Properties

Label 2175.2.d.e
Level 21752175
Weight 22
Character orbit 2175.d
Analytic conductor 17.36717.367
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2175,2,Mod(376,2175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2175, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2175.376");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 2175=35229 2175 = 3 \cdot 5^{2} \cdot 29
Weight: k k == 2 2
Character orbit: [χ][\chi] == 2175.d (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 17.367462439617.3674624396
Analytic rank: 00
Dimension: 44
Coefficient field: Q(i,5)\Q(i, \sqrt{5})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4+3x2+1 x^{4} + 3x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 87)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β1q2+β3q3+(β2+1)q4β2q6+(2β2+1)q7+(β3+2β1)q8q9+(β3+2β1)q11+(β3+β1)q12++(β32β1)q99+O(q100) q + \beta_1 q^{2} + \beta_{3} q^{3} + (\beta_{2} + 1) q^{4} - \beta_{2} q^{6} + ( - 2 \beta_{2} + 1) q^{7} + (\beta_{3} + 2 \beta_1) q^{8} - q^{9} + (\beta_{3} + 2 \beta_1) q^{11} + (\beta_{3} + \beta_1) q^{12}+ \cdots + ( - \beta_{3} - 2 \beta_1) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+2q4+2q6+8q74q9+4q136q1610q22+4q236q286q342q3632q38+14q42+8q49+12q51+2q5236q532q54+18q96+O(q100) 4 q + 2 q^{4} + 2 q^{6} + 8 q^{7} - 4 q^{9} + 4 q^{13} - 6 q^{16} - 10 q^{22} + 4 q^{23} - 6 q^{28} - 6 q^{34} - 2 q^{36} - 32 q^{38} + 14 q^{42} + 8 q^{49} + 12 q^{51} + 2 q^{52} - 36 q^{53} - 2 q^{54}+ \cdots - 18 q^{96}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x4+3x2+1 x^{4} + 3x^{2} + 1 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== ν2+1 \nu^{2} + 1 Copy content Toggle raw display
β3\beta_{3}== ν3+2ν \nu^{3} + 2\nu Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β21 \beta_{2} - 1 Copy content Toggle raw display
ν3\nu^{3}== β32β1 \beta_{3} - 2\beta_1 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/2175Z)×\left(\mathbb{Z}/2175\mathbb{Z}\right)^\times.

nn 901901 14511451 20022002
χ(n)\chi(n) 1-1 11 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
376.1
1.61803i
0.618034i
0.618034i
1.61803i
1.61803i 1.00000i −0.618034 0 1.61803 4.23607 2.23607i −1.00000 0
376.2 0.618034i 1.00000i 1.61803 0 −0.618034 −0.236068 2.23607i −1.00000 0
376.3 0.618034i 1.00000i 1.61803 0 −0.618034 −0.236068 2.23607i −1.00000 0
376.4 1.61803i 1.00000i −0.618034 0 1.61803 4.23607 2.23607i −1.00000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
29.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2175.2.d.e 4
5.b even 2 1 87.2.c.a 4
5.c odd 4 1 2175.2.f.a 4
5.c odd 4 1 2175.2.f.b 4
15.d odd 2 1 261.2.c.b 4
20.d odd 2 1 1392.2.o.i 4
29.b even 2 1 inner 2175.2.d.e 4
60.h even 2 1 4176.2.o.l 4
145.d even 2 1 87.2.c.a 4
145.f odd 4 1 2523.2.a.d 2
145.f odd 4 1 2523.2.a.e 2
145.h odd 4 1 2175.2.f.a 4
145.h odd 4 1 2175.2.f.b 4
435.b odd 2 1 261.2.c.b 4
435.l even 4 1 7569.2.a.f 2
435.l even 4 1 7569.2.a.n 2
580.e odd 2 1 1392.2.o.i 4
1740.k even 2 1 4176.2.o.l 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
87.2.c.a 4 5.b even 2 1
87.2.c.a 4 145.d even 2 1
261.2.c.b 4 15.d odd 2 1
261.2.c.b 4 435.b odd 2 1
1392.2.o.i 4 20.d odd 2 1
1392.2.o.i 4 580.e odd 2 1
2175.2.d.e 4 1.a even 1 1 trivial
2175.2.d.e 4 29.b even 2 1 inner
2175.2.f.a 4 5.c odd 4 1
2175.2.f.a 4 145.h odd 4 1
2175.2.f.b 4 5.c odd 4 1
2175.2.f.b 4 145.h odd 4 1
2523.2.a.d 2 145.f odd 4 1
2523.2.a.e 2 145.f odd 4 1
4176.2.o.l 4 60.h even 2 1
4176.2.o.l 4 1740.k even 2 1
7569.2.a.f 2 435.l even 4 1
7569.2.a.n 2 435.l even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(2175,[χ])S_{2}^{\mathrm{new}}(2175, [\chi]):

T24+3T22+1 T_{2}^{4} + 3T_{2}^{2} + 1 Copy content Toggle raw display
T724T71 T_{7}^{2} - 4T_{7} - 1 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4+3T2+1 T^{4} + 3T^{2} + 1 Copy content Toggle raw display
33 (T2+1)2 (T^{2} + 1)^{2} Copy content Toggle raw display
55 T4 T^{4} Copy content Toggle raw display
77 (T24T1)2 (T^{2} - 4 T - 1)^{2} Copy content Toggle raw display
1111 (T2+5)2 (T^{2} + 5)^{2} Copy content Toggle raw display
1313 (T1)4 (T - 1)^{4} Copy content Toggle raw display
1717 (T2+9)2 (T^{2} + 9)^{2} Copy content Toggle raw display
1919 T4+92T2+1936 T^{4} + 92T^{2} + 1936 Copy content Toggle raw display
2323 (T22T4)2 (T^{2} - 2 T - 4)^{2} Copy content Toggle raw display
2929 T422T2+841 T^{4} - 22T^{2} + 841 Copy content Toggle raw display
3131 T4+60T2+400 T^{4} + 60T^{2} + 400 Copy content Toggle raw display
3737 T4+108T2+1936 T^{4} + 108T^{2} + 1936 Copy content Toggle raw display
4141 (T2+20)2 (T^{2} + 20)^{2} Copy content Toggle raw display
4343 T4+72T2+16 T^{4} + 72T^{2} + 16 Copy content Toggle raw display
4747 T4+138T2+3481 T^{4} + 138T^{2} + 3481 Copy content Toggle raw display
5353 (T2+18T+76)2 (T^{2} + 18 T + 76)^{2} Copy content Toggle raw display
5959 (T280)2 (T^{2} - 80)^{2} Copy content Toggle raw display
6161 T4+60T2+400 T^{4} + 60T^{2} + 400 Copy content Toggle raw display
6767 (T24T41)2 (T^{2} - 4 T - 41)^{2} Copy content Toggle raw display
7171 (T214T+44)2 (T^{2} - 14 T + 44)^{2} Copy content Toggle raw display
7373 T4+92T2+1936 T^{4} + 92T^{2} + 1936 Copy content Toggle raw display
7979 T4+252T2+1296 T^{4} + 252T^{2} + 1296 Copy content Toggle raw display
8383 (T6)4 (T - 6)^{4} Copy content Toggle raw display
8989 T4+322T2+1 T^{4} + 322T^{2} + 1 Copy content Toggle raw display
9797 T4+348T2+5776 T^{4} + 348T^{2} + 5776 Copy content Toggle raw display
show more
show less