Properties

Label 2175.2.d.e
Level $2175$
Weight $2$
Character orbit 2175.d
Analytic conductor $17.367$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2175,2,Mod(376,2175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2175, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2175.376");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2175 = 3 \cdot 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2175.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(17.3674624396\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{5})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 3x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 87)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} + \beta_{3} q^{3} + (\beta_{2} + 1) q^{4} - \beta_{2} q^{6} + ( - 2 \beta_{2} + 1) q^{7} + (\beta_{3} + 2 \beta_1) q^{8} - q^{9} + (\beta_{3} + 2 \beta_1) q^{11} + (\beta_{3} + \beta_1) q^{12}+ \cdots + ( - \beta_{3} - 2 \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{4} + 2 q^{6} + 8 q^{7} - 4 q^{9} + 4 q^{13} - 6 q^{16} - 10 q^{22} + 4 q^{23} - 6 q^{28} - 6 q^{34} - 2 q^{36} - 32 q^{38} + 14 q^{42} + 8 q^{49} + 12 q^{51} + 2 q^{52} - 36 q^{53} - 2 q^{54}+ \cdots - 18 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 3x^{2} + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} + 1 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} + 2\nu \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} - 1 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} - 2\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2175\mathbb{Z}\right)^\times\).

\(n\) \(901\) \(1451\) \(2002\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
376.1
1.61803i
0.618034i
0.618034i
1.61803i
1.61803i 1.00000i −0.618034 0 1.61803 4.23607 2.23607i −1.00000 0
376.2 0.618034i 1.00000i 1.61803 0 −0.618034 −0.236068 2.23607i −1.00000 0
376.3 0.618034i 1.00000i 1.61803 0 −0.618034 −0.236068 2.23607i −1.00000 0
376.4 1.61803i 1.00000i −0.618034 0 1.61803 4.23607 2.23607i −1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
29.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2175.2.d.e 4
5.b even 2 1 87.2.c.a 4
5.c odd 4 1 2175.2.f.a 4
5.c odd 4 1 2175.2.f.b 4
15.d odd 2 1 261.2.c.b 4
20.d odd 2 1 1392.2.o.i 4
29.b even 2 1 inner 2175.2.d.e 4
60.h even 2 1 4176.2.o.l 4
145.d even 2 1 87.2.c.a 4
145.f odd 4 1 2523.2.a.d 2
145.f odd 4 1 2523.2.a.e 2
145.h odd 4 1 2175.2.f.a 4
145.h odd 4 1 2175.2.f.b 4
435.b odd 2 1 261.2.c.b 4
435.l even 4 1 7569.2.a.f 2
435.l even 4 1 7569.2.a.n 2
580.e odd 2 1 1392.2.o.i 4
1740.k even 2 1 4176.2.o.l 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
87.2.c.a 4 5.b even 2 1
87.2.c.a 4 145.d even 2 1
261.2.c.b 4 15.d odd 2 1
261.2.c.b 4 435.b odd 2 1
1392.2.o.i 4 20.d odd 2 1
1392.2.o.i 4 580.e odd 2 1
2175.2.d.e 4 1.a even 1 1 trivial
2175.2.d.e 4 29.b even 2 1 inner
2175.2.f.a 4 5.c odd 4 1
2175.2.f.a 4 145.h odd 4 1
2175.2.f.b 4 5.c odd 4 1
2175.2.f.b 4 145.h odd 4 1
2523.2.a.d 2 145.f odd 4 1
2523.2.a.e 2 145.f odd 4 1
4176.2.o.l 4 60.h even 2 1
4176.2.o.l 4 1740.k even 2 1
7569.2.a.f 2 435.l even 4 1
7569.2.a.n 2 435.l even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(2175, [\chi])\):

\( T_{2}^{4} + 3T_{2}^{2} + 1 \) Copy content Toggle raw display
\( T_{7}^{2} - 4T_{7} - 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} + 3T^{2} + 1 \) Copy content Toggle raw display
$3$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( (T^{2} - 4 T - 1)^{2} \) Copy content Toggle raw display
$11$ \( (T^{2} + 5)^{2} \) Copy content Toggle raw display
$13$ \( (T - 1)^{4} \) Copy content Toggle raw display
$17$ \( (T^{2} + 9)^{2} \) Copy content Toggle raw display
$19$ \( T^{4} + 92T^{2} + 1936 \) Copy content Toggle raw display
$23$ \( (T^{2} - 2 T - 4)^{2} \) Copy content Toggle raw display
$29$ \( T^{4} - 22T^{2} + 841 \) Copy content Toggle raw display
$31$ \( T^{4} + 60T^{2} + 400 \) Copy content Toggle raw display
$37$ \( T^{4} + 108T^{2} + 1936 \) Copy content Toggle raw display
$41$ \( (T^{2} + 20)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} + 72T^{2} + 16 \) Copy content Toggle raw display
$47$ \( T^{4} + 138T^{2} + 3481 \) Copy content Toggle raw display
$53$ \( (T^{2} + 18 T + 76)^{2} \) Copy content Toggle raw display
$59$ \( (T^{2} - 80)^{2} \) Copy content Toggle raw display
$61$ \( T^{4} + 60T^{2} + 400 \) Copy content Toggle raw display
$67$ \( (T^{2} - 4 T - 41)^{2} \) Copy content Toggle raw display
$71$ \( (T^{2} - 14 T + 44)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} + 92T^{2} + 1936 \) Copy content Toggle raw display
$79$ \( T^{4} + 252T^{2} + 1296 \) Copy content Toggle raw display
$83$ \( (T - 6)^{4} \) Copy content Toggle raw display
$89$ \( T^{4} + 322T^{2} + 1 \) Copy content Toggle raw display
$97$ \( T^{4} + 348T^{2} + 5776 \) Copy content Toggle raw display
show more
show less