Properties

Label 220.3.h.a.199.2
Level $220$
Weight $3$
Character 220.199
Analytic conductor $5.995$
Analytic rank $0$
Dimension $60$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [220,3,Mod(199,220)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(220, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("220.199");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 220 = 2^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 220.h (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.99456581593\)
Analytic rank: \(0\)
Dimension: \(60\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 199.2
Character \(\chi\) \(=\) 220.199
Dual form 220.3.h.a.199.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.99644 + 0.119294i) q^{2} +0.337678 q^{3} +(3.97154 - 0.476326i) q^{4} +(1.42257 - 4.79336i) q^{5} +(-0.674153 + 0.0402829i) q^{6} -6.79613 q^{7} +(-7.87211 + 1.42474i) q^{8} -8.88597 q^{9} +(-2.26826 + 9.73935i) q^{10} +3.31662i q^{11} +(1.34110 - 0.160845i) q^{12} -7.56772i q^{13} +(13.5681 - 0.810737i) q^{14} +(0.480371 - 1.61861i) q^{15} +(15.5462 - 3.78349i) q^{16} +26.2930i q^{17} +(17.7403 - 1.06004i) q^{18} +14.2491i q^{19} +(3.36660 - 19.7146i) q^{20} -2.29490 q^{21} +(-0.395653 - 6.62144i) q^{22} -34.5573 q^{23} +(-2.65824 + 0.481102i) q^{24} +(-20.9526 - 13.6378i) q^{25} +(0.902784 + 15.1085i) q^{26} -6.03970 q^{27} +(-26.9911 + 3.23717i) q^{28} -19.2441 q^{29} +(-0.765941 + 3.28876i) q^{30} -44.2429i q^{31} +(-30.5857 + 9.40809i) q^{32} +1.11995i q^{33} +(-3.13660 - 52.4925i) q^{34} +(-9.66799 + 32.5763i) q^{35} +(-35.2910 + 4.23262i) q^{36} +46.5774i q^{37} +(-1.69983 - 28.4475i) q^{38} -2.55545i q^{39} +(-4.36937 + 39.7606i) q^{40} -67.4821 q^{41} +(4.58163 - 0.273768i) q^{42} +54.3809 q^{43} +(1.57979 + 13.1721i) q^{44} +(-12.6409 + 42.5937i) q^{45} +(68.9914 - 4.12247i) q^{46} -7.43139 q^{47} +(5.24961 - 1.27760i) q^{48} -2.81262 q^{49} +(43.4574 + 24.7275i) q^{50} +8.87858i q^{51} +(-3.60470 - 30.0555i) q^{52} -88.6475i q^{53} +(12.0579 - 0.720499i) q^{54} +(15.8978 + 4.71814i) q^{55} +(53.4999 - 9.68269i) q^{56} +4.81161i q^{57} +(38.4196 - 2.29570i) q^{58} -74.2727i q^{59} +(1.13683 - 6.65719i) q^{60} -21.7427 q^{61} +(5.27791 + 88.3283i) q^{62} +60.3902 q^{63} +(59.9403 - 22.4314i) q^{64} +(-36.2748 - 10.7656i) q^{65} +(-0.133603 - 2.23591i) q^{66} +53.3540 q^{67} +(12.5241 + 104.424i) q^{68} -11.6692 q^{69} +(15.4154 - 66.1899i) q^{70} +107.738i q^{71} +(69.9514 - 12.6602i) q^{72} +34.9727i q^{73} +(-5.55640 - 92.9889i) q^{74} +(-7.07522 - 4.60518i) q^{75} +(6.78723 + 56.5909i) q^{76} -22.5402i q^{77} +(0.304850 + 5.10180i) q^{78} -119.442i q^{79} +(3.97999 - 79.9009i) q^{80} +77.9343 q^{81} +(134.724 - 8.05021i) q^{82} -91.9838 q^{83} +(-9.11429 + 1.09312i) q^{84} +(126.032 + 37.4038i) q^{85} +(-108.568 + 6.48731i) q^{86} -6.49830 q^{87} +(-4.72532 - 26.1088i) q^{88} +32.6768 q^{89} +(20.1557 - 86.5436i) q^{90} +51.4312i q^{91} +(-137.245 + 16.4605i) q^{92} -14.9399i q^{93} +(14.8363 - 0.886520i) q^{94} +(68.3011 + 20.2704i) q^{95} +(-10.3281 + 3.17690i) q^{96} +13.3085i q^{97} +(5.61522 - 0.335528i) q^{98} -29.4714i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 60 q - 4 q^{4} + 4 q^{5} + 12 q^{6} + 180 q^{9} - 18 q^{10} - 56 q^{14} - 40 q^{16} + 84 q^{20} - 16 q^{21} + 104 q^{24} - 60 q^{25} + 28 q^{26} - 88 q^{29} - 166 q^{30} - 152 q^{34} - 248 q^{36} + 132 q^{40}+ \cdots + 216 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/220\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(111\) \(177\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.99644 + 0.119294i −0.998220 + 0.0596470i
\(3\) 0.337678 0.112559 0.0562796 0.998415i \(-0.482076\pi\)
0.0562796 + 0.998415i \(0.482076\pi\)
\(4\) 3.97154 0.476326i 0.992884 0.119082i
\(5\) 1.42257 4.79336i 0.284514 0.958672i
\(6\) −0.674153 + 0.0402829i −0.112359 + 0.00671382i
\(7\) −6.79613 −0.970876 −0.485438 0.874271i \(-0.661340\pi\)
−0.485438 + 0.874271i \(0.661340\pi\)
\(8\) −7.87211 + 1.42474i −0.984014 + 0.178092i
\(9\) −8.88597 −0.987330
\(10\) −2.26826 + 9.73935i −0.226826 + 0.973935i
\(11\) 3.31662i 0.301511i
\(12\) 1.34110 0.160845i 0.111758 0.0134037i
\(13\) 7.56772i 0.582133i −0.956703 0.291066i \(-0.905990\pi\)
0.956703 0.291066i \(-0.0940100\pi\)
\(14\) 13.5681 0.810737i 0.969147 0.0579098i
\(15\) 0.480371 1.61861i 0.0320247 0.107907i
\(16\) 15.5462 3.78349i 0.971639 0.236468i
\(17\) 26.2930i 1.54665i 0.634010 + 0.773325i \(0.281408\pi\)
−0.634010 + 0.773325i \(0.718592\pi\)
\(18\) 17.7403 1.06004i 0.985573 0.0588913i
\(19\) 14.2491i 0.749953i 0.927034 + 0.374977i \(0.122349\pi\)
−0.927034 + 0.374977i \(0.877651\pi\)
\(20\) 3.36660 19.7146i 0.168330 0.985731i
\(21\) −2.29490 −0.109281
\(22\) −0.395653 6.62144i −0.0179842 0.300975i
\(23\) −34.5573 −1.50249 −0.751245 0.660024i \(-0.770546\pi\)
−0.751245 + 0.660024i \(0.770546\pi\)
\(24\) −2.65824 + 0.481102i −0.110760 + 0.0200459i
\(25\) −20.9526 13.6378i −0.838103 0.545512i
\(26\) 0.902784 + 15.1085i 0.0347224 + 0.581096i
\(27\) −6.03970 −0.223692
\(28\) −26.9911 + 3.23717i −0.963967 + 0.115613i
\(29\) −19.2441 −0.663589 −0.331794 0.943352i \(-0.607654\pi\)
−0.331794 + 0.943352i \(0.607654\pi\)
\(30\) −0.765941 + 3.28876i −0.0255314 + 0.109625i
\(31\) 44.2429i 1.42719i −0.700558 0.713596i \(-0.747065\pi\)
0.700558 0.713596i \(-0.252935\pi\)
\(32\) −30.5857 + 9.40809i −0.955805 + 0.294003i
\(33\) 1.11995i 0.0339379i
\(34\) −3.13660 52.4925i −0.0922530 1.54390i
\(35\) −9.66799 + 32.5763i −0.276228 + 0.930751i
\(36\) −35.2910 + 4.23262i −0.980305 + 0.117573i
\(37\) 46.5774i 1.25885i 0.777062 + 0.629424i \(0.216709\pi\)
−0.777062 + 0.629424i \(0.783291\pi\)
\(38\) −1.69983 28.4475i −0.0447324 0.748618i
\(39\) 2.55545i 0.0655244i
\(40\) −4.36937 + 39.7606i −0.109234 + 0.994016i
\(41\) −67.4821 −1.64591 −0.822953 0.568110i \(-0.807675\pi\)
−0.822953 + 0.568110i \(0.807675\pi\)
\(42\) 4.58163 0.273768i 0.109086 0.00651828i
\(43\) 54.3809 1.26467 0.632336 0.774695i \(-0.282096\pi\)
0.632336 + 0.774695i \(0.282096\pi\)
\(44\) 1.57979 + 13.1721i 0.0359044 + 0.299366i
\(45\) −12.6409 + 42.5937i −0.280910 + 0.946526i
\(46\) 68.9914 4.12247i 1.49981 0.0896189i
\(47\) −7.43139 −0.158115 −0.0790574 0.996870i \(-0.525191\pi\)
−0.0790574 + 0.996870i \(0.525191\pi\)
\(48\) 5.24961 1.27760i 0.109367 0.0266167i
\(49\) −2.81262 −0.0574004
\(50\) 43.4574 + 24.7275i 0.869149 + 0.494550i
\(51\) 8.87858i 0.174090i
\(52\) −3.60470 30.0555i −0.0693212 0.577990i
\(53\) 88.6475i 1.67259i −0.548277 0.836297i \(-0.684716\pi\)
0.548277 0.836297i \(-0.315284\pi\)
\(54\) 12.0579 0.720499i 0.223294 0.0133426i
\(55\) 15.8978 + 4.71814i 0.289050 + 0.0857843i
\(56\) 53.4999 9.68269i 0.955355 0.172905i
\(57\) 4.81161i 0.0844142i
\(58\) 38.4196 2.29570i 0.662407 0.0395811i
\(59\) 74.2727i 1.25886i −0.777057 0.629430i \(-0.783288\pi\)
0.777057 0.629430i \(-0.216712\pi\)
\(60\) 1.13683 6.65719i 0.0189471 0.110953i
\(61\) −21.7427 −0.356438 −0.178219 0.983991i \(-0.557034\pi\)
−0.178219 + 0.983991i \(0.557034\pi\)
\(62\) 5.27791 + 88.3283i 0.0851276 + 1.42465i
\(63\) 60.3902 0.958575
\(64\) 59.9403 22.4314i 0.936566 0.350490i
\(65\) −36.2748 10.7656i −0.558074 0.165625i
\(66\) −0.133603 2.23591i −0.00202429 0.0338775i
\(67\) 53.3540 0.796328 0.398164 0.917314i \(-0.369647\pi\)
0.398164 + 0.917314i \(0.369647\pi\)
\(68\) 12.5241 + 104.424i 0.184177 + 1.53564i
\(69\) −11.6692 −0.169119
\(70\) 15.4154 66.1899i 0.220220 0.945570i
\(71\) 107.738i 1.51744i 0.651419 + 0.758719i \(0.274174\pi\)
−0.651419 + 0.758719i \(0.725826\pi\)
\(72\) 69.9514 12.6602i 0.971547 0.175836i
\(73\) 34.9727i 0.479078i 0.970887 + 0.239539i \(0.0769963\pi\)
−0.970887 + 0.239539i \(0.923004\pi\)
\(74\) −5.55640 92.9889i −0.0750865 1.25661i
\(75\) −7.07522 4.60518i −0.0943362 0.0614024i
\(76\) 6.78723 + 56.5909i 0.0893056 + 0.744617i
\(77\) 22.5402i 0.292730i
\(78\) 0.304850 + 5.10180i 0.00390833 + 0.0654078i
\(79\) 119.442i 1.51193i −0.654614 0.755963i \(-0.727169\pi\)
0.654614 0.755963i \(-0.272831\pi\)
\(80\) 3.97999 79.9009i 0.0497498 0.998762i
\(81\) 77.9343 0.962152
\(82\) 134.724 8.05021i 1.64297 0.0981732i
\(83\) −91.9838 −1.10824 −0.554119 0.832437i \(-0.686945\pi\)
−0.554119 + 0.832437i \(0.686945\pi\)
\(84\) −9.11429 + 1.09312i −0.108503 + 0.0130134i
\(85\) 126.032 + 37.4038i 1.48273 + 0.440044i
\(86\) −108.568 + 6.48731i −1.26242 + 0.0754338i
\(87\) −6.49830 −0.0746931
\(88\) −4.72532 26.1088i −0.0536968 0.296691i
\(89\) 32.6768 0.367155 0.183577 0.983005i \(-0.441232\pi\)
0.183577 + 0.983005i \(0.441232\pi\)
\(90\) 20.1557 86.5436i 0.223952 0.961596i
\(91\) 51.4312i 0.565178i
\(92\) −137.245 + 16.4605i −1.49180 + 0.178919i
\(93\) 14.9399i 0.160644i
\(94\) 14.8363 0.886520i 0.157833 0.00943106i
\(95\) 68.3011 + 20.2704i 0.718959 + 0.213373i
\(96\) −10.3281 + 3.17690i −0.107585 + 0.0330927i
\(97\) 13.3085i 0.137201i 0.997644 + 0.0686006i \(0.0218534\pi\)
−0.997644 + 0.0686006i \(0.978147\pi\)
\(98\) 5.61522 0.335528i 0.0572982 0.00342376i
\(99\) 29.4714i 0.297691i
\(100\) −89.7100 44.1828i −0.897100 0.441828i
\(101\) 40.3501 0.399506 0.199753 0.979846i \(-0.435986\pi\)
0.199753 + 0.979846i \(0.435986\pi\)
\(102\) −1.05916 17.7255i −0.0103839 0.173780i
\(103\) 65.9697 0.640483 0.320241 0.947336i \(-0.396236\pi\)
0.320241 + 0.947336i \(0.396236\pi\)
\(104\) 10.7820 + 59.5740i 0.103673 + 0.572827i
\(105\) −3.26466 + 11.0003i −0.0310920 + 0.104765i
\(106\) 10.5751 + 176.979i 0.0997652 + 1.66962i
\(107\) −42.8379 −0.400355 −0.200177 0.979760i \(-0.564152\pi\)
−0.200177 + 0.979760i \(0.564152\pi\)
\(108\) −23.9869 + 2.87686i −0.222101 + 0.0266376i
\(109\) 33.8101 0.310184 0.155092 0.987900i \(-0.450433\pi\)
0.155092 + 0.987900i \(0.450433\pi\)
\(110\) −32.3018 7.52297i −0.293653 0.0683906i
\(111\) 15.7282i 0.141695i
\(112\) −105.654 + 25.7131i −0.943341 + 0.229581i
\(113\) 130.528i 1.15511i −0.816351 0.577556i \(-0.804006\pi\)
0.816351 0.577556i \(-0.195994\pi\)
\(114\) −0.573996 9.60608i −0.00503505 0.0842639i
\(115\) −49.1602 + 165.645i −0.427480 + 1.44039i
\(116\) −76.4286 + 9.16646i −0.658867 + 0.0790212i
\(117\) 67.2466i 0.574757i
\(118\) 8.86029 + 148.281i 0.0750872 + 1.25662i
\(119\) 178.691i 1.50160i
\(120\) −1.47544 + 13.4263i −0.0122953 + 0.111886i
\(121\) −11.0000 −0.0909091
\(122\) 43.4080 2.59377i 0.355803 0.0212604i
\(123\) −22.7872 −0.185262
\(124\) −21.0741 175.713i −0.169952 1.41704i
\(125\) −95.1774 + 81.0325i −0.761419 + 0.648260i
\(126\) −120.565 + 7.20419i −0.956868 + 0.0571761i
\(127\) 5.97899 0.0470787 0.0235393 0.999723i \(-0.492507\pi\)
0.0235393 + 0.999723i \(0.492507\pi\)
\(128\) −116.991 + 51.9334i −0.913993 + 0.405729i
\(129\) 18.3632 0.142350
\(130\) 73.7047 + 17.1656i 0.566960 + 0.132043i
\(131\) 11.3591i 0.0867105i −0.999060 0.0433552i \(-0.986195\pi\)
0.999060 0.0433552i \(-0.0138047\pi\)
\(132\) 0.533462 + 4.44793i 0.00404138 + 0.0336964i
\(133\) 96.8388i 0.728112i
\(134\) −106.518 + 6.36481i −0.794910 + 0.0474985i
\(135\) −8.59190 + 28.9504i −0.0636437 + 0.214448i
\(136\) −37.4607 206.982i −0.275446 1.52192i
\(137\) 97.9040i 0.714628i 0.933984 + 0.357314i \(0.116307\pi\)
−0.933984 + 0.357314i \(0.883693\pi\)
\(138\) 23.2969 1.39207i 0.168818 0.0100874i
\(139\) 83.2834i 0.599161i 0.954071 + 0.299581i \(0.0968468\pi\)
−0.954071 + 0.299581i \(0.903153\pi\)
\(140\) −22.8798 + 133.983i −0.163427 + 0.957022i
\(141\) −2.50942 −0.0177973
\(142\) −12.8525 215.092i −0.0905105 1.51474i
\(143\) 25.0993 0.175520
\(144\) −138.143 + 33.6200i −0.959329 + 0.233472i
\(145\) −27.3761 + 92.2438i −0.188801 + 0.636164i
\(146\) −4.17203 69.8209i −0.0285756 0.478225i
\(147\) −0.949759 −0.00646094
\(148\) 22.1860 + 184.984i 0.149906 + 1.24989i
\(149\) 143.283 0.961632 0.480816 0.876822i \(-0.340341\pi\)
0.480816 + 0.876822i \(0.340341\pi\)
\(150\) 14.6746 + 8.34993i 0.0978308 + 0.0556662i
\(151\) 19.1317i 0.126700i −0.997991 0.0633500i \(-0.979822\pi\)
0.997991 0.0633500i \(-0.0201784\pi\)
\(152\) −20.3012 112.171i −0.133561 0.737965i
\(153\) 233.639i 1.52705i
\(154\) 2.68891 + 45.0002i 0.0174605 + 0.292209i
\(155\) −212.072 62.9388i −1.36821 0.406057i
\(156\) −1.21723 10.1491i −0.00780275 0.0650582i
\(157\) 226.543i 1.44295i −0.692442 0.721474i \(-0.743465\pi\)
0.692442 0.721474i \(-0.256535\pi\)
\(158\) 14.2487 + 238.459i 0.0901818 + 1.50923i
\(159\) 29.9343i 0.188266i
\(160\) 1.58589 + 159.992i 0.00991183 + 0.999951i
\(161\) 234.856 1.45873
\(162\) −155.591 + 9.29709i −0.960439 + 0.0573894i
\(163\) −249.137 −1.52845 −0.764225 0.644950i \(-0.776878\pi\)
−0.764225 + 0.644950i \(0.776878\pi\)
\(164\) −268.008 + 32.1435i −1.63419 + 0.195997i
\(165\) 5.36832 + 1.59321i 0.0325353 + 0.00965582i
\(166\) 183.640 10.9731i 1.10627 0.0661031i
\(167\) −60.2805 −0.360961 −0.180481 0.983579i \(-0.557765\pi\)
−0.180481 + 0.983579i \(0.557765\pi\)
\(168\) 18.0657 3.26963i 0.107534 0.0194621i
\(169\) 111.730 0.661122
\(170\) −256.077 59.6395i −1.50634 0.350821i
\(171\) 126.617i 0.740452i
\(172\) 215.976 25.9030i 1.25567 0.150599i
\(173\) 24.9330i 0.144121i 0.997400 + 0.0720607i \(0.0229575\pi\)
−0.997400 + 0.0720607i \(0.977042\pi\)
\(174\) 12.9735 0.775207i 0.0745601 0.00445521i
\(175\) 142.396 + 92.6843i 0.813694 + 0.529624i
\(176\) 12.5484 + 51.5610i 0.0712979 + 0.292960i
\(177\) 25.0803i 0.141696i
\(178\) −65.2372 + 3.89814i −0.366501 + 0.0218997i
\(179\) 273.560i 1.52827i 0.645058 + 0.764134i \(0.276833\pi\)
−0.645058 + 0.764134i \(0.723167\pi\)
\(180\) −29.9155 + 175.184i −0.166197 + 0.973242i
\(181\) −149.211 −0.824368 −0.412184 0.911101i \(-0.635234\pi\)
−0.412184 + 0.911101i \(0.635234\pi\)
\(182\) −6.13543 102.679i −0.0337112 0.564172i
\(183\) −7.34203 −0.0401204
\(184\) 272.039 49.2350i 1.47847 0.267581i
\(185\) 223.262 + 66.2597i 1.20682 + 0.358161i
\(186\) 1.78223 + 29.8265i 0.00958190 + 0.160358i
\(187\) −87.2042 −0.466332
\(188\) −29.5141 + 3.53977i −0.156990 + 0.0188285i
\(189\) 41.0466 0.217178
\(190\) −138.777 32.3207i −0.730406 0.170109i
\(191\) 227.027i 1.18862i 0.804235 + 0.594312i \(0.202576\pi\)
−0.804235 + 0.594312i \(0.797424\pi\)
\(192\) 20.2405 7.57457i 0.105419 0.0394509i
\(193\) 255.756i 1.32516i −0.748991 0.662580i \(-0.769461\pi\)
0.748991 0.662580i \(-0.230539\pi\)
\(194\) −1.58763 26.5697i −0.00818364 0.136957i
\(195\) −12.2492 3.63532i −0.0628164 0.0186426i
\(196\) −11.1704 + 1.33972i −0.0569919 + 0.00683532i
\(197\) 120.032i 0.609301i −0.952464 0.304650i \(-0.901460\pi\)
0.952464 0.304650i \(-0.0985396\pi\)
\(198\) 3.51576 + 58.8379i 0.0177564 + 0.297161i
\(199\) 144.902i 0.728152i −0.931369 0.364076i \(-0.881385\pi\)
0.931369 0.364076i \(-0.118615\pi\)
\(200\) 184.371 + 77.5064i 0.921856 + 0.387532i
\(201\) 18.0165 0.0896341
\(202\) −80.5565 + 4.81352i −0.398795 + 0.0238293i
\(203\) 130.785 0.644262
\(204\) 4.22910 + 35.2616i 0.0207309 + 0.172851i
\(205\) −95.9982 + 323.466i −0.468284 + 1.57788i
\(206\) −131.705 + 7.86979i −0.639342 + 0.0382029i
\(207\) 307.075 1.48345
\(208\) −28.6324 117.650i −0.137656 0.565623i
\(209\) −47.2590 −0.226119
\(210\) 5.20544 22.3509i 0.0247878 0.106433i
\(211\) 117.572i 0.557211i −0.960406 0.278605i \(-0.910128\pi\)
0.960406 0.278605i \(-0.0898722\pi\)
\(212\) −42.2251 352.067i −0.199175 1.66069i
\(213\) 36.3807i 0.170802i
\(214\) 85.5233 5.11031i 0.399642 0.0238799i
\(215\) 77.3607 260.667i 0.359817 1.21240i
\(216\) 47.5452 8.60497i 0.220116 0.0398378i
\(217\) 300.681i 1.38563i
\(218\) −67.4997 + 4.03334i −0.309632 + 0.0185015i
\(219\) 11.8095i 0.0539247i
\(220\) 65.3860 + 11.1657i 0.297209 + 0.0507534i
\(221\) 198.979 0.900355
\(222\) −1.87627 31.4003i −0.00845168 0.141443i
\(223\) 262.174 1.17567 0.587833 0.808982i \(-0.299981\pi\)
0.587833 + 0.808982i \(0.299981\pi\)
\(224\) 207.865 63.9386i 0.927967 0.285440i
\(225\) 186.184 + 121.185i 0.827485 + 0.538601i
\(226\) 15.5712 + 260.591i 0.0688990 + 1.15306i
\(227\) −269.481 −1.18714 −0.593571 0.804781i \(-0.702283\pi\)
−0.593571 + 0.804781i \(0.702283\pi\)
\(228\) 2.29190 + 19.1095i 0.0100522 + 0.0838135i
\(229\) −289.225 −1.26299 −0.631496 0.775379i \(-0.717559\pi\)
−0.631496 + 0.775379i \(0.717559\pi\)
\(230\) 78.3849 336.565i 0.340804 1.46333i
\(231\) 7.61133i 0.0329495i
\(232\) 151.492 27.4177i 0.652981 0.118180i
\(233\) 40.9655i 0.175817i 0.996129 + 0.0879087i \(0.0280184\pi\)
−0.996129 + 0.0879087i \(0.971982\pi\)
\(234\) −8.02211 134.254i −0.0342825 0.573734i
\(235\) −10.5717 + 35.6213i −0.0449859 + 0.151580i
\(236\) −35.3780 294.977i −0.149907 1.24990i
\(237\) 40.3330i 0.170181i
\(238\) 21.3167 + 356.746i 0.0895662 + 1.49893i
\(239\) 318.508i 1.33267i 0.745653 + 0.666334i \(0.232138\pi\)
−0.745653 + 0.666334i \(0.767862\pi\)
\(240\) 1.34395 26.9808i 0.00559981 0.112420i
\(241\) −236.574 −0.981635 −0.490817 0.871262i \(-0.663302\pi\)
−0.490817 + 0.871262i \(0.663302\pi\)
\(242\) 21.9608 1.31223i 0.0907472 0.00542245i
\(243\) 80.6739 0.331992
\(244\) −86.3520 + 10.3566i −0.353902 + 0.0424452i
\(245\) −4.00115 + 13.4819i −0.0163312 + 0.0550281i
\(246\) 45.4933 2.71838i 0.184932 0.0110503i
\(247\) 107.833 0.436572
\(248\) 63.0345 + 348.285i 0.254171 + 1.40438i
\(249\) −31.0609 −0.124742
\(250\) 180.349 173.130i 0.721397 0.692522i
\(251\) 296.486i 1.18122i −0.806957 0.590610i \(-0.798887\pi\)
0.806957 0.590610i \(-0.201113\pi\)
\(252\) 239.842 28.7654i 0.951754 0.114149i
\(253\) 114.613i 0.453018i
\(254\) −11.9367 + 0.713258i −0.0469949 + 0.00280810i
\(255\) 42.5582 + 12.6304i 0.166895 + 0.0495311i
\(256\) 227.370 117.638i 0.888165 0.459524i
\(257\) 53.1586i 0.206843i −0.994638 0.103421i \(-0.967021\pi\)
0.994638 0.103421i \(-0.0329790\pi\)
\(258\) −36.6610 + 2.19062i −0.142097 + 0.00849077i
\(259\) 316.546i 1.22219i
\(260\) −149.195 25.4775i −0.573826 0.0979903i
\(261\) 171.002 0.655181
\(262\) 1.35507 + 22.6777i 0.00517202 + 0.0865561i
\(263\) −84.2123 −0.320199 −0.160100 0.987101i \(-0.551182\pi\)
−0.160100 + 0.987101i \(0.551182\pi\)
\(264\) −1.59563 8.81637i −0.00604407 0.0333954i
\(265\) −424.919 126.107i −1.60347 0.475877i
\(266\) 11.5523 + 193.333i 0.0434296 + 0.726815i
\(267\) 11.0342 0.0413267
\(268\) 211.897 25.4139i 0.790662 0.0948280i
\(269\) 8.89157 0.0330542 0.0165271 0.999863i \(-0.494739\pi\)
0.0165271 + 0.999863i \(0.494739\pi\)
\(270\) 13.6996 58.8227i 0.0507393 0.217862i
\(271\) 139.790i 0.515831i −0.966168 0.257915i \(-0.916964\pi\)
0.966168 0.257915i \(-0.0830356\pi\)
\(272\) 99.4796 + 408.758i 0.365734 + 1.50279i
\(273\) 17.3672i 0.0636161i
\(274\) −11.6794 195.459i −0.0426254 0.713355i
\(275\) 45.2315 69.4918i 0.164478 0.252698i
\(276\) −46.3447 + 5.55835i −0.167916 + 0.0201390i
\(277\) 280.193i 1.01153i 0.862672 + 0.505764i \(0.168789\pi\)
−0.862672 + 0.505764i \(0.831211\pi\)
\(278\) −9.93521 166.270i −0.0357381 0.598094i
\(279\) 393.142i 1.40911i
\(280\) 29.6948 270.218i 0.106053 0.965066i
\(281\) −441.298 −1.57045 −0.785227 0.619208i \(-0.787454\pi\)
−0.785227 + 0.619208i \(0.787454\pi\)
\(282\) 5.00990 0.299358i 0.0177656 0.00106155i
\(283\) 12.2834 0.0434042 0.0217021 0.999764i \(-0.493091\pi\)
0.0217021 + 0.999764i \(0.493091\pi\)
\(284\) 51.3184 + 427.886i 0.180699 + 1.50664i
\(285\) 23.0638 + 6.84486i 0.0809255 + 0.0240171i
\(286\) −50.1092 + 2.99419i −0.175207 + 0.0104692i
\(287\) 458.617 1.59797
\(288\) 271.784 83.6000i 0.943695 0.290278i
\(289\) −402.324 −1.39213
\(290\) 43.6506 187.425i 0.150519 0.646293i
\(291\) 4.49399i 0.0154433i
\(292\) 16.6584 + 138.895i 0.0570494 + 0.475669i
\(293\) 25.7448i 0.0878663i 0.999034 + 0.0439331i \(0.0139889\pi\)
−0.999034 + 0.0439331i \(0.986011\pi\)
\(294\) 1.89614 0.113300i 0.00644944 0.000385376i
\(295\) −356.016 105.658i −1.20683 0.358164i
\(296\) −66.3605 366.662i −0.224191 1.23872i
\(297\) 20.0314i 0.0674458i
\(298\) −286.056 + 17.0928i −0.959920 + 0.0573584i
\(299\) 261.520i 0.874648i
\(300\) −30.2931 14.9195i −0.100977 0.0497318i
\(301\) −369.579 −1.22784
\(302\) 2.28230 + 38.1953i 0.00755727 + 0.126474i
\(303\) 13.6253 0.0449681
\(304\) 53.9115 + 221.520i 0.177340 + 0.728684i
\(305\) −30.9306 + 104.221i −0.101412 + 0.341707i
\(306\) 27.8718 + 466.447i 0.0910842 + 1.52434i
\(307\) −201.655 −0.656858 −0.328429 0.944529i \(-0.606519\pi\)
−0.328429 + 0.944529i \(0.606519\pi\)
\(308\) −10.7365 89.5193i −0.0348587 0.290647i
\(309\) 22.2765 0.0720923
\(310\) 430.898 + 100.355i 1.38999 + 0.323724i
\(311\) 319.387i 1.02697i 0.858099 + 0.513484i \(0.171645\pi\)
−0.858099 + 0.513484i \(0.828355\pi\)
\(312\) 3.64085 + 20.1168i 0.0116694 + 0.0644769i
\(313\) 184.025i 0.587940i −0.955815 0.293970i \(-0.905023\pi\)
0.955815 0.293970i \(-0.0949765\pi\)
\(314\) 27.0252 + 452.279i 0.0860674 + 1.44038i
\(315\) 85.9095 289.472i 0.272729 0.918959i
\(316\) −56.8934 474.369i −0.180042 1.50117i
\(317\) 96.9360i 0.305792i −0.988242 0.152896i \(-0.951140\pi\)
0.988242 0.152896i \(-0.0488599\pi\)
\(318\) 3.57098 + 59.7620i 0.0112295 + 0.187931i
\(319\) 63.8254i 0.200080i
\(320\) −22.2522 319.225i −0.0695382 0.997579i
\(321\) −14.4654 −0.0450636
\(322\) −468.875 + 28.0168i −1.45613 + 0.0870088i
\(323\) −374.653 −1.15992
\(324\) 309.519 37.1221i 0.955306 0.114575i
\(325\) −103.207 + 158.563i −0.317560 + 0.487887i
\(326\) 497.387 29.7206i 1.52573 0.0911673i
\(327\) 11.4169 0.0349141
\(328\) 531.227 96.1442i 1.61959 0.293123i
\(329\) 50.5047 0.153510
\(330\) −10.9076 2.54034i −0.0330533 0.00769800i
\(331\) 129.543i 0.391370i 0.980667 + 0.195685i \(0.0626930\pi\)
−0.980667 + 0.195685i \(0.937307\pi\)
\(332\) −365.317 + 43.8143i −1.10035 + 0.131971i
\(333\) 413.886i 1.24290i
\(334\) 120.346 7.19110i 0.360318 0.0215302i
\(335\) 75.8999 255.745i 0.226567 0.763417i
\(336\) −35.6771 + 8.68275i −0.106182 + 0.0258415i
\(337\) 435.350i 1.29184i 0.763406 + 0.645919i \(0.223526\pi\)
−0.763406 + 0.645919i \(0.776474\pi\)
\(338\) −223.061 + 13.3287i −0.659944 + 0.0394339i
\(339\) 44.0763i 0.130019i
\(340\) 518.357 + 88.5181i 1.52458 + 0.260347i
\(341\) 146.737 0.430314
\(342\) 15.1047 + 252.784i 0.0441657 + 0.739134i
\(343\) 352.125 1.02660
\(344\) −428.092 + 77.4784i −1.24445 + 0.225228i
\(345\) −16.6003 + 55.9347i −0.0481168 + 0.162130i
\(346\) −2.97436 49.7772i −0.00859640 0.143865i
\(347\) −419.782 −1.20975 −0.604873 0.796322i \(-0.706776\pi\)
−0.604873 + 0.796322i \(0.706776\pi\)
\(348\) −25.8082 + 3.09531i −0.0741616 + 0.00889456i
\(349\) −573.417 −1.64303 −0.821514 0.570189i \(-0.806870\pi\)
−0.821514 + 0.570189i \(0.806870\pi\)
\(350\) −295.342 168.051i −0.843836 0.480147i
\(351\) 45.7068i 0.130219i
\(352\) −31.2031 101.441i −0.0886452 0.288186i
\(353\) 4.05432i 0.0114853i −0.999984 0.00574266i \(-0.998172\pi\)
0.999984 0.00574266i \(-0.00182796\pi\)
\(354\) 2.99192 + 50.0712i 0.00845176 + 0.141444i
\(355\) 516.427 + 153.265i 1.45472 + 0.431733i
\(356\) 129.777 15.5648i 0.364542 0.0437213i
\(357\) 60.3400i 0.169020i
\(358\) −32.6340 546.146i −0.0911565 1.52555i
\(359\) 661.143i 1.84163i −0.390005 0.920813i \(-0.627527\pi\)
0.390005 0.920813i \(-0.372473\pi\)
\(360\) 38.8262 353.312i 0.107850 0.981422i
\(361\) 157.963 0.437570
\(362\) 297.890 17.7999i 0.822901 0.0491711i
\(363\) −3.71446 −0.0102327
\(364\) 24.4980 + 204.261i 0.0673023 + 0.561157i
\(365\) 167.637 + 49.7512i 0.459279 + 0.136305i
\(366\) 14.6579 0.875860i 0.0400490 0.00239306i
\(367\) 210.234 0.572845 0.286423 0.958103i \(-0.407534\pi\)
0.286423 + 0.958103i \(0.407534\pi\)
\(368\) −537.235 + 130.747i −1.45988 + 0.355291i
\(369\) 599.644 1.62505
\(370\) −453.634 105.650i −1.22604 0.285540i
\(371\) 602.460i 1.62388i
\(372\) −7.11624 59.3342i −0.0191297 0.159501i
\(373\) 63.7890i 0.171016i −0.996337 0.0855080i \(-0.972749\pi\)
0.996337 0.0855080i \(-0.0272513\pi\)
\(374\) 174.098 10.4029i 0.465502 0.0278153i
\(375\) −32.1393 + 27.3629i −0.0857048 + 0.0729676i
\(376\) 58.5007 10.5878i 0.155587 0.0281590i
\(377\) 145.634i 0.386297i
\(378\) −81.9469 + 4.89660i −0.216791 + 0.0129540i
\(379\) 553.999i 1.46174i 0.682518 + 0.730869i \(0.260885\pi\)
−0.682518 + 0.730869i \(0.739115\pi\)
\(380\) 280.916 + 47.9711i 0.739252 + 0.126240i
\(381\) 2.01897 0.00529914
\(382\) −27.0830 453.246i −0.0708978 1.18651i
\(383\) 36.9752 0.0965411 0.0482705 0.998834i \(-0.484629\pi\)
0.0482705 + 0.998834i \(0.484629\pi\)
\(384\) −39.5053 + 17.5367i −0.102878 + 0.0456686i
\(385\) −108.043 32.0651i −0.280632 0.0832859i
\(386\) 30.5101 + 510.601i 0.0790418 + 1.32280i
\(387\) −483.227 −1.24865
\(388\) 6.33920 + 52.8553i 0.0163381 + 0.136225i
\(389\) 560.923 1.44196 0.720981 0.692955i \(-0.243691\pi\)
0.720981 + 0.692955i \(0.243691\pi\)
\(390\) 24.8885 + 5.79643i 0.0638165 + 0.0148626i
\(391\) 908.616i 2.32382i
\(392\) 22.1412 4.00724i 0.0564828 0.0102225i
\(393\) 3.83571i 0.00976006i
\(394\) 14.3191 + 239.637i 0.0363430 + 0.608216i
\(395\) −572.529 169.915i −1.44944 0.430165i
\(396\) −14.0380 117.047i −0.0354495 0.295573i
\(397\) 421.348i 1.06133i 0.847581 + 0.530665i \(0.178058\pi\)
−0.847581 + 0.530665i \(0.821942\pi\)
\(398\) 17.2860 + 289.288i 0.0434321 + 0.726856i
\(399\) 32.7003i 0.0819557i
\(400\) −377.332 132.742i −0.943330 0.331856i
\(401\) 9.67014 0.0241151 0.0120575 0.999927i \(-0.496162\pi\)
0.0120575 + 0.999927i \(0.496162\pi\)
\(402\) −35.9687 + 2.14925i −0.0894745 + 0.00534640i
\(403\) −334.818 −0.830815
\(404\) 160.252 19.2198i 0.396663 0.0475738i
\(405\) 110.867 373.567i 0.273746 0.922388i
\(406\) −261.105 + 15.6019i −0.643115 + 0.0384283i
\(407\) −154.480 −0.379557
\(408\) −12.6496 69.8931i −0.0310040 0.171307i
\(409\) −95.1201 −0.232568 −0.116284 0.993216i \(-0.537098\pi\)
−0.116284 + 0.993216i \(0.537098\pi\)
\(410\) 153.067 657.232i 0.373334 1.60301i
\(411\) 33.0600i 0.0804380i
\(412\) 262.001 31.4231i 0.635925 0.0762697i
\(413\) 504.767i 1.22220i
\(414\) −613.056 + 36.6322i −1.48081 + 0.0884835i
\(415\) −130.854 + 440.911i −0.315310 + 1.06244i
\(416\) 71.1978 + 231.465i 0.171149 + 0.556405i
\(417\) 28.1230i 0.0674411i
\(418\) 94.3497 5.63771i 0.225717 0.0134873i
\(419\) 638.390i 1.52360i 0.647810 + 0.761802i \(0.275685\pi\)
−0.647810 + 0.761802i \(0.724315\pi\)
\(420\) −7.72601 + 45.2431i −0.0183953 + 0.107722i
\(421\) 19.9200 0.0473160 0.0236580 0.999720i \(-0.492469\pi\)
0.0236580 + 0.999720i \(0.492469\pi\)
\(422\) 14.0256 + 234.724i 0.0332359 + 0.556219i
\(423\) 66.0352 0.156111
\(424\) 126.299 + 697.843i 0.297876 + 1.64586i
\(425\) 358.579 550.907i 0.843716 1.29625i
\(426\) −4.34000 72.6319i −0.0101878 0.170497i
\(427\) 147.766 0.346057
\(428\) −170.132 + 20.4048i −0.397506 + 0.0476748i
\(429\) 8.47548 0.0197564
\(430\) −123.350 + 529.634i −0.286860 + 1.23171i
\(431\) 117.730i 0.273155i 0.990629 + 0.136577i \(0.0436103\pi\)
−0.990629 + 0.136577i \(0.956390\pi\)
\(432\) −93.8945 + 22.8512i −0.217348 + 0.0528962i
\(433\) 8.18765i 0.0189091i −0.999955 0.00945457i \(-0.996990\pi\)
0.999955 0.00945457i \(-0.00300953\pi\)
\(434\) −35.8694 600.291i −0.0826484 1.38316i
\(435\) −9.24430 + 31.1487i −0.0212513 + 0.0716061i
\(436\) 134.278 16.1046i 0.307977 0.0369372i
\(437\) 492.410i 1.12680i
\(438\) −1.40880 23.5770i −0.00321644 0.0538287i
\(439\) 424.336i 0.966597i 0.875456 + 0.483298i \(0.160561\pi\)
−0.875456 + 0.483298i \(0.839439\pi\)
\(440\) −131.871 14.4916i −0.299707 0.0329354i
\(441\) 24.9929 0.0566731
\(442\) −397.249 + 23.7369i −0.898752 + 0.0537035i
\(443\) −381.909 −0.862098 −0.431049 0.902329i \(-0.641856\pi\)
−0.431049 + 0.902329i \(0.641856\pi\)
\(444\) 7.49173 + 62.4650i 0.0168733 + 0.140687i
\(445\) 46.4851 156.631i 0.104461 0.351981i
\(446\) −523.414 + 31.2757i −1.17357 + 0.0701249i
\(447\) 48.3835 0.108241
\(448\) −407.362 + 152.446i −0.909290 + 0.340282i
\(449\) −665.089 −1.48127 −0.740634 0.671909i \(-0.765475\pi\)
−0.740634 + 0.671909i \(0.765475\pi\)
\(450\) −386.162 219.728i −0.858137 0.488285i
\(451\) 223.813i 0.496259i
\(452\) −62.1738 518.396i −0.137553 1.14689i
\(453\) 6.46035i 0.0142613i
\(454\) 538.003 32.1475i 1.18503 0.0708095i
\(455\) 246.528 + 73.1647i 0.541821 + 0.160801i
\(456\) −6.85528 37.8775i −0.0150335 0.0830647i
\(457\) 36.2416i 0.0793033i −0.999214 0.0396517i \(-0.987375\pi\)
0.999214 0.0396517i \(-0.0126248\pi\)
\(458\) 577.421 34.5028i 1.26074 0.0753337i
\(459\) 158.802i 0.345974i
\(460\) −116.340 + 681.283i −0.252914 + 1.48105i
\(461\) 87.1977 0.189149 0.0945745 0.995518i \(-0.469851\pi\)
0.0945745 + 0.995518i \(0.469851\pi\)
\(462\) 0.907985 + 15.1956i 0.00196534 + 0.0328908i
\(463\) −244.001 −0.527001 −0.263500 0.964659i \(-0.584877\pi\)
−0.263500 + 0.964659i \(0.584877\pi\)
\(464\) −299.173 + 72.8099i −0.644769 + 0.156918i
\(465\) −71.6121 21.2530i −0.154005 0.0457054i
\(466\) −4.88693 81.7851i −0.0104870 0.175504i
\(467\) 138.792 0.297200 0.148600 0.988897i \(-0.452523\pi\)
0.148600 + 0.988897i \(0.452523\pi\)
\(468\) 32.0313 + 267.072i 0.0684430 + 0.570668i
\(469\) −362.601 −0.773136
\(470\) 16.8563 72.3770i 0.0358645 0.153994i
\(471\) 76.4985i 0.162417i
\(472\) 105.819 + 584.683i 0.224193 + 1.23874i
\(473\) 180.361i 0.381313i
\(474\) 4.81148 + 80.5223i 0.0101508 + 0.169878i
\(475\) 194.327 298.556i 0.409109 0.628538i
\(476\) −85.1152 709.678i −0.178813 1.49092i
\(477\) 787.719i 1.65140i
\(478\) −37.9960 635.881i −0.0794896 1.33030i
\(479\) 639.640i 1.33537i −0.744446 0.667683i \(-0.767286\pi\)
0.744446 0.667683i \(-0.232714\pi\)
\(480\) 0.535521 + 54.0258i 0.00111567 + 0.112554i
\(481\) 352.485 0.732817
\(482\) 472.306 28.2218i 0.979887 0.0585515i
\(483\) 79.3055 0.164194
\(484\) −43.6869 + 5.23959i −0.0902622 + 0.0108256i
\(485\) 63.7925 + 18.9323i 0.131531 + 0.0390357i
\(486\) −161.061 + 9.62391i −0.331400 + 0.0198023i
\(487\) −369.872 −0.759490 −0.379745 0.925091i \(-0.623988\pi\)
−0.379745 + 0.925091i \(0.623988\pi\)
\(488\) 171.161 30.9776i 0.350740 0.0634788i
\(489\) −84.1281 −0.172041
\(490\) 6.37975 27.3931i 0.0130199 0.0559042i
\(491\) 572.905i 1.16681i −0.812180 0.583407i \(-0.801719\pi\)
0.812180 0.583407i \(-0.198281\pi\)
\(492\) −90.5003 + 10.8541i −0.183944 + 0.0220613i
\(493\) 505.985i 1.02634i
\(494\) −215.283 + 12.8639i −0.435795 + 0.0260402i
\(495\) −141.267 41.9253i −0.285388 0.0846975i
\(496\) −167.393 687.811i −0.337486 1.38672i
\(497\) 732.202i 1.47324i
\(498\) 62.0112 3.70537i 0.124520 0.00744051i
\(499\) 746.848i 1.49669i 0.663310 + 0.748345i \(0.269151\pi\)
−0.663310 + 0.748345i \(0.730849\pi\)
\(500\) −339.403 + 367.159i −0.678806 + 0.734318i
\(501\) −20.3554 −0.0406295
\(502\) 35.3690 + 591.917i 0.0704562 + 1.17912i
\(503\) 701.770 1.39517 0.697584 0.716503i \(-0.254258\pi\)
0.697584 + 0.716503i \(0.254258\pi\)
\(504\) −475.399 + 86.0402i −0.943251 + 0.170715i
\(505\) 57.4010 193.413i 0.113665 0.382995i
\(506\) 13.6727 + 228.819i 0.0270211 + 0.452211i
\(507\) 37.7286 0.0744153
\(508\) 23.7458 2.84795i 0.0467437 0.00560620i
\(509\) 652.960 1.28283 0.641415 0.767194i \(-0.278348\pi\)
0.641415 + 0.767194i \(0.278348\pi\)
\(510\) −86.4716 20.1389i −0.169552 0.0394881i
\(511\) 237.679i 0.465125i
\(512\) −439.898 + 261.981i −0.859175 + 0.511682i
\(513\) 86.0603i 0.167759i
\(514\) 6.34150 + 106.128i 0.0123375 + 0.206474i
\(515\) 93.8467 316.217i 0.182227 0.614013i
\(516\) 72.9302 8.74688i 0.141338 0.0169513i
\(517\) 24.6471i 0.0476734i
\(518\) 37.7620 + 631.965i 0.0728997 + 1.22001i
\(519\) 8.41932i 0.0162222i
\(520\) 300.898 + 33.0662i 0.578649 + 0.0635889i
\(521\) 150.656 0.289167 0.144583 0.989493i \(-0.453816\pi\)
0.144583 + 0.989493i \(0.453816\pi\)
\(522\) −341.396 + 20.3995i −0.654015 + 0.0390796i
\(523\) 286.395 0.547600 0.273800 0.961787i \(-0.411719\pi\)
0.273800 + 0.961787i \(0.411719\pi\)
\(524\) −5.41062 45.1130i −0.0103256 0.0860935i
\(525\) 48.0841 + 31.2974i 0.0915888 + 0.0596141i
\(526\) 168.125 10.0460i 0.319629 0.0190989i
\(527\) 1163.28 2.20737
\(528\) 4.23733 + 17.4110i 0.00802524 + 0.0329754i
\(529\) 665.204 1.25747
\(530\) 863.369 + 201.076i 1.62900 + 0.379388i
\(531\) 659.986i 1.24291i
\(532\) −46.1269 384.599i −0.0867046 0.722931i
\(533\) 510.686i 0.958135i
\(534\) −22.0291 + 1.31632i −0.0412531 + 0.00246501i
\(535\) −60.9401 + 205.338i −0.113907 + 0.383809i
\(536\) −420.008 + 76.0154i −0.783598 + 0.141820i
\(537\) 92.3751i 0.172021i
\(538\) −17.7515 + 1.06071i −0.0329953 + 0.00197158i
\(539\) 9.32840i 0.0173069i
\(540\) −20.3332 + 119.070i −0.0376541 + 0.220500i
\(541\) 80.1371 0.148128 0.0740639 0.997254i \(-0.476403\pi\)
0.0740639 + 0.997254i \(0.476403\pi\)
\(542\) 16.6761 + 279.082i 0.0307677 + 0.514912i
\(543\) −50.3851 −0.0927903
\(544\) −247.367 804.193i −0.454719 1.47830i
\(545\) 48.0973 162.064i 0.0882519 0.297365i
\(546\) −2.07180 34.6725i −0.00379450 0.0635028i
\(547\) 97.7575 0.178716 0.0893579 0.996000i \(-0.471519\pi\)
0.0893579 + 0.996000i \(0.471519\pi\)
\(548\) 46.6342 + 388.830i 0.0850990 + 0.709543i
\(549\) 193.205 0.351922
\(550\) −82.0119 + 144.132i −0.149113 + 0.262058i
\(551\) 274.211i 0.497661i
\(552\) 91.8614 16.6256i 0.166415 0.0301188i
\(553\) 811.745i 1.46789i
\(554\) −33.4254 559.389i −0.0603346 1.00973i
\(555\) 75.3907 + 22.3744i 0.135839 + 0.0403143i
\(556\) 39.6701 + 330.763i 0.0713490 + 0.594898i
\(557\) 864.931i 1.55284i −0.630216 0.776420i \(-0.717034\pi\)
0.630216 0.776420i \(-0.282966\pi\)
\(558\) −46.8994 784.883i −0.0840491 1.40660i
\(559\) 411.539i 0.736206i
\(560\) −27.0485 + 543.017i −0.0483009 + 0.969673i
\(561\) −29.4469 −0.0524900
\(562\) 881.024 52.6441i 1.56766 0.0936728i
\(563\) 336.183 0.597128 0.298564 0.954390i \(-0.403492\pi\)
0.298564 + 0.954390i \(0.403492\pi\)
\(564\) −9.96624 + 1.19530i −0.0176706 + 0.00211933i
\(565\) −625.666 185.685i −1.10737 0.328646i
\(566\) −24.5230 + 1.46533i −0.0433269 + 0.00258893i
\(567\) −529.652 −0.934130
\(568\) −153.498 848.126i −0.270243 1.49318i
\(569\) 557.759 0.980245 0.490122 0.871654i \(-0.336952\pi\)
0.490122 + 0.871654i \(0.336952\pi\)
\(570\) −46.8620 10.9140i −0.0822140 0.0191473i
\(571\) 196.621i 0.344346i −0.985067 0.172173i \(-0.944921\pi\)
0.985067 0.172173i \(-0.0550788\pi\)
\(572\) 99.6828 11.9555i 0.174271 0.0209011i
\(573\) 76.6620i 0.133791i
\(574\) −915.601 + 54.7102i −1.59512 + 0.0953140i
\(575\) 724.063 + 471.285i 1.25924 + 0.819626i
\(576\) −532.628 + 199.325i −0.924701 + 0.346050i
\(577\) 121.469i 0.210518i −0.994445 0.105259i \(-0.966433\pi\)
0.994445 0.105259i \(-0.0335671\pi\)
\(578\) 803.216 47.9949i 1.38965 0.0830361i
\(579\) 86.3631i 0.149159i
\(580\) −64.7871 + 379.390i −0.111702 + 0.654120i
\(581\) 625.134 1.07596
\(582\) −0.536106 8.97198i −0.000921144 0.0154158i
\(583\) 294.010 0.504306
\(584\) −49.8269 275.309i −0.0853200 0.471420i
\(585\) 322.337 + 95.6632i 0.551004 + 0.163527i
\(586\) −3.07120 51.3980i −0.00524096 0.0877098i
\(587\) 651.846 1.11047 0.555235 0.831693i \(-0.312628\pi\)
0.555235 + 0.831693i \(0.312628\pi\)
\(588\) −3.77200 + 0.452395i −0.00641497 + 0.000769379i
\(589\) 630.423 1.07033
\(590\) 723.368 + 168.470i 1.22605 + 0.285542i
\(591\) 40.5322i 0.0685825i
\(592\) 176.225 + 724.103i 0.297678 + 1.22315i
\(593\) 723.673i 1.22036i 0.792263 + 0.610180i \(0.208903\pi\)
−0.792263 + 0.610180i \(0.791097\pi\)
\(594\) 2.38962 + 39.9915i 0.00402294 + 0.0673257i
\(595\) −856.530 254.201i −1.43955 0.427228i
\(596\) 569.054 68.2495i 0.954789 0.114513i
\(597\) 48.9303i 0.0819602i
\(598\) −31.1977 522.108i −0.0521701 0.873091i
\(599\) 511.958i 0.854687i 0.904089 + 0.427344i \(0.140551\pi\)
−0.904089 + 0.427344i \(0.859449\pi\)
\(600\) 62.2581 + 26.1722i 0.103763 + 0.0436203i
\(601\) 568.906 0.946598 0.473299 0.880902i \(-0.343063\pi\)
0.473299 + 0.880902i \(0.343063\pi\)
\(602\) 737.843 44.0886i 1.22565 0.0732368i
\(603\) −474.102 −0.786239
\(604\) −9.11293 75.9823i −0.0150876 0.125798i
\(605\) −15.6483 + 52.7269i −0.0258650 + 0.0871520i
\(606\) −27.2022 + 1.62542i −0.0448880 + 0.00268221i
\(607\) −618.530 −1.01899 −0.509497 0.860472i \(-0.670169\pi\)
−0.509497 + 0.860472i \(0.670169\pi\)
\(608\) −134.057 435.820i −0.220488 0.716809i
\(609\) 44.1633 0.0725177
\(610\) 49.3181 211.760i 0.0808494 0.347148i
\(611\) 56.2387i 0.0920437i
\(612\) −111.289 927.907i −0.181844 1.51619i
\(613\) 189.349i 0.308889i 0.988001 + 0.154445i \(0.0493588\pi\)
−0.988001 + 0.154445i \(0.950641\pi\)
\(614\) 402.593 24.0563i 0.655688 0.0391796i
\(615\) −32.4165 + 109.227i −0.0527097 + 0.177605i
\(616\) 32.1139 + 177.439i 0.0521329 + 0.288050i
\(617\) 615.603i 0.997737i −0.866678 0.498868i \(-0.833749\pi\)
0.866678 0.498868i \(-0.166251\pi\)
\(618\) −44.4737 + 2.65745i −0.0719639 + 0.00430008i
\(619\) 819.178i 1.32339i 0.749773 + 0.661695i \(0.230163\pi\)
−0.749773 + 0.661695i \(0.769837\pi\)
\(620\) −872.233 148.948i −1.40683 0.240239i
\(621\) 208.715 0.336095
\(622\) −38.1009 637.636i −0.0612555 1.02514i
\(623\) −222.076 −0.356462
\(624\) −9.66854 39.7276i −0.0154945 0.0636661i
\(625\) 253.021 + 571.494i 0.404833 + 0.914390i
\(626\) 21.9531 + 367.395i 0.0350688 + 0.586893i
\(627\) −15.9583 −0.0254518
\(628\) −107.908 899.723i −0.171828 1.43268i
\(629\) −1224.66 −1.94700
\(630\) −136.981 + 588.162i −0.217430 + 0.933590i
\(631\) 347.524i 0.550751i 0.961337 + 0.275375i \(0.0888021\pi\)
−0.961337 + 0.275375i \(0.911198\pi\)
\(632\) 170.174 + 940.262i 0.269262 + 1.48776i
\(633\) 39.7013i 0.0627193i
\(634\) 11.5639 + 193.527i 0.0182395 + 0.305247i
\(635\) 8.50555 28.6595i 0.0133946 0.0451330i
\(636\) −14.2585 118.885i −0.0224190 0.186926i
\(637\) 21.2851i 0.0334146i
\(638\) 7.61398 + 127.423i 0.0119341 + 0.199723i
\(639\) 957.357i 1.49821i
\(640\) 82.5069 + 634.659i 0.128917 + 0.991655i
\(641\) −34.9339 −0.0544990 −0.0272495 0.999629i \(-0.508675\pi\)
−0.0272495 + 0.999629i \(0.508675\pi\)
\(642\) 28.8793 1.72564i 0.0449834 0.00268791i
\(643\) −710.122 −1.10439 −0.552194 0.833715i \(-0.686209\pi\)
−0.552194 + 0.833715i \(0.686209\pi\)
\(644\) 932.738 111.868i 1.44835 0.173708i
\(645\) 26.1230 88.0214i 0.0405008 0.136467i
\(646\) 747.971 44.6938i 1.15785 0.0691854i
\(647\) −190.839 −0.294960 −0.147480 0.989065i \(-0.547116\pi\)
−0.147480 + 0.989065i \(0.547116\pi\)
\(648\) −613.507 + 111.036i −0.946771 + 0.171352i
\(649\) 246.335 0.379561
\(650\) 187.131 328.874i 0.287894 0.505960i
\(651\) 101.533i 0.155965i
\(652\) −989.458 + 118.671i −1.51757 + 0.182010i
\(653\) 106.664i 0.163344i −0.996659 0.0816720i \(-0.973974\pi\)
0.996659 0.0816720i \(-0.0260260\pi\)
\(654\) −22.7932 + 1.36197i −0.0348519 + 0.00208252i
\(655\) −54.4481 16.1591i −0.0831269 0.0246704i
\(656\) −1049.09 + 255.318i −1.59923 + 0.389205i
\(657\) 310.767i 0.473008i
\(658\) −100.830 + 6.02490i −0.153236 + 0.00915639i
\(659\) 924.093i 1.40227i −0.713031 0.701133i \(-0.752678\pi\)
0.713031 0.701133i \(-0.247322\pi\)
\(660\) 22.0794 + 3.77042i 0.0334536 + 0.00571276i
\(661\) −1044.05 −1.57951 −0.789753 0.613425i \(-0.789791\pi\)
−0.789753 + 0.613425i \(0.789791\pi\)
\(662\) −15.4537 258.626i −0.0233440 0.390673i
\(663\) 67.1906 0.101343
\(664\) 724.107 131.053i 1.09052 0.197368i
\(665\) −464.183 137.760i −0.698020 0.207158i
\(666\) 49.3740 + 826.297i 0.0741352 + 1.24069i
\(667\) 665.022 0.997035
\(668\) −239.406 + 28.7132i −0.358393 + 0.0429838i
\(669\) 88.5302 0.132332
\(670\) −121.021 + 519.633i −0.180628 + 0.775572i
\(671\) 72.1124i 0.107470i
\(672\) 70.1913 21.5906i 0.104451 0.0321289i
\(673\) 327.324i 0.486365i 0.969981 + 0.243183i \(0.0781914\pi\)
−0.969981 + 0.243183i \(0.921809\pi\)
\(674\) −51.9346 869.149i −0.0770542 1.28954i
\(675\) 126.547 + 82.3682i 0.187477 + 0.122027i
\(676\) 443.738 53.2197i 0.656417 0.0787274i
\(677\) 402.278i 0.594206i −0.954845 0.297103i \(-0.903979\pi\)
0.954845 0.297103i \(-0.0960205\pi\)
\(678\) 5.25804 + 87.9957i 0.00775522 + 0.129787i
\(679\) 90.4465i 0.133205i
\(680\) −1045.43 114.884i −1.53739 0.168947i
\(681\) −90.9979 −0.133624
\(682\) −292.952 + 17.5049i −0.429548 + 0.0256670i
\(683\) 1136.74 1.66433 0.832166 0.554526i \(-0.187101\pi\)
0.832166 + 0.554526i \(0.187101\pi\)
\(684\) −60.3111 502.865i −0.0881741 0.735183i
\(685\) 469.289 + 139.276i 0.685094 + 0.203322i
\(686\) −702.997 + 42.0064i −1.02478 + 0.0612338i
\(687\) −97.6650 −0.142162
\(688\) 845.417 205.750i 1.22880 0.299055i
\(689\) −670.860 −0.973672
\(690\) 26.4688 113.651i 0.0383606 0.164711i
\(691\) 280.686i 0.406202i −0.979158 0.203101i \(-0.934898\pi\)
0.979158 0.203101i \(-0.0651021\pi\)
\(692\) 11.8762 + 99.0224i 0.0171622 + 0.143096i
\(693\) 200.292i 0.289021i
\(694\) 838.069 50.0774i 1.20759 0.0721577i
\(695\) 399.207 + 118.477i 0.574399 + 0.170470i
\(696\) 51.1553 9.25836i 0.0734990 0.0133022i
\(697\) 1774.31i 2.54564i
\(698\) 1144.79 68.4051i 1.64010 0.0980016i
\(699\) 13.8331i 0.0197899i
\(700\) 609.681 + 300.272i 0.870972 + 0.428960i
\(701\) −1131.37 −1.61393 −0.806967 0.590597i \(-0.798892\pi\)
−0.806967 + 0.590597i \(0.798892\pi\)
\(702\) −5.45254 91.2507i −0.00776715 0.129987i
\(703\) −663.687 −0.944078
\(704\) 74.3964 + 198.799i 0.105677 + 0.282385i
\(705\) −3.56983 + 12.0285i −0.00506358 + 0.0170617i
\(706\) 0.483655 + 8.09420i 0.000685064 + 0.0114649i
\(707\) −274.225 −0.387871
\(708\) −11.9464 99.6072i −0.0168734 0.140688i
\(709\) −123.300 −0.173907 −0.0869535 0.996212i \(-0.527713\pi\)
−0.0869535 + 0.996212i \(0.527713\pi\)
\(710\) −1049.30 244.378i −1.47789 0.344194i
\(711\) 1061.36i 1.49277i
\(712\) −257.235 + 46.5558i −0.361285 + 0.0653873i
\(713\) 1528.91i 2.14434i
\(714\) 7.19819 + 120.465i 0.0100815 + 0.168719i
\(715\) 35.7056 120.310i 0.0499379 0.168266i
\(716\) 130.304 + 1086.45i 0.181988 + 1.51739i
\(717\) 107.553i 0.150004i
\(718\) 78.8704 + 1319.93i 0.109847 + 1.83835i
\(719\) 832.447i 1.15778i −0.815404 0.578892i \(-0.803485\pi\)
0.815404 0.578892i \(-0.196515\pi\)
\(720\) −35.3661 + 709.998i −0.0491195 + 0.986108i
\(721\) −448.339 −0.621829
\(722\) −315.363 + 18.8440i −0.436791 + 0.0260997i
\(723\) −79.8858 −0.110492
\(724\) −592.596 + 71.0729i −0.818502 + 0.0981670i
\(725\) 403.213 + 262.447i 0.556156 + 0.361996i
\(726\) 7.41568 0.443112i 0.0102144 0.000610347i
\(727\) −436.428 −0.600314 −0.300157 0.953890i \(-0.597039\pi\)
−0.300157 + 0.953890i \(0.597039\pi\)
\(728\) −73.2760 404.872i −0.100654 0.556143i
\(729\) −674.167 −0.924783
\(730\) −340.612 79.3272i −0.466591 0.108667i
\(731\) 1429.84i 1.95600i
\(732\) −29.1592 + 3.49720i −0.0398349 + 0.00477760i
\(733\) 269.567i 0.367759i 0.982949 + 0.183879i \(0.0588655\pi\)
−0.982949 + 0.183879i \(0.941134\pi\)
\(734\) −419.720 + 25.0797i −0.571826 + 0.0341685i
\(735\) −1.35110 + 4.55253i −0.00183823 + 0.00619392i
\(736\) 1056.96 325.118i 1.43609 0.441736i
\(737\) 176.955i 0.240102i
\(738\) −1197.15 + 71.5339i −1.62216 + 0.0969294i
\(739\) 717.958i 0.971526i −0.874091 0.485763i \(-0.838542\pi\)
0.874091 0.485763i \(-0.161458\pi\)
\(740\) 918.255 + 156.807i 1.24089 + 0.211902i
\(741\) 36.4129 0.0491403
\(742\) −71.8698 1202.77i −0.0968596 1.62099i
\(743\) −836.208 −1.12545 −0.562724 0.826645i \(-0.690247\pi\)
−0.562724 + 0.826645i \(0.690247\pi\)
\(744\) 21.2854 + 117.608i 0.0286094 + 0.158076i
\(745\) 203.831 686.807i 0.273598 0.921889i
\(746\) 7.60964 + 127.351i 0.0102006 + 0.170712i
\(747\) 817.366 1.09420
\(748\) −346.335 + 41.5376i −0.463014 + 0.0555316i
\(749\) 291.132 0.388694
\(750\) 60.8999 58.4623i 0.0811999 0.0779497i
\(751\) 86.4880i 0.115164i 0.998341 + 0.0575819i \(0.0183390\pi\)
−0.998341 + 0.0575819i \(0.981661\pi\)
\(752\) −115.530 + 28.1166i −0.153630 + 0.0373891i
\(753\) 100.117i 0.132957i
\(754\) −17.3732 290.749i −0.0230414 0.385609i
\(755\) −91.7051 27.2162i −0.121464 0.0360480i
\(756\) 163.018 19.5515i 0.215632 0.0258618i
\(757\) 595.235i 0.786308i 0.919473 + 0.393154i \(0.128616\pi\)
−0.919473 + 0.393154i \(0.871384\pi\)
\(758\) −66.0887 1106.02i −0.0871882 1.45914i
\(759\) 38.7024i 0.0509913i
\(760\) −566.554 62.2597i −0.745466 0.0819207i
\(761\) 549.658 0.722283 0.361142 0.932511i \(-0.382387\pi\)
0.361142 + 0.932511i \(0.382387\pi\)
\(762\) −4.03076 + 0.240851i −0.00528971 + 0.000316078i
\(763\) −229.778 −0.301150
\(764\) 108.139 + 901.647i 0.141543 + 1.18017i
\(765\) −1119.92 332.369i −1.46394 0.434469i
\(766\) −73.8188 + 4.41092i −0.0963692 + 0.00575838i
\(767\) −562.076 −0.732824
\(768\) 76.7779 39.7238i 0.0999712 0.0517237i
\(769\) −1135.49 −1.47658 −0.738291 0.674483i \(-0.764367\pi\)
−0.738291 + 0.674483i \(0.764367\pi\)
\(770\) 219.527 + 51.1271i 0.285100 + 0.0663988i
\(771\) 17.9505i 0.0232821i
\(772\) −121.823 1015.74i −0.157802 1.31573i
\(773\) 1116.93i 1.44493i 0.691410 + 0.722463i \(0.256990\pi\)
−0.691410 + 0.722463i \(0.743010\pi\)
\(774\) 964.733 57.6460i 1.24643 0.0744781i
\(775\) −603.376 + 927.004i −0.778550 + 1.19613i
\(776\) −18.9611 104.766i −0.0244345 0.135008i
\(777\) 106.891i 0.137568i
\(778\) −1119.85 + 66.9148i −1.43940 + 0.0860087i
\(779\) 961.560i 1.23435i
\(780\) −50.3798 8.60318i −0.0645894 0.0110297i
\(781\) −357.327 −0.457525
\(782\) 108.392 + 1814.00i 0.138609 + 2.31969i
\(783\) 116.228 0.148440
\(784\) −43.7256 + 10.6415i −0.0557724 + 0.0135734i
\(785\) −1085.90 322.274i −1.38331 0.410540i
\(786\) 0.457576 + 7.65775i 0.000582158 + 0.00974269i
\(787\) −211.481 −0.268718 −0.134359 0.990933i \(-0.542898\pi\)
−0.134359 + 0.990933i \(0.542898\pi\)
\(788\) −57.1745 476.713i −0.0725565 0.604965i
\(789\) −28.4366 −0.0360414
\(790\) 1163.29 + 270.926i 1.47252 + 0.342944i
\(791\) 887.084i 1.12147i
\(792\) 41.9890 + 232.002i 0.0530165 + 0.292932i
\(793\) 164.543i 0.207494i
\(794\) −50.2643 841.196i −0.0633052 1.05944i
\(795\) −143.486 42.5837i −0.180485 0.0535644i
\(796\) −69.0207 575.485i −0.0867094 0.722971i
\(797\) 192.909i 0.242044i −0.992650 0.121022i \(-0.961383\pi\)
0.992650 0.121022i \(-0.0386171\pi\)
\(798\) 3.90095 + 65.2842i 0.00488841 + 0.0818098i
\(799\) 195.394i 0.244548i
\(800\) 769.156 + 219.999i 0.961445 + 0.274998i
\(801\) −290.365 −0.362503
\(802\) −19.3058 + 1.15359i −0.0240721 + 0.00143839i
\(803\) −115.991 −0.144448
\(804\) 71.5530 8.58171i 0.0889963 0.0106738i
\(805\) 334.099 1125.75i 0.415030 1.39844i
\(806\) 668.445 39.9418i 0.829336 0.0495556i
\(807\) 3.00249 0.00372055
\(808\) −317.641 + 57.4883i −0.393119 + 0.0711489i
\(809\) −198.401 −0.245242 −0.122621 0.992454i \(-0.539130\pi\)
−0.122621 + 0.992454i \(0.539130\pi\)
\(810\) −176.775 + 759.030i −0.218241 + 0.937074i
\(811\) 348.393i 0.429585i −0.976660 0.214792i \(-0.931092\pi\)
0.976660 0.214792i \(-0.0689075\pi\)
\(812\) 519.419 62.2964i 0.639678 0.0767197i
\(813\) 47.2040i 0.0580615i
\(814\) 308.409 18.4285i 0.378881 0.0226394i
\(815\) −354.416 + 1194.20i −0.434866 + 1.46528i
\(816\) 33.5920 + 138.028i 0.0411667 + 0.169152i
\(817\) 774.879i 0.948445i
\(818\) 189.902 11.3473i 0.232153 0.0138719i
\(819\) 457.017i 0.558018i
\(820\) −227.185 + 1330.38i −0.277055 + 1.62242i
\(821\) −1087.94 −1.32514 −0.662571 0.748999i \(-0.730535\pi\)
−0.662571 + 0.748999i \(0.730535\pi\)
\(822\) −3.94386 66.0023i −0.00479788 0.0802948i
\(823\) −499.591 −0.607036 −0.303518 0.952826i \(-0.598161\pi\)
−0.303518 + 0.952826i \(0.598161\pi\)
\(824\) −519.321 + 93.9895i −0.630244 + 0.114065i
\(825\) 15.2737 23.4658i 0.0185135 0.0284434i
\(826\) −60.2157 1007.74i −0.0729003 1.22002i
\(827\) −1141.91 −1.38078 −0.690392 0.723436i \(-0.742562\pi\)
−0.690392 + 0.723436i \(0.742562\pi\)
\(828\) 1219.56 146.268i 1.47290 0.176652i
\(829\) 1005.42 1.21281 0.606404 0.795157i \(-0.292611\pi\)
0.606404 + 0.795157i \(0.292611\pi\)
\(830\) 208.643 895.863i 0.251377 1.07935i
\(831\) 94.6151i 0.113857i
\(832\) −169.754 453.611i −0.204032 0.545206i
\(833\) 73.9523i 0.0887783i
\(834\) −3.35490 56.1458i −0.00402266 0.0673211i
\(835\) −85.7534 + 288.946i −0.102699 + 0.346043i
\(836\) −187.691 + 22.5107i −0.224511 + 0.0269267i
\(837\) 267.214i 0.319252i
\(838\) −76.1560 1274.51i −0.0908783 1.52089i
\(839\) 401.529i 0.478581i −0.970948 0.239290i \(-0.923085\pi\)
0.970948 0.239290i \(-0.0769148\pi\)
\(840\) 10.0273 91.2468i 0.0119372 0.108627i
\(841\) −470.666 −0.559650
\(842\) −39.7691 + 2.37634i −0.0472317 + 0.00282225i
\(843\) −149.016 −0.176769
\(844\) −56.0024 466.940i −0.0663535 0.553246i
\(845\) 158.943 535.560i 0.188099 0.633799i
\(846\) −131.835 + 7.87759i −0.155834 + 0.00931158i
\(847\) 74.7574 0.0882614
\(848\) −335.397 1378.13i −0.395516 1.62516i
\(849\) 4.14782 0.00488554
\(850\) −650.162 + 1142.63i −0.764896 + 1.34427i
\(851\) 1609.59i 1.89141i
\(852\) 17.3291 + 144.487i 0.0203393 + 0.169586i
\(853\) 298.364i 0.349782i 0.984588 + 0.174891i \(0.0559574\pi\)
−0.984588 + 0.174891i \(0.944043\pi\)
\(854\) −295.006 + 17.6276i −0.345441 + 0.0206412i
\(855\) −606.922 180.122i −0.709850 0.210669i
\(856\) 337.225 61.0328i 0.393954 0.0713000i
\(857\) 1380.73i 1.61112i 0.592515 + 0.805560i \(0.298135\pi\)
−0.592515 + 0.805560i \(0.701865\pi\)
\(858\) −16.9208 + 1.01107i −0.0197212 + 0.00117841i
\(859\) 313.865i 0.365384i 0.983170 + 0.182692i \(0.0584811\pi\)
−0.983170 + 0.182692i \(0.941519\pi\)
\(860\) 183.079 1072.10i 0.212882 1.24663i
\(861\) 154.865 0.179866
\(862\) −14.0444 235.040i −0.0162929 0.272669i
\(863\) 742.534 0.860410 0.430205 0.902731i \(-0.358441\pi\)
0.430205 + 0.902731i \(0.358441\pi\)
\(864\) 184.729 56.8220i 0.213806 0.0657662i
\(865\) 119.513 + 35.4690i 0.138165 + 0.0410046i
\(866\) 0.976737 + 16.3462i 0.00112787 + 0.0188755i
\(867\) −135.856 −0.156697
\(868\) 143.222 + 1194.17i 0.165002 + 1.37577i
\(869\) 396.145 0.455863
\(870\) 14.7398 63.2892i 0.0169423 0.0727462i
\(871\) 403.768i 0.463569i
\(872\) −266.157 + 48.1704i −0.305225 + 0.0552413i
\(873\) 118.259i 0.135463i
\(874\) 58.7416 + 983.067i 0.0672100 + 1.12479i
\(875\) 646.838 550.707i 0.739244 0.629380i
\(876\) 5.62518 + 46.9019i 0.00642143 + 0.0535410i
\(877\) 1053.23i 1.20095i 0.799645 + 0.600473i \(0.205021\pi\)
−0.799645 + 0.600473i \(0.794979\pi\)
\(878\) −50.6207 847.161i −0.0576546 0.964876i
\(879\) 8.69345i 0.00989016i
\(880\) 265.001 + 13.2001i 0.301138 + 0.0150001i
\(881\) −265.004 −0.300799 −0.150400 0.988625i \(-0.548056\pi\)
−0.150400 + 0.988625i \(0.548056\pi\)
\(882\) −49.8967 + 2.98150i −0.0565722 + 0.00338038i
\(883\) −207.575 −0.235079 −0.117540 0.993068i \(-0.537501\pi\)
−0.117540 + 0.993068i \(0.537501\pi\)
\(884\) 790.251 94.7787i 0.893949 0.107216i
\(885\) −120.219 35.6785i −0.135840 0.0403147i
\(886\) 762.459 45.5595i 0.860563 0.0514215i
\(887\) 1182.03 1.33262 0.666308 0.745676i \(-0.267874\pi\)
0.666308 + 0.745676i \(0.267874\pi\)
\(888\) −22.4085 123.814i −0.0252348 0.139430i
\(889\) −40.6340 −0.0457076
\(890\) −74.1194 + 318.251i −0.0832802 + 0.357585i
\(891\) 258.479i 0.290100i
\(892\) 1041.23 124.880i 1.16730 0.140000i
\(893\) 105.891i 0.118579i
\(894\) −96.5948 + 5.77186i −0.108048 + 0.00645622i
\(895\) 1311.27 + 389.159i 1.46511 + 0.434814i
\(896\) 795.087 352.946i 0.887374 0.393913i
\(897\) 88.3094i 0.0984497i
\(898\) 1327.81 79.3411i 1.47863 0.0883531i
\(899\) 851.415i 0.947069i
\(900\) 797.161 + 392.607i 0.885734 + 0.436230i
\(901\) 2330.81 2.58692
\(902\) 26.6995 + 446.829i 0.0296003 + 0.495376i
\(903\) −124.799 −0.138205
\(904\) 185.968 + 1027.53i 0.205716 + 1.13665i
\(905\) −212.263 + 715.220i −0.234545 + 0.790299i
\(906\) 0.770681 + 12.8977i 0.000850641 + 0.0142359i
\(907\) 1636.73 1.80455 0.902277 0.431156i \(-0.141894\pi\)
0.902277 + 0.431156i \(0.141894\pi\)
\(908\) −1070.26 + 128.361i −1.17870 + 0.141367i
\(909\) −358.550 −0.394444
\(910\) −500.907 116.659i −0.550447 0.128197i
\(911\) 24.0881i 0.0264414i −0.999913 0.0132207i \(-0.995792\pi\)
0.999913 0.0132207i \(-0.00420841\pi\)
\(912\) 18.2047 + 74.8024i 0.0199613 + 0.0820201i
\(913\) 305.076i 0.334146i
\(914\) 4.32341 + 72.3542i 0.00473020 + 0.0791621i
\(915\) −10.4446 + 35.1930i −0.0114148 + 0.0384623i
\(916\) −1148.67 + 137.766i −1.25401 + 0.150399i
\(917\) 77.1977i 0.0841851i
\(918\) 18.9441 + 317.039i 0.0206363 + 0.345358i
\(919\) 418.233i 0.455095i 0.973767 + 0.227548i \(0.0730707\pi\)
−0.973767 + 0.227548i \(0.926929\pi\)
\(920\) 150.994 1374.02i 0.164123 1.49350i
\(921\) −68.0945 −0.0739354
\(922\) −174.085 + 10.4022i −0.188812 + 0.0112822i
\(923\) 815.332 0.883350
\(924\) −3.62547 30.2287i −0.00392367 0.0327150i
\(925\) 635.213 975.917i 0.686717 1.05504i
\(926\) 487.134 29.1079i 0.526063 0.0314340i
\(927\) −586.205 −0.632368
\(928\) 588.594 181.050i 0.634261 0.195097i
\(929\) 1173.64 1.26334 0.631671 0.775237i \(-0.282370\pi\)
0.631671 + 0.775237i \(0.282370\pi\)
\(930\) 145.505 + 33.8875i 0.156456 + 0.0364382i
\(931\) 40.0773i 0.0430476i
\(932\) 19.5129 + 162.696i 0.0209366 + 0.174566i
\(933\) 107.850i 0.115595i
\(934\) −277.090 + 16.5571i −0.296671 + 0.0177271i
\(935\) −124.054 + 418.001i −0.132678 + 0.447060i
\(936\) −95.8087 529.373i −0.102360 0.565569i
\(937\) 553.381i 0.590588i −0.955406 0.295294i \(-0.904582\pi\)
0.955406 0.295294i \(-0.0954175\pi\)
\(938\) 723.910 43.2560i 0.771759 0.0461152i
\(939\) 62.1412i 0.0661780i
\(940\) −25.0185 + 146.507i −0.0266154 + 0.155859i
\(941\) 1581.26 1.68040 0.840202 0.542273i \(-0.182436\pi\)
0.840202 + 0.542273i \(0.182436\pi\)
\(942\) 9.12580 + 152.725i 0.00968769 + 0.162128i
\(943\) 2332.00 2.47295
\(944\) −281.011 1154.66i −0.297681 1.22316i
\(945\) 58.3917 196.751i 0.0617902 0.208202i
\(946\) −21.5160 360.080i −0.0227441 0.380634i
\(947\) −154.003 −0.162622 −0.0813108 0.996689i \(-0.525911\pi\)
−0.0813108 + 0.996689i \(0.525911\pi\)
\(948\) −19.2116 160.184i −0.0202654 0.168970i
\(949\) 264.664 0.278887
\(950\) −352.345 + 619.230i −0.370890 + 0.651821i
\(951\) 32.7331i 0.0344197i
\(952\) 254.588 + 1406.68i 0.267424 + 1.47760i
\(953\) 1091.92i 1.14577i −0.819636 0.572885i \(-0.805824\pi\)
0.819636 0.572885i \(-0.194176\pi\)
\(954\) −93.9701 1572.63i −0.0985012 1.64846i
\(955\) 1088.22 + 322.963i 1.13950 + 0.338181i
\(956\) 151.714 + 1264.97i 0.158696 + 1.32319i
\(957\) 21.5524i 0.0225208i
\(958\) 76.3052 + 1277.00i 0.0796505 + 1.33299i
\(959\) 665.368i 0.693815i
\(960\) −7.51408 107.795i −0.00782717 0.112287i
\(961\) −996.438 −1.03688
\(962\) −703.715 + 42.0493i −0.731512 + 0.0437103i
\(963\) 380.657 0.395282
\(964\) −939.563 + 112.686i −0.974650 + 0.116895i
\(965\) −1225.93 363.831i −1.27039 0.377027i
\(966\) −158.329 + 9.46066i −0.163901 + 0.00979365i
\(967\) −1164.42 −1.20415 −0.602077 0.798438i \(-0.705660\pi\)
−0.602077 + 0.798438i \(0.705660\pi\)
\(968\) 86.5932 15.6721i 0.0894558 0.0161902i
\(969\) −126.512 −0.130559
\(970\) −129.616 30.1872i −0.133625 0.0311208i
\(971\) 1070.67i 1.10264i −0.834293 0.551321i \(-0.814124\pi\)
0.834293 0.551321i \(-0.185876\pi\)
\(972\) 320.400 38.4271i 0.329629 0.0395341i
\(973\) 566.005i 0.581711i
\(974\) 738.426 44.1234i 0.758138 0.0453013i
\(975\) −34.8507 + 53.5433i −0.0357444 + 0.0549162i
\(976\) −338.017 + 82.2634i −0.346329 + 0.0842863i
\(977\) 846.227i 0.866149i −0.901358 0.433074i \(-0.857429\pi\)
0.901358 0.433074i \(-0.142571\pi\)
\(978\) 167.957 10.0360i 0.171735 0.0102617i
\(979\) 108.377i 0.110701i
\(980\) −9.46896 + 55.4497i −0.00966220 + 0.0565813i
\(981\) −300.435 −0.306254
\(982\) 68.3441 + 1143.77i 0.0695969 + 1.16474i
\(983\) −1825.55 −1.85712 −0.928560 0.371182i \(-0.878952\pi\)
−0.928560 + 0.371182i \(0.878952\pi\)
\(984\) 179.383 32.4658i 0.182300 0.0329937i
\(985\) −575.358 170.755i −0.584120 0.173355i
\(986\) 60.3610 + 1010.17i 0.0612180 + 1.02451i
\(987\) 17.0543 0.0172789
\(988\) 428.264 51.3639i 0.433466 0.0519877i
\(989\) −1879.25 −1.90015
\(990\) 287.033 + 66.8489i 0.289932 + 0.0675241i
\(991\) 240.199i 0.242381i −0.992629 0.121190i \(-0.961329\pi\)
0.992629 0.121190i \(-0.0386711\pi\)
\(992\) 416.241 + 1353.20i 0.419598 + 1.36412i
\(993\) 43.7439i 0.0440523i
\(994\) 87.3472 + 1461.80i 0.0878745 + 1.47062i
\(995\) −694.568 206.134i −0.698059 0.207170i
\(996\) −123.359 + 14.7951i −0.123855 + 0.0148545i
\(997\) 799.638i 0.802044i −0.916068 0.401022i \(-0.868655\pi\)
0.916068 0.401022i \(-0.131345\pi\)
\(998\) −89.0945 1491.04i −0.0892730 1.49403i
\(999\) 281.313i 0.281595i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 220.3.h.a.199.2 yes 60
4.3 odd 2 inner 220.3.h.a.199.60 yes 60
5.4 even 2 inner 220.3.h.a.199.59 yes 60
20.19 odd 2 inner 220.3.h.a.199.1 60
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
220.3.h.a.199.1 60 20.19 odd 2 inner
220.3.h.a.199.2 yes 60 1.1 even 1 trivial
220.3.h.a.199.59 yes 60 5.4 even 2 inner
220.3.h.a.199.60 yes 60 4.3 odd 2 inner