.244542
\(603\) 2.52786 0.102943
\(604\) −4.00000 −0.162758
\(605\) 0 0
\(606\) 0.381966 0.0155163
\(607\) −9.34752 −0.379404 −0.189702 0.981842i \(-0.560752\pi\)
−0.189702 + 0.981842i \(0.560752\pi\)
\(608\) 19.3050 0.782919
\(609\) −3.00000 −0.121566
\(610\) 0 0
\(611\) 11.8328 0.478704
\(612\) 3.38197 0.136708
\(613\) −20.7082 −0.836396 −0.418198 0.908356i \(-0.637338\pi\)
−0.418198 + 0.908356i \(0.637338\pi\)
\(614\) −11.4164 −0.460729
\(615\) 0 0
\(616\) −23.2918 −0.938453
\(617\) 19.3050 0.777188 0.388594 0.921409i \(-0.372961\pi\)
0.388594 + 0.921409i \(0.372961\pi\)
\(618\) −31.4164 −1.26375
\(619\) −12.4721 −0.501297 −0.250649 0.968078i \(-0.580644\pi\)
−0.250649 + 0.968078i \(0.580644\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 23.5066 0.942528
\(623\) −33.5410 −1.34379
\(624\) 8.56231 0.342767
\(625\) 0 0
\(626\) 34.2705 1.36973
\(627\) 19.8197 0.791521
\(628\) −1.05573 −0.0421281
\(629\) 43.7771 1.74551
\(630\) 0 0
\(631\) 46.4853 1.85055 0.925275 0.379297i \(-0.123834\pi\)
0.925275 + 0.379297i \(0.123834\pi\)
\(632\) −36.1803 −1.43918
\(633\) −7.88854 −0.313541
\(634\) 2.56231 0.101762
\(635\) 0 0
\(636\) −6.94427 −0.275358
\(637\) 3.52786 0.139779
\(638\) 5.61803 0.222420
\(639\) 2.76393 0.109339
\(640\) 0 0
\(641\) 41.7639 1.64958 0.824788 0.565442i \(-0.191294\pi\)
0.824788 + 0.565442i \(0.191294\pi\)
\(642\) 26.6525 1.05189
\(643\) −17.8328 −0.703258 −0.351629 0.936140i \(-0.614372\pi\)
−0.351629 + 0.936140i \(0.614372\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −50.5410 −1.98851
\(647\) −6.76393 −0.265918 −0.132959 0.991122i \(-0.542448\pi\)
−0.132959 + 0.991122i \(0.542448\pi\)
\(648\) −2.23607 −0.0878410
\(649\) 2.65248 0.104119
\(650\) 0 0
\(651\) 24.0000 0.940634
\(652\) −15.5279 −0.608118
\(653\) 26.8885 1.05223 0.526115 0.850413i \(-0.323648\pi\)
0.526115 + 0.850413i \(0.323648\pi\)
\(654\) −16.8541 −0.659048
\(655\) 0 0
\(656\) −21.7082 −0.847563
\(657\) 8.00000 0.312110
\(658\) 32.5623 1.26941
\(659\) −21.0000 −0.818044 −0.409022 0.912525i \(-0.634130\pi\)
−0.409022 + 0.912525i \(0.634130\pi\)
\(660\) 0 0
\(661\) 15.8328 0.615825 0.307913 0.951415i \(-0.400370\pi\)
0.307913 + 0.951415i \(0.400370\pi\)
\(662\) 32.1803 1.25072
\(663\) −9.65248 −0.374871
\(664\) 21.7082 0.842442
\(665\) 0 0
\(666\) 12.9443 0.501580
\(667\) 0 0
\(668\) −11.0557 −0.427759
\(669\) −13.0000 −0.502609
\(670\) 0 0
\(671\) 26.7639 1.03321
\(672\) 10.1459 0.391387
\(673\) 46.7082 1.80047 0.900234 0.435405i \(-0.143395\pi\)
0.900234 + 0.435405i \(0.143395\pi\)
\(674\) 18.6525 0.718467
\(675\) 0 0
\(676\) −6.11146 −0.235056
\(677\) −14.8885 −0.572213 −0.286107 0.958198i \(-0.592361\pi\)
−0.286107 + 0.958198i \(0.592361\pi\)
\(678\) 16.0902 0.617939
\(679\) −21.7082 −0.833084
\(680\) 0 0
\(681\) −28.1803 −1.07987
\(682\) −44.9443 −1.72101
\(683\) 19.4164 0.742948 0.371474 0.928443i \(-0.378852\pi\)
0.371474 + 0.928443i \(0.378852\pi\)
\(684\) −3.52786 −0.134891
\(685\) 0 0
\(686\) −24.2705 −0.926652
\(687\) 17.4164 0.664477
\(688\) −6.00000 −0.228748
\(689\) 19.8197 0.755069
\(690\) 0 0
\(691\) −21.2918 −0.809978 −0.404989 0.914322i \(-0.632725\pi\)
−0.404989 + 0.914322i \(0.632725\pi\)
\(692\) −4.58359 −0.174242
\(693\) 10.4164 0.395687
\(694\) −42.8328 −1.62591
\(695\) 0 0
\(696\) 2.23607 0.0847579
\(697\) 24.4721 0.926948
\(698\) −1.70820 −0.0646565
\(699\) −25.4164 −0.961337
\(700\) 0 0
\(701\) 35.1246 1.32664 0.663319 0.748337i \(-0.269147\pi\)
0.663319 + 0.748337i \(0.269147\pi\)
\(702\) −2.85410 −0.107721
\(703\) −45.6656 −1.72231
\(704\) 14.7082 0.554336
\(705\) 0 0
\(706\) −20.1803 −0.759497
\(707\) −0.708204 −0.0266348
\(708\) −0.472136 −0.0177440
\(709\) −15.8885 −0.596707 −0.298353 0.954455i \(-0.596437\pi\)
−0.298353 + 0.954455i \(0.596437\pi\)
\(710\) 0 0
\(711\) 16.1803 0.606810
\(712\) 25.0000 0.936915
\(713\) 0 0
\(714\) −26.5623 −0.994069
\(715\) 0 0
\(716\) −11.2361 −0.419912
\(717\) 23.8885 0.892134
\(718\) −50.8328 −1.89706
\(719\) −6.76393 −0.252252 −0.126126 0.992014i \(-0.540254\pi\)
−0.126126 + 0.992014i \(0.540254\pi\)
\(720\) 0 0
\(721\) 58.2492 2.16931
\(722\) 21.9787 0.817963
\(723\) −7.00000 −0.260333
\(724\) −11.3820 −0.423007
\(725\) 0 0
\(726\) −1.70820 −0.0633974
\(727\) −37.8885 −1.40521 −0.702604 0.711581i \(-0.747980\pi\)
−0.702604 + 0.711581i \(0.747980\pi\)
\(728\) −11.8328 −0.438553
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 6.76393 0.250173
\(732\) −4.76393 −0.176080
\(733\) 27.7082 1.02343 0.511713 0.859156i \(-0.329011\pi\)
0.511713 + 0.859156i \(0.329011\pi\)
\(734\) 18.4721 0.681819
\(735\) 0 0
\(736\) 0 0
\(737\) 8.77709 0.323308
\(738\) 7.23607 0.266363
\(739\) −43.4853 −1.59963 −0.799816 0.600245i \(-0.795070\pi\)
−0.799816 + 0.600245i \(0.795070\pi\)
\(740\) 0 0
\(741\) 10.0689 0.369890
\(742\) 54.5410 2.00226
\(743\) 33.1803 1.21727 0.608634 0.793451i \(-0.291718\pi\)
0.608634 + 0.793451i \(0.291718\pi\)
\(744\) −17.8885 −0.655826
\(745\) 0 0
\(746\) 32.1803 1.17821
\(747\) −9.70820 −0.355205
\(748\) 11.7426 0.429354
\(749\) −49.4164 −1.80564
\(750\) 0 0
\(751\) 16.5836 0.605144 0.302572 0.953127i \(-0.402155\pi\)
0.302572 + 0.953127i \(0.402155\pi\)
\(752\) −32.5623 −1.18743
\(753\) −10.8885 −0.396801
\(754\) 2.85410 0.103940
\(755\) 0 0
\(756\) −1.85410 −0.0674330
\(757\) −18.8328 −0.684490 −0.342245 0.939611i \(-0.611187\pi\)
−0.342245 + 0.939611i \(0.611187\pi\)
\(758\) −17.7082 −0.643191
\(759\) 0 0
\(760\) 0 0
\(761\) −43.0132 −1.55923 −0.779613 0.626262i \(-0.784584\pi\)
−0.779613 + 0.626262i \(0.784584\pi\)
\(762\) −9.70820 −0.351691
\(763\) 31.2492 1.13130
\(764\) 7.41641 0.268316
\(765\) 0 0
\(766\) −61.5967 −2.22558
\(767\) 1.34752 0.0486563
\(768\) −13.5623 −0.489388
\(769\) 3.34752 0.120715 0.0603574 0.998177i \(-0.480776\pi\)
0.0603574 + 0.998177i \(0.480776\pi\)
\(770\) 0 0
\(771\) 3.70820 0.133548
\(772\) 3.70820 0.133461
\(773\) −28.2492 −1.01605 −0.508027 0.861341i \(-0.669625\pi\)
−0.508027 + 0.861341i \(0.669625\pi\)
\(774\) 2.00000 0.0718885
\(775\) 0 0
\(776\) 16.1803 0.580840
\(777\) −24.0000 −0.860995
\(778\) 28.7426 1.03047
\(779\) −25.5279 −0.914631
\(780\) 0 0
\(781\) 9.59675 0.343399
\(782\) 0 0
\(783\) −1.00000 −0.0357371
\(784\) −9.70820 −0.346722
\(785\) 0 0
\(786\) 8.85410 0.315815
\(787\) 33.8885 1.20800 0.603998 0.796986i \(-0.293573\pi\)
0.603998 + 0.796986i \(0.293573\pi\)
\(788\) 1.81966 0.0648227
\(789\) 24.0000 0.854423
\(790\) 0 0
\(791\) −29.8328 −1.06073
\(792\) −7.76393 −0.275879
\(793\) 13.5967 0.482835
\(794\) 54.0689 1.91883
\(795\) 0 0
\(796\) 4.50658 0.159731
\(797\) 10.9443 0.387666 0.193833 0.981035i \(-0.437908\pi\)
0.193833 + 0.981035i \(0.437908\pi\)
\(798\) 27.7082 0.980860
\(799\) 36.7082 1.29864
\(800\) 0 0
\(801\) −11.1803 −0.395038
\(802\) −8.65248 −0.305530
\(803\) 27.7771 0.980232
\(804\) −1.56231 −0.0550983
\(805\) 0 0
\(806\) −22.8328 −0.804252
\(807\) 25.7639 0.906933
\(808\) 0.527864 0.0185702
\(809\) 39.7639 1.39803 0.699013 0.715109i \(-0.253623\pi\)
0.699013 + 0.715109i \(0.253623\pi\)
\(810\) 0 0
\(811\) −9.29180 −0.326279 −0.163140 0.986603i \(-0.552162\pi\)
−0.163140 + 0.986603i \(0.552162\pi\)
\(812\) 1.85410 0.0650662
\(813\) 30.3607 1.06480
\(814\) 44.9443 1.57530
\(815\) 0 0
\(816\) 26.5623 0.929867
\(817\) −7.05573 −0.246849
\(818\) −36.6525 −1.28152
\(819\) 5.29180 0.184910
\(820\) 0 0
\(821\) −37.4164 −1.30584 −0.652921 0.757426i \(-0.726457\pi\)
−0.652921 + 0.757426i \(0.726457\pi\)
\(822\) 11.2361 0.391903
\(823\) 33.2361 1.15854 0.579268 0.815137i \(-0.303338\pi\)
0.579268 + 0.815137i \(0.303338\pi\)
\(824\) −43.4164 −1.51248
\(825\) 0 0
\(826\) 3.70820 0.129025
\(827\) −19.4164 −0.675175 −0.337587 0.941294i \(-0.609611\pi\)
−0.337587 + 0.941294i \(0.609611\pi\)
\(828\) 0 0
\(829\) −20.0000 −0.694629 −0.347314 0.937749i \(-0.612906\pi\)
−0.347314 + 0.937749i \(0.612906\pi\)
\(830\) 0 0
\(831\) −4.70820 −0.163326
\(832\) 7.47214 0.259050
\(833\) 10.9443 0.379197
\(834\) −20.5623 −0.712014
\(835\) 0 0
\(836\) −12.2492 −0.423648
\(837\) 8.00000 0.276520
\(838\) −16.7639 −0.579100
\(839\) −20.8885 −0.721153 −0.360576 0.932730i \(-0.617420\pi\)
−0.360576 + 0.932730i \(0.617420\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) −39.1246 −1.34832
\(843\) −17.1246 −0.589803
\(844\) 4.87539 0.167818
\(845\) 0 0
\(846\) 10.8541 0.373172
\(847\) 3.16718 0.108826
\(848\) −54.5410 −1.87295
\(849\) 9.52786 0.326995
\(850\) 0 0
\(851\) 0 0
\(852\) −1.70820 −0.0585221
\(853\) 33.2361 1.13798 0.568991 0.822344i \(-0.307334\pi\)
0.568991 + 0.822344i \(0.307334\pi\)
\(854\) 37.4164 1.28036
\(855\) 0 0
\(856\) 36.8328 1.25892
\(857\) −11.8885 −0.406105 −0.203052 0.979168i \(-0.565086\pi\)
−0.203052 + 0.979168i \(0.565086\pi\)
\(858\) −9.90983 −0.338316
\(859\) −2.29180 −0.0781951 −0.0390975 0.999235i \(-0.512448\pi\)
−0.0390975 + 0.999235i \(0.512448\pi\)
\(860\) 0 0
\(861\) −13.4164 −0.457230
\(862\) 41.3050 1.40685
\(863\) 33.5967 1.14365 0.571823 0.820377i \(-0.306236\pi\)
0.571823 + 0.820377i \(0.306236\pi\)
\(864\) 3.38197 0.115057
\(865\) 0 0
\(866\) −43.1246 −1.46543
\(867\) −12.9443 −0.439611
\(868\) −14.8328 −0.503459
\(869\) 56.1803 1.90579
\(870\) 0 0
\(871\) 4.45898 0.151087
\(872\) −23.2918 −0.788760
\(873\) −7.23607 −0.244904
\(874\) 0 0
\(875\) 0 0
\(876\) −4.94427 −0.167051
\(877\) 4.83282 0.163193 0.0815963 0.996665i \(-0.473998\pi\)
0.0815963 + 0.996665i \(0.473998\pi\)
\(878\) 48.7426 1.64498
\(879\) −0.0557281 −0.00187966
\(880\) 0 0
\(881\) −0.708204 −0.0238600 −0.0119300 0.999929i \(-0.503798\pi\)
−0.0119300 + 0.999929i \(0.503798\pi\)
\(882\) 3.23607 0.108964
\(883\) 32.0000 1.07689 0.538443 0.842662i \(-0.319013\pi\)
0.538443 + 0.842662i \(0.319013\pi\)
\(884\) 5.96556 0.200643
\(885\) 0 0
\(886\) −45.6869 −1.53488
\(887\) −4.59675 −0.154344 −0.0771718 0.997018i \(-0.524589\pi\)
−0.0771718 + 0.997018i \(0.524589\pi\)
\(888\) 17.8885 0.600300
\(889\) 18.0000 0.603701
\(890\) 0 0
\(891\) 3.47214 0.116321
\(892\) 8.03444 0.269013
\(893\) −38.2918 −1.28139
\(894\) 3.52786 0.117989
\(895\) 0 0
\(896\) 40.8541 1.36484
\(897\) 0 0
\(898\) 10.0902 0.336713
\(899\) −8.00000 −0.266815
\(900\) 0 0
\(901\) 61.4853 2.04837
\(902\) 25.1246 0.836558
\(903\) −3.70820 −0.123401
\(904\) 22.2361 0.739561
\(905\) 0 0
\(906\) 10.4721 0.347913
\(907\) −31.2361 −1.03718 −0.518588 0.855024i \(-0.673542\pi\)
−0.518588 + 0.855024i \(0.673542\pi\)
\(908\) 17.4164 0.577984
\(909\) −0.236068 −0.00782988
\(910\) 0 0
\(911\) −35.9443 −1.19089 −0.595443 0.803397i \(-0.703024\pi\)
−0.595443 + 0.803397i \(0.703024\pi\)
\(912\) −27.7082 −0.917510
\(913\) −33.7082 −1.11558
\(914\) 55.2148 1.82634
\(915\) 0 0
\(916\) −10.7639 −0.355650
\(917\) −16.4164 −0.542118
\(918\) −8.85410 −0.292229
\(919\) −20.1246 −0.663850 −0.331925 0.943306i \(-0.607698\pi\)
−0.331925 + 0.943306i \(0.607698\pi\)
\(920\) 0 0
\(921\) 7.05573 0.232494
\(922\) −68.5410 −2.25728
\(923\) 4.87539 0.160475
\(924\) −6.43769 −0.211785
\(925\) 0 0
\(926\) 18.5623 0.609995
\(927\) 19.4164 0.637719
\(928\) −3.38197 −0.111018
\(929\) −3.16718 −0.103912 −0.0519560 0.998649i \(-0.516546\pi\)
−0.0519560 + 0.998649i \(0.516546\pi\)
\(930\) 0 0
\(931\) −11.4164 −0.374158
\(932\) 15.7082 0.514539
\(933\) −14.5279 −0.475621
\(934\) −8.00000 −0.261768
\(935\) 0 0
\(936\) −3.94427 −0.128923
\(937\) −24.2361 −0.791758 −0.395879 0.918303i \(-0.629560\pi\)
−0.395879 + 0.918303i \(0.629560\pi\)
\(938\) 12.2705 0.400646
\(939\) −21.1803 −0.691194
\(940\) 0 0
\(941\) 12.0689 0.393434 0.196717 0.980460i \(-0.436972\pi\)
0.196717 + 0.980460i \(0.436972\pi\)
\(942\) 2.76393 0.0900538
\(943\) 0 0
\(944\) −3.70820 −0.120692
\(945\) 0 0
\(946\) 6.94427 0.225778
\(947\) −0.708204 −0.0230135 −0.0115068 0.999934i \(-0.503663\pi\)
−0.0115068 + 0.999934i \(0.503663\pi\)
\(948\) −10.0000 −0.324785
\(949\) 14.1115 0.458077
\(950\) 0 0
\(951\) −1.58359 −0.0513515
\(952\) −36.7082 −1.18972
\(953\) 57.0132 1.84684 0.923419 0.383794i \(-0.125383\pi\)
0.923419 + 0.383794i \(0.125383\pi\)
\(954\) 18.1803 0.588610
\(955\) 0 0
\(956\) −14.7639 −0.477500
\(957\) −3.47214 −0.112238
\(958\) 4.00000 0.129234
\(959\) −20.8328 −0.672727
\(960\) 0 0
\(961\) 33.0000 1.06452
\(962\) 22.8328 0.736160
\(963\) −16.4721 −0.530807
\(964\) 4.32624 0.139339
\(965\) 0 0
\(966\) 0 0
\(967\) −5.12461 −0.164796 −0.0823982 0.996599i \(-0.526258\pi\)
−0.0823982 + 0.996599i \(0.526258\pi\)
\(968\) −2.36068 −0.0758751
\(969\) 31.2361 1.00345
\(970\) 0 0
\(971\) −40.9443 −1.31396 −0.656982 0.753906i \(-0.728167\pi\)
−0.656982 + 0.753906i \(0.728167\pi\)
\(972\) −0.618034 −0.0198234
\(973\) 38.1246 1.22222
\(974\) 19.4164 0.622142
\(975\) 0 0
\(976\) −37.4164 −1.19767
\(977\) 13.5279 0.432795 0.216397 0.976305i \(-0.430569\pi\)
0.216397 + 0.976305i \(0.430569\pi\)
\(978\) 40.6525 1.29992
\(979\) −38.8197 −1.24068
\(980\) 0 0
\(981\) 10.4164 0.332570
\(982\) −16.0000 −0.510581
\(983\) −46.4721 −1.48223 −0.741115 0.671378i \(-0.765703\pi\)
−0.741115 + 0.671378i \(0.765703\pi\)
\(984\) 10.0000 0.318788
\(985\) 0 0
\(986\) 8.85410 0.281972
\(987\) −20.1246 −0.640573
\(988\) −6.22291 −0.197977
\(989\) 0 0
\(990\) 0 0
\(991\) −62.4853 −1.98491 −0.992455 0.122607i \(-0.960875\pi\)
−0.992455 + 0.122607i \(0.960875\pi\)
\(992\) 27.0557 0.859020
\(993\) −19.8885 −0.631144
\(994\) 13.4164 0.425543
\(995\) 0 0
\(996\) 6.00000 0.190117
\(997\) 19.4164 0.614924 0.307462 0.951560i \(-0.400520\pi\)
0.307462 + 0.951560i \(0.400520\pi\)
\(998\) −45.6869 −1.44619
\(999\) −8.00000 −0.253109
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2175.2.a.q.1.2 2
3.2 odd 2 6525.2.a.s.1.1 2
5.2 odd 4 2175.2.c.j.349.4 4
5.3 odd 4 2175.2.c.j.349.1 4
5.4 even 2 435.2.a.e.1.1 2
15.14 odd 2 1305.2.a.k.1.2 2
20.19 odd 2 6960.2.a.bu.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
435.2.a.e.1.1 2 5.4 even 2
1305.2.a.k.1.2 2 15.14 odd 2
2175.2.a.q.1.2 2 1.1 even 1 trivial
2175.2.c.j.349.1 4 5.3 odd 4
2175.2.c.j.349.4 4 5.2 odd 4
6525.2.a.s.1.1 2 3.2 odd 2
6960.2.a.bu.1.1 2 20.19 odd 2