Properties

Label 220.3.i.a.87.1
Level $220$
Weight $3$
Character 220.87
Analytic conductor $5.995$
Analytic rank $0$
Dimension $136$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [220,3,Mod(43,220)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(220, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 3, 2]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("220.43");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 220 = 2^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 220.i (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.99456581593\)
Analytic rank: \(0\)
Dimension: \(136\)
Relative dimension: \(68\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 87.1
Character \(\chi\) \(=\) 220.87
Dual form 220.3.i.a.43.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.99997 - 0.0112748i) q^{2} +(3.70405 + 3.70405i) q^{3} +(3.99975 + 0.0450984i) q^{4} +(-3.59444 - 3.47563i) q^{5} +(-7.36622 - 7.44975i) q^{6} +(-1.62459 - 1.62459i) q^{7} +(-7.99886 - 0.135292i) q^{8} +18.4400i q^{9} +(7.14958 + 6.99168i) q^{10} +(5.08557 + 9.75382i) q^{11} +(14.6482 + 14.9823i) q^{12} +(13.7602 + 13.7602i) q^{13} +(3.23081 + 3.26744i) q^{14} +(-0.440067 - 26.1879i) q^{15} +(15.9959 + 0.360764i) q^{16} +(-22.0851 + 22.0851i) q^{17} +(0.207907 - 36.8794i) q^{18} +5.92820i q^{19} +(-14.2201 - 14.0637i) q^{20} -12.0351i q^{21} +(-10.0610 - 19.5647i) q^{22} +(-6.31990 - 6.31990i) q^{23} +(-29.1270 - 30.1293i) q^{24} +(0.839974 + 24.9859i) q^{25} +(-27.3649 - 27.6751i) q^{26} +(-34.9662 + 34.9662i) q^{27} +(-6.42467 - 6.57120i) q^{28} +34.0393 q^{29} +(0.584858 + 52.3799i) q^{30} -22.2160i q^{31} +(-31.9873 - 0.901868i) q^{32} +(-17.2914 + 54.9659i) q^{33} +(44.4184 - 43.9204i) q^{34} +(0.193012 + 11.4859i) q^{35} +(-0.831614 + 73.7553i) q^{36} +(8.71788 + 8.71788i) q^{37} +(0.0668392 - 11.8562i) q^{38} +101.937i q^{39} +(28.2812 + 28.2874i) q^{40} -44.8146i q^{41} +(-0.135693 + 24.0698i) q^{42} +(11.2370 - 11.2370i) q^{43} +(19.9011 + 39.2421i) q^{44} +(64.0906 - 66.2814i) q^{45} +(12.5683 + 12.7108i) q^{46} +(-6.26838 + 6.26838i) q^{47} +(57.9135 + 60.5860i) q^{48} -43.7214i q^{49} +(-1.39821 - 49.9804i) q^{50} -163.608 q^{51} +(54.4168 + 55.6579i) q^{52} +(-36.4914 + 36.4914i) q^{53} +(70.3255 - 69.5371i) q^{54} +(15.6209 - 52.7351i) q^{55} +(12.7750 + 13.2146i) q^{56} +(-21.9584 + 21.9584i) q^{57} +(-68.0775 - 0.383786i) q^{58} +8.49349 q^{59} +(-0.579124 - 104.765i) q^{60} +64.3732i q^{61} +(-0.250481 + 44.4313i) q^{62} +(29.9574 - 29.9574i) q^{63} +(63.9634 + 2.16436i) q^{64} +(-1.63481 - 97.2857i) q^{65} +(35.2020 - 109.735i) q^{66} +(50.4964 - 50.4964i) q^{67} +(-89.3306 + 87.3386i) q^{68} -46.8184i q^{69} +(-0.256517 - 22.9737i) q^{70} -57.3348i q^{71} +(2.49478 - 147.499i) q^{72} +(33.7647 + 33.7647i) q^{73} +(-17.3372 - 17.5338i) q^{74} +(-89.4377 + 95.6603i) q^{75} +(-0.267353 + 23.7113i) q^{76} +(7.58397 - 24.1079i) q^{77} +(1.14932 - 203.871i) q^{78} -91.0525i q^{79} +(-56.2425 - 56.8927i) q^{80} -93.0733 q^{81} +(-0.505275 + 89.6278i) q^{82} +(67.5635 - 67.5635i) q^{83} +(0.542764 - 48.1374i) q^{84} +(156.143 - 2.62386i) q^{85} +(-22.6004 + 22.3470i) q^{86} +(126.083 + 126.083i) q^{87} +(-39.3591 - 78.7074i) q^{88} +13.8142i q^{89} +(-128.926 + 131.838i) q^{90} -44.7093i q^{91} +(-24.9930 - 25.5630i) q^{92} +(82.2893 - 82.2893i) q^{93} +(12.6072 - 12.4659i) q^{94} +(20.6042 - 21.3086i) q^{95} +(-115.142 - 121.823i) q^{96} +(37.0639 + 37.0639i) q^{97} +(-0.492950 + 87.4415i) q^{98} +(-179.860 + 93.7779i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 136 q - 8 q^{5} + 8 q^{12} + 16 q^{16} + 80 q^{20} - 96 q^{22} - 8 q^{25} - 160 q^{26} + 80 q^{33} - 104 q^{36} - 8 q^{37} - 16 q^{38} - 168 q^{42} + 192 q^{45} + 32 q^{48} + 136 q^{53} + 264 q^{56} - 248 q^{58}+ \cdots - 168 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/220\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(111\) \(177\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.99997 0.0112748i −0.999984 0.00563739i
\(3\) 3.70405 + 3.70405i 1.23468 + 1.23468i 0.962145 + 0.272539i \(0.0878634\pi\)
0.272539 + 0.962145i \(0.412137\pi\)
\(4\) 3.99975 + 0.0450984i 0.999936 + 0.0112746i
\(5\) −3.59444 3.47563i −0.718888 0.695126i
\(6\) −7.36622 7.44975i −1.22770 1.24162i
\(7\) −1.62459 1.62459i −0.232084 0.232084i 0.581478 0.813562i \(-0.302475\pi\)
−0.813562 + 0.581478i \(0.802475\pi\)
\(8\) −7.99886 0.135292i −0.999857 0.0169115i
\(9\) 18.4400i 2.04889i
\(10\) 7.14958 + 6.99168i 0.714958 + 0.699168i
\(11\) 5.08557 + 9.75382i 0.462325 + 0.886711i
\(12\) 14.6482 + 14.9823i 1.22068 + 1.24853i
\(13\) 13.7602 + 13.7602i 1.05848 + 1.05848i 0.998180 + 0.0602980i \(0.0192051\pi\)
0.0602980 + 0.998180i \(0.480795\pi\)
\(14\) 3.23081 + 3.26744i 0.230772 + 0.233388i
\(15\) −0.440067 26.1879i −0.0293378 1.74586i
\(16\) 15.9959 + 0.360764i 0.999746 + 0.0225478i
\(17\) −22.0851 + 22.0851i −1.29912 + 1.29912i −0.370148 + 0.928973i \(0.620693\pi\)
−0.928973 + 0.370148i \(0.879307\pi\)
\(18\) 0.207907 36.8794i 0.0115504 2.04886i
\(19\) 5.92820i 0.312011i 0.987756 + 0.156005i \(0.0498617\pi\)
−0.987756 + 0.156005i \(0.950138\pi\)
\(20\) −14.2201 14.0637i −0.711005 0.703187i
\(21\) 12.0351i 0.573100i
\(22\) −10.0610 19.5647i −0.457319 0.889303i
\(23\) −6.31990 6.31990i −0.274778 0.274778i 0.556242 0.831020i \(-0.312243\pi\)
−0.831020 + 0.556242i \(0.812243\pi\)
\(24\) −29.1270 30.1293i −1.21363 1.25539i
\(25\) 0.839974 + 24.9859i 0.0335990 + 0.999435i
\(26\) −27.3649 27.6751i −1.05249 1.06443i
\(27\) −34.9662 + 34.9662i −1.29504 + 1.29504i
\(28\) −6.42467 6.57120i −0.229452 0.234686i
\(29\) 34.0393 1.17377 0.586884 0.809671i \(-0.300354\pi\)
0.586884 + 0.809671i \(0.300354\pi\)
\(30\) 0.584858 + 52.3799i 0.0194953 + 1.74600i
\(31\) 22.2160i 0.716646i −0.933598 0.358323i \(-0.883349\pi\)
0.933598 0.358323i \(-0.116651\pi\)
\(32\) −31.9873 0.901868i −0.999603 0.0281834i
\(33\) −17.2914 + 54.9659i −0.523982 + 1.66563i
\(34\) 44.4184 43.9204i 1.30642 1.29178i
\(35\) 0.193012 + 11.4859i 0.00551464 + 0.328170i
\(36\) −0.831614 + 73.7553i −0.0231004 + 2.04876i
\(37\) 8.71788 + 8.71788i 0.235618 + 0.235618i 0.815033 0.579415i \(-0.196719\pi\)
−0.579415 + 0.815033i \(0.696719\pi\)
\(38\) 0.0668392 11.8562i 0.00175893 0.312006i
\(39\) 101.937i 2.61377i
\(40\) 28.2812 + 28.2874i 0.707029 + 0.707184i
\(41\) 44.8146i 1.09304i −0.837446 0.546520i \(-0.815952\pi\)
0.837446 0.546520i \(-0.184048\pi\)
\(42\) −0.135693 + 24.0698i −0.00323079 + 0.573091i
\(43\) 11.2370 11.2370i 0.261326 0.261326i −0.564267 0.825593i \(-0.690841\pi\)
0.825593 + 0.564267i \(0.190841\pi\)
\(44\) 19.9011 + 39.2421i 0.452298 + 0.891867i
\(45\) 64.0906 66.2814i 1.42424 1.47292i
\(46\) 12.5683 + 12.7108i 0.273225 + 0.276323i
\(47\) −6.26838 + 6.26838i −0.133370 + 0.133370i −0.770640 0.637270i \(-0.780063\pi\)
0.637270 + 0.770640i \(0.280063\pi\)
\(48\) 57.9135 + 60.5860i 1.20653 + 1.26221i
\(49\) 43.7214i 0.892274i
\(50\) −1.39821 49.9804i −0.0279642 0.999609i
\(51\) −163.608 −3.20801
\(52\) 54.4168 + 55.6579i 1.04648 + 1.07035i
\(53\) −36.4914 + 36.4914i −0.688518 + 0.688518i −0.961904 0.273386i \(-0.911856\pi\)
0.273386 + 0.961904i \(0.411856\pi\)
\(54\) 70.3255 69.5371i 1.30232 1.28772i
\(55\) 15.6209 52.7351i 0.284016 0.958819i
\(56\) 12.7750 + 13.2146i 0.228126 + 0.235976i
\(57\) −21.9584 + 21.9584i −0.385234 + 0.385234i
\(58\) −68.0775 0.383786i −1.17375 0.00661699i
\(59\) 8.49349 0.143957 0.0719787 0.997406i \(-0.477069\pi\)
0.0719787 + 0.997406i \(0.477069\pi\)
\(60\) −0.579124 104.765i −0.00965207 1.74608i
\(61\) 64.3732i 1.05530i 0.849463 + 0.527649i \(0.176926\pi\)
−0.849463 + 0.527649i \(0.823074\pi\)
\(62\) −0.250481 + 44.4313i −0.00404001 + 0.716634i
\(63\) 29.9574 29.9574i 0.475514 0.475514i
\(64\) 63.9634 + 2.16436i 0.999428 + 0.0338181i
\(65\) −1.63481 97.2857i −0.0251509 1.49670i
\(66\) 35.2020 109.735i 0.533364 1.66265i
\(67\) 50.4964 50.4964i 0.753677 0.753677i −0.221486 0.975164i \(-0.571091\pi\)
0.975164 + 0.221486i \(0.0710908\pi\)
\(68\) −89.3306 + 87.3386i −1.31369 + 1.28439i
\(69\) 46.8184i 0.678528i
\(70\) −0.256517 22.9737i −0.00366453 0.328196i
\(71\) 57.3348i 0.807532i −0.914862 0.403766i \(-0.867701\pi\)
0.914862 0.403766i \(-0.132299\pi\)
\(72\) 2.49478 147.499i 0.0346497 2.04859i
\(73\) 33.7647 + 33.7647i 0.462530 + 0.462530i 0.899484 0.436954i \(-0.143943\pi\)
−0.436954 + 0.899484i \(0.643943\pi\)
\(74\) −17.3372 17.5338i −0.234286 0.236943i
\(75\) −89.4377 + 95.6603i −1.19250 + 1.27547i
\(76\) −0.267353 + 23.7113i −0.00351780 + 0.311991i
\(77\) 7.58397 24.1079i 0.0984931 0.313089i
\(78\) 1.14932 203.871i 0.0147349 2.61373i
\(79\) 91.0525i 1.15256i −0.817251 0.576281i \(-0.804503\pi\)
0.817251 0.576281i \(-0.195497\pi\)
\(80\) −56.2425 56.8927i −0.703031 0.711159i
\(81\) −93.0733 −1.14905
\(82\) −0.505275 + 89.6278i −0.00616189 + 1.09302i
\(83\) 67.5635 67.5635i 0.814019 0.814019i −0.171215 0.985234i \(-0.554769\pi\)
0.985234 + 0.171215i \(0.0547693\pi\)
\(84\) 0.542764 48.1374i 0.00646148 0.573064i
\(85\) 156.143 2.62386i 1.83697 0.0308689i
\(86\) −22.6004 + 22.3470i −0.262795 + 0.259849i
\(87\) 126.083 + 126.083i 1.44923 + 1.44923i
\(88\) −39.3591 78.7074i −0.447263 0.894402i
\(89\) 13.8142i 0.155216i 0.996984 + 0.0776078i \(0.0247282\pi\)
−0.996984 + 0.0776078i \(0.975272\pi\)
\(90\) −128.926 + 131.838i −1.43252 + 1.46487i
\(91\) 44.7093i 0.491311i
\(92\) −24.9930 25.5630i −0.271663 0.277859i
\(93\) 82.2893 82.2893i 0.884831 0.884831i
\(94\) 12.6072 12.4659i 0.134120 0.132616i
\(95\) 20.6042 21.3086i 0.216887 0.224301i
\(96\) −115.142 121.823i −1.19940 1.26899i
\(97\) 37.0639 + 37.0639i 0.382102 + 0.382102i 0.871859 0.489757i \(-0.162915\pi\)
−0.489757 + 0.871859i \(0.662915\pi\)
\(98\) −0.492950 + 87.4415i −0.00503010 + 0.892260i
\(99\) −179.860 + 93.7779i −1.81677 + 0.947252i
\(100\) 2.23286 + 99.9751i 0.0223286 + 0.999751i
\(101\) 118.605i 1.17431i −0.809475 0.587155i \(-0.800248\pi\)
0.809475 0.587155i \(-0.199752\pi\)
\(102\) 327.211 + 1.84465i 3.20796 + 0.0180848i
\(103\) 132.061 + 132.061i 1.28215 + 1.28215i 0.939445 + 0.342701i \(0.111342\pi\)
0.342701 + 0.939445i \(0.388658\pi\)
\(104\) −108.204 111.928i −1.04043 1.07623i
\(105\) −41.8296 + 43.2594i −0.398377 + 0.411995i
\(106\) 73.3932 72.5703i 0.692388 0.684625i
\(107\) −18.9476 18.9476i −0.177080 0.177080i 0.613001 0.790082i \(-0.289962\pi\)
−0.790082 + 0.613001i \(0.789962\pi\)
\(108\) −141.433 + 138.279i −1.30956 + 1.28036i
\(109\) −50.7151 −0.465276 −0.232638 0.972563i \(-0.574736\pi\)
−0.232638 + 0.972563i \(0.574736\pi\)
\(110\) −31.8359 + 105.292i −0.289417 + 0.957203i
\(111\) 64.5829i 0.581828i
\(112\) −25.4007 26.5729i −0.226792 0.237258i
\(113\) −93.6330 + 93.6330i −0.828610 + 0.828610i −0.987325 0.158714i \(-0.949265\pi\)
0.158714 + 0.987325i \(0.449265\pi\)
\(114\) 44.1636 43.6685i 0.387400 0.383057i
\(115\) 0.750848 + 44.6821i 0.00652911 + 0.388540i
\(116\) 136.149 + 1.53512i 1.17369 + 0.0132338i
\(117\) −253.738 + 253.738i −2.16870 + 2.16870i
\(118\) −16.9867 0.0957623i −0.143955 0.000811545i
\(119\) 71.7582 0.603010
\(120\) −0.0229700 + 209.533i −0.000191417 + 1.74611i
\(121\) −69.2739 + 99.2075i −0.572512 + 0.819897i
\(122\) 0.725793 128.744i 0.00594913 1.05528i
\(123\) 165.996 165.996i 1.34956 1.34956i
\(124\) 1.00191 88.8584i 0.00807990 0.716600i
\(125\) 83.8225 92.7297i 0.670580 0.741837i
\(126\) −60.2515 + 59.5760i −0.478187 + 0.472826i
\(127\) −148.955 148.955i −1.17288 1.17288i −0.981521 0.191354i \(-0.938712\pi\)
−0.191354 0.981521i \(-0.561288\pi\)
\(128\) −127.900 5.04982i −0.999221 0.0394517i
\(129\) 83.2450 0.645310
\(130\) 2.17269 + 194.587i 0.0167130 + 1.49682i
\(131\) 142.569 1.08832 0.544158 0.838983i \(-0.316849\pi\)
0.544158 + 0.838983i \(0.316849\pi\)
\(132\) −71.6402 + 219.070i −0.542728 + 1.65962i
\(133\) 9.63088 9.63088i 0.0724126 0.0724126i
\(134\) −101.560 + 100.422i −0.757914 + 0.749417i
\(135\) 247.214 4.15423i 1.83121 0.0307721i
\(136\) 179.643 173.667i 1.32091 1.27697i
\(137\) 72.3548 + 72.3548i 0.528137 + 0.528137i 0.920017 0.391879i \(-0.128175\pi\)
−0.391879 + 0.920017i \(0.628175\pi\)
\(138\) −0.527868 + 93.6354i −0.00382513 + 0.678517i
\(139\) 29.2001i 0.210072i 0.994468 + 0.105036i \(0.0334958\pi\)
−0.994468 + 0.105036i \(0.966504\pi\)
\(140\) 0.254002 + 45.9496i 0.00181430 + 0.328211i
\(141\) −46.4368 −0.329339
\(142\) −0.646437 + 114.668i −0.00455237 + 0.807519i
\(143\) −64.2361 + 204.193i −0.449203 + 1.42792i
\(144\) −6.65249 + 294.965i −0.0461979 + 2.04837i
\(145\) −122.352 118.308i −0.843808 0.815917i
\(146\) −67.1476 67.9090i −0.459915 0.465130i
\(147\) 161.946 161.946i 1.10168 1.10168i
\(148\) 34.4761 + 35.2625i 0.232947 + 0.238260i
\(149\) 94.1728 0.632032 0.316016 0.948754i \(-0.397655\pi\)
0.316016 + 0.948754i \(0.397655\pi\)
\(150\) 179.951 190.309i 1.19967 1.26873i
\(151\) 200.954 1.33082 0.665412 0.746477i \(-0.268256\pi\)
0.665412 + 0.746477i \(0.268256\pi\)
\(152\) 0.802036 47.4188i 0.00527656 0.311966i
\(153\) −407.248 407.248i −2.66175 2.66175i
\(154\) −15.4395 + 48.1295i −0.100257 + 0.312529i
\(155\) −77.2147 + 79.8541i −0.498159 + 0.515188i
\(156\) −4.59720 + 407.723i −0.0294692 + 2.61361i
\(157\) −54.4689 54.4689i −0.346936 0.346936i 0.512031 0.858967i \(-0.328893\pi\)
−0.858967 + 0.512031i \(0.828893\pi\)
\(158\) −1.02660 + 182.102i −0.00649745 + 1.15254i
\(159\) −270.332 −1.70020
\(160\) 111.842 + 114.418i 0.699011 + 0.715111i
\(161\) 20.5344i 0.127543i
\(162\) 186.144 + 1.04938i 1.14904 + 0.00647766i
\(163\) −161.844 161.844i −0.992906 0.992906i 0.00706858 0.999975i \(-0.497750\pi\)
−0.999975 + 0.00706858i \(0.997750\pi\)
\(164\) 2.02107 179.247i 0.0123236 1.09297i
\(165\) 253.194 137.473i 1.53451 0.833168i
\(166\) −135.887 + 134.363i −0.818595 + 0.809417i
\(167\) −94.4017 94.4017i −0.565279 0.565279i 0.365523 0.930802i \(-0.380890\pi\)
−0.930802 + 0.365523i \(0.880890\pi\)
\(168\) −1.62825 + 96.2671i −0.00969196 + 0.573018i
\(169\) 209.687i 1.24075i
\(170\) −312.310 + 3.48716i −1.83712 + 0.0205127i
\(171\) −109.316 −0.639275
\(172\) 45.4520 44.4385i 0.264256 0.258363i
\(173\) −68.5259 68.5259i −0.396104 0.396104i 0.480753 0.876856i \(-0.340364\pi\)
−0.876856 + 0.480753i \(0.840364\pi\)
\(174\) −250.741 253.584i −1.44104 1.45738i
\(175\) 39.2271 41.9564i 0.224155 0.239751i
\(176\) 77.8296 + 157.856i 0.442214 + 0.896910i
\(177\) 31.4603 + 31.4603i 0.177742 + 0.177742i
\(178\) 0.155752 27.6279i 0.000875011 0.155213i
\(179\) 124.953 0.698060 0.349030 0.937112i \(-0.386511\pi\)
0.349030 + 0.937112i \(0.386511\pi\)
\(180\) 259.335 262.218i 1.44075 1.45677i
\(181\) 59.7248 0.329971 0.164986 0.986296i \(-0.447242\pi\)
0.164986 + 0.986296i \(0.447242\pi\)
\(182\) −0.504088 + 89.4173i −0.00276972 + 0.491304i
\(183\) −238.441 + 238.441i −1.30296 + 1.30296i
\(184\) 49.6969 + 51.4070i 0.270092 + 0.279386i
\(185\) −1.03575 61.6360i −0.00559862 0.333168i
\(186\) −165.504 + 163.648i −0.889805 + 0.879829i
\(187\) −327.729 103.098i −1.75256 0.551329i
\(188\) −25.3546 + 24.7892i −0.134865 + 0.131858i
\(189\) 113.611 0.601118
\(190\) −41.4481 + 42.3841i −0.218148 + 0.223074i
\(191\) 58.7271i 0.307471i −0.988112 0.153736i \(-0.950870\pi\)
0.988112 0.153736i \(-0.0491305\pi\)
\(192\) 228.907 + 244.941i 1.19222 + 1.27573i
\(193\) 102.445 + 102.445i 0.530801 + 0.530801i 0.920811 0.390009i \(-0.127528\pi\)
−0.390009 + 0.920811i \(0.627528\pi\)
\(194\) −73.7087 74.5445i −0.379942 0.384250i
\(195\) 354.296 366.407i 1.81690 1.87901i
\(196\) 1.97177 174.875i 0.0100600 0.892217i
\(197\) 121.540 121.540i 0.616956 0.616956i −0.327793 0.944749i \(-0.606305\pi\)
0.944749 + 0.327793i \(0.106305\pi\)
\(198\) 360.772 185.525i 1.82208 0.936995i
\(199\) 90.5475 0.455012 0.227506 0.973777i \(-0.426943\pi\)
0.227506 + 0.973777i \(0.426943\pi\)
\(200\) −3.33845 199.972i −0.0166922 0.999861i
\(201\) 374.082 1.86111
\(202\) −1.33725 + 237.207i −0.00662004 + 1.17429i
\(203\) −55.2998 55.2998i −0.272413 0.272413i
\(204\) −654.392 7.37848i −3.20780 0.0361690i
\(205\) −155.759 + 161.083i −0.759800 + 0.785772i
\(206\) −262.629 265.607i −1.27490 1.28935i
\(207\) 116.539 116.539i 0.562990 0.562990i
\(208\) 215.143 + 225.072i 1.03434 + 1.08208i
\(209\) −57.8226 + 30.1483i −0.276663 + 0.144250i
\(210\) 84.1456 86.0459i 0.400693 0.409742i
\(211\) −242.037 −1.14710 −0.573548 0.819172i \(-0.694433\pi\)
−0.573548 + 0.819172i \(0.694433\pi\)
\(212\) −147.602 + 144.311i −0.696237 + 0.680711i
\(213\) 212.371 212.371i 0.997047 0.997047i
\(214\) 37.6809 + 38.1082i 0.176079 + 0.178076i
\(215\) −79.4466 + 1.33504i −0.369519 + 0.00620948i
\(216\) 284.420 274.959i 1.31676 1.27296i
\(217\) −36.0918 + 36.0918i −0.166322 + 0.166322i
\(218\) 101.429 + 0.571802i 0.465269 + 0.00262294i
\(219\) 250.132i 1.14216i
\(220\) 64.8579 210.222i 0.294809 0.955556i
\(221\) −607.790 −2.75018
\(222\) 0.728159 129.164i 0.00327999 0.581819i
\(223\) −9.03062 9.03062i −0.0404961 0.0404961i 0.686569 0.727065i \(-0.259116\pi\)
−0.727065 + 0.686569i \(0.759116\pi\)
\(224\) 50.5010 + 53.4313i 0.225451 + 0.238533i
\(225\) −460.739 + 15.4891i −2.04773 + 0.0688405i
\(226\) 188.319 186.207i 0.833269 0.823926i
\(227\) 66.4954 + 66.4954i 0.292931 + 0.292931i 0.838237 0.545306i \(-0.183586\pi\)
−0.545306 + 0.838237i \(0.683586\pi\)
\(228\) −88.8182 + 86.8376i −0.389553 + 0.380867i
\(229\) 129.901i 0.567254i −0.958935 0.283627i \(-0.908462\pi\)
0.958935 0.283627i \(-0.0915378\pi\)
\(230\) −0.997891 89.3713i −0.00433866 0.388571i
\(231\) 117.388 61.2054i 0.508174 0.264958i
\(232\) −272.275 4.60523i −1.17360 0.0198501i
\(233\) 121.518 + 121.518i 0.521537 + 0.521537i 0.918035 0.396498i \(-0.129775\pi\)
−0.396498 + 0.918035i \(0.629775\pi\)
\(234\) 510.329 504.608i 2.18089 2.15644i
\(235\) 44.3179 0.744728i 0.188587 0.00316905i
\(236\) 33.9718 + 0.383043i 0.143948 + 0.00162306i
\(237\) 337.263 337.263i 1.42305 1.42305i
\(238\) −143.514 0.809058i −0.603000 0.00339940i
\(239\) 60.6306i 0.253685i 0.991923 + 0.126842i \(0.0404842\pi\)
−0.991923 + 0.126842i \(0.959516\pi\)
\(240\) 2.40838 419.059i 0.0100349 1.74608i
\(241\) 124.194i 0.515328i 0.966235 + 0.257664i \(0.0829528\pi\)
−0.966235 + 0.257664i \(0.917047\pi\)
\(242\) 139.664 197.631i 0.577125 0.816656i
\(243\) −30.0525 30.0525i −0.123673 0.123673i
\(244\) −2.90313 + 257.476i −0.0118981 + 1.05523i
\(245\) −151.960 + 157.154i −0.620243 + 0.641445i
\(246\) −333.857 + 330.114i −1.35714 + 1.34193i
\(247\) −81.5734 + 81.5734i −0.330257 + 0.330257i
\(248\) −3.00564 + 177.703i −0.0121195 + 0.716543i
\(249\) 500.518 2.01011
\(250\) −168.688 + 184.511i −0.674751 + 0.738045i
\(251\) 380.561i 1.51618i 0.652150 + 0.758090i \(0.273867\pi\)
−0.652150 + 0.758090i \(0.726133\pi\)
\(252\) 121.173 118.471i 0.480845 0.470122i
\(253\) 29.5028 93.7834i 0.116612 0.370685i
\(254\) 296.226 + 299.585i 1.16624 + 1.17947i
\(255\) 588.080 + 568.642i 2.30620 + 2.22997i
\(256\) 255.740 + 11.5415i 0.998983 + 0.0450841i
\(257\) −57.6263 57.6263i −0.224227 0.224227i 0.586049 0.810276i \(-0.300683\pi\)
−0.810276 + 0.586049i \(0.800683\pi\)
\(258\) −166.487 0.938570i −0.645300 0.00363787i
\(259\) 28.3259i 0.109366i
\(260\) −2.15140 389.192i −0.00827460 1.49689i
\(261\) 627.684i 2.40492i
\(262\) −285.134 1.60744i −1.08830 0.00613527i
\(263\) 80.2515 80.2515i 0.305139 0.305139i −0.537882 0.843020i \(-0.680775\pi\)
0.843020 + 0.537882i \(0.180775\pi\)
\(264\) 145.748 437.325i 0.552076 1.65653i
\(265\) 257.997 4.33544i 0.973574 0.0163601i
\(266\) −19.3700 + 19.1529i −0.0728197 + 0.0720033i
\(267\) −51.1684 + 51.1684i −0.191642 + 0.191642i
\(268\) 204.250 199.695i 0.762127 0.745132i
\(269\) 300.863i 1.11845i 0.829016 + 0.559225i \(0.188901\pi\)
−0.829016 + 0.559225i \(0.811099\pi\)
\(270\) −494.466 + 5.52105i −1.83136 + 0.0204483i
\(271\) −113.311 −0.418122 −0.209061 0.977903i \(-0.567041\pi\)
−0.209061 + 0.977903i \(0.567041\pi\)
\(272\) −361.239 + 345.304i −1.32808 + 1.26950i
\(273\) 165.606 165.606i 0.606614 0.606614i
\(274\) −143.892 145.523i −0.525152 0.531106i
\(275\) −239.436 + 135.260i −0.870676 + 0.491856i
\(276\) 2.11144 187.262i 0.00765014 0.678485i
\(277\) −92.5588 + 92.5588i −0.334147 + 0.334147i −0.854159 0.520012i \(-0.825928\pi\)
0.520012 + 0.854159i \(0.325928\pi\)
\(278\) 0.329224 58.3992i 0.00118426 0.210069i
\(279\) 409.663 1.46833
\(280\) 0.0100746 91.9005i 3.59806e−5 0.328216i
\(281\) 401.370i 1.42836i 0.699960 + 0.714182i \(0.253201\pi\)
−0.699960 + 0.714182i \(0.746799\pi\)
\(282\) 92.8721 + 0.523565i 0.329334 + 0.00185661i
\(283\) −226.496 + 226.496i −0.800340 + 0.800340i −0.983149 0.182808i \(-0.941481\pi\)
0.182808 + 0.983149i \(0.441481\pi\)
\(284\) 2.58571 229.324i 0.00910460 0.807481i
\(285\) 155.247 2.60881i 0.544727 0.00915371i
\(286\) 130.772 407.656i 0.457246 1.42537i
\(287\) −72.8052 + 72.8052i −0.253677 + 0.253677i
\(288\) 16.6304 589.845i 0.0577446 2.04807i
\(289\) 686.499i 2.37543i
\(290\) 243.366 + 237.992i 0.839195 + 0.820661i
\(291\) 274.573i 0.943550i
\(292\) 133.527 + 136.573i 0.457286 + 0.467715i
\(293\) −101.907 101.907i −0.347807 0.347807i 0.511485 0.859292i \(-0.329096\pi\)
−0.859292 + 0.511485i \(0.829096\pi\)
\(294\) −325.714 + 322.062i −1.10787 + 1.09545i
\(295\) −30.5293 29.5202i −0.103489 0.100069i
\(296\) −68.5536 70.9125i −0.231600 0.239569i
\(297\) −518.877 163.231i −1.74706 0.549599i
\(298\) −188.343 1.06178i −0.632022 0.00356301i
\(299\) 173.926i 0.581693i
\(300\) −362.042 + 378.583i −1.20681 + 1.26194i
\(301\) −36.5110 −0.121299
\(302\) −401.902 2.26572i −1.33080 0.00750237i
\(303\) 439.320 439.320i 1.44990 1.44990i
\(304\) −2.13868 + 94.8271i −0.00703515 + 0.311931i
\(305\) 223.737 231.385i 0.733565 0.758641i
\(306\) 809.892 + 819.075i 2.64671 + 2.67672i
\(307\) −222.367 222.367i −0.724322 0.724322i 0.245161 0.969483i \(-0.421159\pi\)
−0.969483 + 0.245161i \(0.921159\pi\)
\(308\) 31.4212 96.0834i 0.102017 0.311959i
\(309\) 978.321i 3.16609i
\(310\) 155.327 158.835i 0.501056 0.512371i
\(311\) 431.545i 1.38761i −0.720165 0.693803i \(-0.755934\pi\)
0.720165 0.693803i \(-0.244066\pi\)
\(312\) 13.7912 815.380i 0.0442027 2.61340i
\(313\) −193.849 + 193.849i −0.619327 + 0.619327i −0.945359 0.326032i \(-0.894288\pi\)
0.326032 + 0.945359i \(0.394288\pi\)
\(314\) 108.322 + 109.550i 0.344974 + 0.348886i
\(315\) −211.801 + 3.55915i −0.672383 + 0.0112989i
\(316\) 4.10632 364.187i 0.0129947 1.15249i
\(317\) −231.515 231.515i −0.730333 0.730333i 0.240353 0.970686i \(-0.422737\pi\)
−0.970686 + 0.240353i \(0.922737\pi\)
\(318\) 540.656 + 3.04794i 1.70018 + 0.00958471i
\(319\) 173.109 + 332.013i 0.542662 + 1.04079i
\(320\) −222.390 230.093i −0.694969 0.719040i
\(321\) 140.366i 0.437276i
\(322\) 0.231521 41.0682i 0.000719011 0.127541i
\(323\) −130.925 130.925i −0.405340 0.405340i
\(324\) −372.270 4.19746i −1.14898 0.0129551i
\(325\) −332.253 + 355.369i −1.02232 + 1.09344i
\(326\) 321.858 + 325.507i 0.987293 + 0.998488i
\(327\) −187.851 187.851i −0.574469 0.574469i
\(328\) −6.06304 + 358.466i −0.0184849 + 1.09288i
\(329\) 20.3671 0.0619060
\(330\) −507.930 + 272.087i −1.53918 + 0.824505i
\(331\) 516.607i 1.56075i −0.625314 0.780373i \(-0.715029\pi\)
0.625314 0.780373i \(-0.284971\pi\)
\(332\) 273.284 267.190i 0.823145 0.804789i
\(333\) −160.758 + 160.758i −0.482756 + 0.482756i
\(334\) 187.736 + 189.865i 0.562084 + 0.568457i
\(335\) −357.013 + 5.99932i −1.06571 + 0.0179084i
\(336\) 4.34184 192.513i 0.0129221 0.572955i
\(337\) 91.3868 91.3868i 0.271177 0.271177i −0.558397 0.829574i \(-0.688583\pi\)
0.829574 + 0.558397i \(0.188583\pi\)
\(338\) 2.36418 419.368i 0.00699461 1.24073i
\(339\) −693.643 −2.04614
\(340\) 624.650 3.45297i 1.83721 0.0101558i
\(341\) 216.691 112.981i 0.635457 0.331323i
\(342\) 218.629 + 1.23251i 0.639265 + 0.00360384i
\(343\) −150.634 + 150.634i −0.439166 + 0.439166i
\(344\) −91.4036 + 88.3631i −0.265708 + 0.256869i
\(345\) −162.724 + 168.286i −0.471663 + 0.487786i
\(346\) 136.277 + 137.822i 0.393864 + 0.398330i
\(347\) 238.516 + 238.516i 0.687366 + 0.687366i 0.961649 0.274283i \(-0.0884405\pi\)
−0.274283 + 0.961649i \(0.588441\pi\)
\(348\) 498.615 + 509.987i 1.43280 + 1.46548i
\(349\) 93.8343 0.268866 0.134433 0.990923i \(-0.457079\pi\)
0.134433 + 0.990923i \(0.457079\pi\)
\(350\) −78.9261 + 83.4691i −0.225503 + 0.238483i
\(351\) −962.285 −2.74155
\(352\) −153.877 316.585i −0.437151 0.899388i
\(353\) 383.433 383.433i 1.08621 1.08621i 0.0902984 0.995915i \(-0.471218\pi\)
0.995915 0.0902984i \(-0.0287821\pi\)
\(354\) −62.5649 63.2744i −0.176737 0.178741i
\(355\) −199.275 + 206.086i −0.561337 + 0.580525i
\(356\) −0.622998 + 55.2532i −0.00174999 + 0.155206i
\(357\) 265.796 + 265.796i 0.744527 + 0.744527i
\(358\) −249.901 1.40881i −0.698049 0.00393524i
\(359\) 57.3533i 0.159759i −0.996805 0.0798793i \(-0.974547\pi\)
0.996805 0.0798793i \(-0.0254535\pi\)
\(360\) −521.619 + 521.505i −1.44894 + 1.44862i
\(361\) 325.856 0.902649
\(362\) −119.448 0.673384i −0.329966 0.00186018i
\(363\) −624.064 + 110.875i −1.71918 + 0.305442i
\(364\) 2.01632 178.826i 0.00553934 0.491280i
\(365\) −4.01148 238.719i −0.0109904 0.654024i
\(366\) 479.564 474.187i 1.31028 1.29559i
\(367\) 391.149 391.149i 1.06580 1.06580i 0.0681232 0.997677i \(-0.478299\pi\)
0.997677 0.0681232i \(-0.0217011\pi\)
\(368\) −98.8127 103.373i −0.268513 0.280904i
\(369\) 826.381 2.23951
\(370\) 1.37652 + 123.282i 0.00372034 + 0.333194i
\(371\) 118.567 0.319588
\(372\) 332.847 325.425i 0.894751 0.874798i
\(373\) −237.138 237.138i −0.635758 0.635758i 0.313748 0.949506i \(-0.398415\pi\)
−0.949506 + 0.313748i \(0.898415\pi\)
\(374\) 654.285 + 209.889i 1.74942 + 0.561200i
\(375\) 653.958 32.9926i 1.74389 0.0879803i
\(376\) 50.9879 49.2918i 0.135606 0.131095i
\(377\) 468.388 + 468.388i 1.24241 + 1.24241i
\(378\) −227.219 1.28094i −0.601108 0.00338874i
\(379\) 113.361 0.299106 0.149553 0.988754i \(-0.452217\pi\)
0.149553 + 0.988754i \(0.452217\pi\)
\(380\) 83.3727 84.2996i 0.219402 0.221841i
\(381\) 1103.48i 2.89626i
\(382\) −0.662135 + 117.452i −0.00173334 + 0.307467i
\(383\) 320.539 + 320.539i 0.836916 + 0.836916i 0.988452 0.151535i \(-0.0484218\pi\)
−0.151535 + 0.988452i \(0.548422\pi\)
\(384\) −455.045 492.454i −1.18501 1.28243i
\(385\) −111.050 + 60.2952i −0.288442 + 0.156611i
\(386\) −203.731 206.041i −0.527801 0.533785i
\(387\) 207.211 + 207.211i 0.535428 + 0.535428i
\(388\) 146.575 + 149.918i 0.377770 + 0.386386i
\(389\) 347.708i 0.893851i 0.894571 + 0.446925i \(0.147481\pi\)
−0.894571 + 0.446925i \(0.852519\pi\)
\(390\) −712.712 + 728.807i −1.82747 + 1.86874i
\(391\) 279.151 0.713940
\(392\) −5.91515 + 349.721i −0.0150897 + 0.892147i
\(393\) 528.084 + 528.084i 1.34373 + 1.34373i
\(394\) −244.447 + 241.707i −0.620424 + 0.613468i
\(395\) −316.465 + 327.282i −0.801177 + 0.828563i
\(396\) −723.625 + 366.976i −1.82734 + 0.926708i
\(397\) −541.110 541.110i −1.36300 1.36300i −0.870071 0.492926i \(-0.835927\pi\)
−0.492926 0.870071i \(-0.664073\pi\)
\(398\) −181.092 1.02090i −0.455005 0.00256508i
\(399\) 71.3465 0.178813
\(400\) 4.42215 + 399.976i 0.0110554 + 0.999939i
\(401\) 14.6203 0.0364596 0.0182298 0.999834i \(-0.494197\pi\)
0.0182298 + 0.999834i \(0.494197\pi\)
\(402\) −748.153 4.21770i −1.86108 0.0104918i
\(403\) 305.697 305.697i 0.758554 0.758554i
\(404\) 5.34891 474.391i 0.0132399 1.17423i
\(405\) 334.546 + 323.489i 0.826040 + 0.798737i
\(406\) 109.974 + 111.221i 0.270873 + 0.273944i
\(407\) −40.6972 + 129.368i −0.0999931 + 0.317858i
\(408\) 1308.68 + 22.1348i 3.20755 + 0.0542521i
\(409\) −626.095 −1.53080 −0.765398 0.643558i \(-0.777458\pi\)
−0.765398 + 0.643558i \(0.777458\pi\)
\(410\) 313.329 320.405i 0.764218 0.781477i
\(411\) 536.012i 1.30417i
\(412\) 522.255 + 534.166i 1.26761 + 1.29652i
\(413\) −13.7984 13.7984i −0.0334102 0.0334102i
\(414\) −234.388 + 231.760i −0.566154 + 0.559807i
\(415\) −477.679 + 8.02702i −1.15103 + 0.0193422i
\(416\) −427.742 452.562i −1.02823 1.08789i
\(417\) −108.159 + 108.159i −0.259373 + 0.259373i
\(418\) 115.983 59.6437i 0.277472 0.142688i
\(419\) −318.953 −0.761225 −0.380612 0.924735i \(-0.624287\pi\)
−0.380612 + 0.924735i \(0.624287\pi\)
\(420\) −169.259 + 171.140i −0.402997 + 0.407477i
\(421\) −106.730 −0.253515 −0.126758 0.991934i \(-0.540457\pi\)
−0.126758 + 0.991934i \(0.540457\pi\)
\(422\) 484.067 + 2.72892i 1.14708 + 0.00646663i
\(423\) −115.589 115.589i −0.273260 0.273260i
\(424\) 296.827 286.953i 0.700063 0.676775i
\(425\) −570.365 533.264i −1.34204 1.25474i
\(426\) −427.130 + 422.341i −1.00265 + 0.991410i
\(427\) 104.580 104.580i 0.244918 0.244918i
\(428\) −74.9310 76.6400i −0.175072 0.179066i
\(429\) −994.276 + 518.409i −2.31766 + 1.20841i
\(430\) 158.906 1.77429i 0.369548 0.00412626i
\(431\) 7.13997 0.0165661 0.00828303 0.999966i \(-0.497363\pi\)
0.00828303 + 0.999966i \(0.497363\pi\)
\(432\) −571.932 + 546.703i −1.32392 + 1.26552i
\(433\) −218.819 + 218.819i −0.505355 + 0.505355i −0.913097 0.407742i \(-0.866316\pi\)
0.407742 + 0.913097i \(0.366316\pi\)
\(434\) 72.5895 71.7756i 0.167257 0.165382i
\(435\) −14.9796 891.418i −0.0344358 2.04924i
\(436\) −202.847 2.28717i −0.465246 0.00524580i
\(437\) 37.4656 37.4656i 0.0857337 0.0857337i
\(438\) 2.82019 500.256i 0.00643878 1.14214i
\(439\) 735.002i 1.67426i 0.547001 + 0.837132i \(0.315769\pi\)
−0.547001 + 0.837132i \(0.684231\pi\)
\(440\) −132.084 + 419.707i −0.300191 + 0.953879i
\(441\) 806.223 1.82817
\(442\) 1215.56 + 6.85271i 2.75014 + 0.0155039i
\(443\) 528.261 + 528.261i 1.19246 + 1.19246i 0.976374 + 0.216089i \(0.0693301\pi\)
0.216089 + 0.976374i \(0.430670\pi\)
\(444\) −2.91259 + 258.315i −0.00655988 + 0.581791i
\(445\) 48.0130 49.6542i 0.107894 0.111583i
\(446\) 17.9591 + 18.1628i 0.0402671 + 0.0407237i
\(447\) 348.821 + 348.821i 0.780360 + 0.780360i
\(448\) −100.398 107.430i −0.224102 0.239800i
\(449\) 232.808i 0.518503i −0.965810 0.259251i \(-0.916524\pi\)
0.965810 0.259251i \(-0.0834758\pi\)
\(450\) 921.639 25.7830i 2.04809 0.0572955i
\(451\) 437.113 227.908i 0.969209 0.505339i
\(452\) −378.731 + 370.285i −0.837900 + 0.819216i
\(453\) 744.345 + 744.345i 1.64315 + 1.64315i
\(454\) −132.239 133.738i −0.291275 0.294578i
\(455\) −155.393 + 160.705i −0.341524 + 0.353198i
\(456\) 178.613 172.671i 0.391694 0.378665i
\(457\) −39.6097 + 39.6097i −0.0866733 + 0.0866733i −0.749114 0.662441i \(-0.769521\pi\)
0.662441 + 0.749114i \(0.269521\pi\)
\(458\) −1.46461 + 259.798i −0.00319783 + 0.567245i
\(459\) 1544.46i 3.36484i
\(460\) 0.988109 + 178.751i 0.00214806 + 0.388589i
\(461\) 791.088i 1.71603i 0.513628 + 0.858013i \(0.328301\pi\)
−0.513628 + 0.858013i \(0.671699\pi\)
\(462\) −235.463 + 121.085i −0.509660 + 0.262089i
\(463\) 186.630 + 186.630i 0.403089 + 0.403089i 0.879320 0.476231i \(-0.157997\pi\)
−0.476231 + 0.879320i \(0.657997\pi\)
\(464\) 544.490 + 12.2802i 1.17347 + 0.0264659i
\(465\) −581.791 + 9.77654i −1.25116 + 0.0210248i
\(466\) −241.662 244.402i −0.518588 0.524469i
\(467\) 253.257 253.257i 0.542306 0.542306i −0.381898 0.924204i \(-0.624729\pi\)
0.924204 + 0.381898i \(0.124729\pi\)
\(468\) −1026.33 + 1003.45i −2.19302 + 2.14411i
\(469\) −164.072 −0.349833
\(470\) −88.6428 + 0.989757i −0.188602 + 0.00210587i
\(471\) 403.511i 0.856712i
\(472\) −67.9382 1.14910i −0.143937 0.00243453i
\(473\) 166.751 + 52.4572i 0.352538 + 0.110903i
\(474\) −678.318 + 670.713i −1.43105 + 1.41501i
\(475\) −148.121 + 4.97954i −0.311834 + 0.0104832i
\(476\) 287.014 + 3.23618i 0.602972 + 0.00679870i
\(477\) −672.902 672.902i −1.41070 1.41070i
\(478\) 0.683597 121.259i 0.00143012 0.253680i
\(479\) 406.686i 0.849031i 0.905421 + 0.424516i \(0.139556\pi\)
−0.905421 + 0.424516i \(0.860444\pi\)
\(480\) −9.54147 + 838.077i −0.0198781 + 1.74599i
\(481\) 239.920i 0.498794i
\(482\) 1.40026 248.384i 0.00290511 0.515320i
\(483\) −76.0606 + 76.0606i −0.157475 + 0.157475i
\(484\) −281.552 + 393.681i −0.581719 + 0.813390i
\(485\) −4.40345 262.044i −0.00907928 0.540298i
\(486\) 59.7652 + 60.4429i 0.122974 + 0.124368i
\(487\) −94.0358 + 94.0358i −0.193092 + 0.193092i −0.797031 0.603939i \(-0.793597\pi\)
0.603939 + 0.797031i \(0.293597\pi\)
\(488\) 8.70915 514.912i 0.0178466 1.05515i
\(489\) 1198.96i 2.45185i
\(490\) 305.686 312.590i 0.623849 0.637938i
\(491\) 741.561 1.51031 0.755153 0.655548i \(-0.227562\pi\)
0.755153 + 0.655548i \(0.227562\pi\)
\(492\) 671.426 656.454i 1.36469 1.33426i
\(493\) −751.760 + 751.760i −1.52487 + 1.52487i
\(494\) 164.064 162.224i 0.332113 0.328389i
\(495\) 972.434 + 288.049i 1.96451 + 0.581918i
\(496\) 8.01475 355.366i 0.0161588 0.716463i
\(497\) −93.1453 + 93.1453i −0.187415 + 0.187415i
\(498\) −1001.02 5.64323i −2.01008 0.0113318i
\(499\) −927.581 −1.85888 −0.929440 0.368973i \(-0.879709\pi\)
−0.929440 + 0.368973i \(0.879709\pi\)
\(500\) 339.451 367.115i 0.678901 0.734230i
\(501\) 699.337i 1.39588i
\(502\) 4.29074 761.110i 0.00854730 1.51616i
\(503\) 664.811 664.811i 1.32169 1.32169i 0.409285 0.912407i \(-0.365778\pi\)
0.912407 0.409285i \(-0.134222\pi\)
\(504\) −243.678 + 235.572i −0.483487 + 0.467404i
\(505\) −412.228 + 426.319i −0.816293 + 0.844197i
\(506\) −60.0621 + 187.231i −0.118700 + 0.370022i
\(507\) −776.692 + 776.692i −1.53194 + 1.53194i
\(508\) −589.065 602.500i −1.15958 1.18602i
\(509\) 306.657i 0.602469i −0.953550 0.301234i \(-0.902601\pi\)
0.953550 0.301234i \(-0.0973987\pi\)
\(510\) −1169.73 1143.90i −2.29359 2.24294i
\(511\) 109.707i 0.214691i
\(512\) −511.341 25.9661i −0.998713 0.0507150i
\(513\) −207.287 207.287i −0.404068 0.404068i
\(514\) 114.601 + 115.901i 0.222959 + 0.225487i
\(515\) −15.6898 933.680i −0.0304656 1.81297i
\(516\) 332.959 + 3.75422i 0.645269 + 0.00727562i
\(517\) −93.0189 29.2623i −0.179921 0.0566003i
\(518\) −0.319368 + 56.6509i −0.000616541 + 0.109365i
\(519\) 507.647i 0.978126i
\(520\) −0.0853315 + 778.396i −0.000164099 + 1.49691i
\(521\) 314.557 0.603756 0.301878 0.953347i \(-0.402386\pi\)
0.301878 + 0.953347i \(0.402386\pi\)
\(522\) 7.07700 1255.35i 0.0135575 2.40488i
\(523\) 634.181 634.181i 1.21258 1.21258i 0.242410 0.970174i \(-0.422062\pi\)
0.970174 0.242410i \(-0.0779378\pi\)
\(524\) 570.241 + 6.42966i 1.08825 + 0.0122703i
\(525\) 300.708 10.1092i 0.572777 0.0192556i
\(526\) −161.405 + 159.596i −0.306854 + 0.303414i
\(527\) 490.642 + 490.642i 0.931009 + 0.931009i
\(528\) −296.422 + 872.992i −0.561405 + 1.65339i
\(529\) 449.118i 0.848994i
\(530\) −516.035 + 5.76188i −0.973651 + 0.0108715i
\(531\) 156.620i 0.294953i
\(532\) 38.9554 38.0867i 0.0732245 0.0715916i
\(533\) 616.659 616.659i 1.15696 1.15696i
\(534\) 102.912 101.758i 0.192719 0.190559i
\(535\) 2.25111 + 133.961i 0.00420768 + 0.250394i
\(536\) −410.745 + 397.082i −0.766315 + 0.740824i
\(537\) 462.831 + 462.831i 0.861883 + 0.861883i
\(538\) 3.39216 601.716i 0.00630514 1.11843i
\(539\) 426.451 222.349i 0.791189 0.412520i
\(540\) 988.979 5.46693i 1.83144 0.0101239i
\(541\) 102.636i 0.189716i 0.995491 + 0.0948580i \(0.0302397\pi\)
−0.995491 + 0.0948580i \(0.969760\pi\)
\(542\) 226.619 + 1.27756i 0.418115 + 0.00235712i
\(543\) 221.224 + 221.224i 0.407410 + 0.407410i
\(544\) 726.359 686.523i 1.33522 1.26199i
\(545\) 182.292 + 176.267i 0.334481 + 0.323426i
\(546\) −333.073 + 329.339i −0.610024 + 0.603185i
\(547\) −30.2457 30.2457i −0.0552938 0.0552938i 0.678919 0.734213i \(-0.262449\pi\)
−0.734213 + 0.678919i \(0.762449\pi\)
\(548\) 286.138 + 292.664i 0.522149 + 0.534058i
\(549\) −1187.04 −2.16219
\(550\) 480.389 267.817i 0.873435 0.486940i
\(551\) 201.792i 0.366228i
\(552\) −6.33415 + 374.494i −0.0114749 + 0.678431i
\(553\) −147.923 + 147.923i −0.267491 + 0.267491i
\(554\) 186.158 184.071i 0.336026 0.332258i
\(555\) 224.467 232.139i 0.404444 0.418269i
\(556\) −1.31688 + 116.793i −0.00236848 + 0.210059i
\(557\) 200.019 200.019i 0.359100 0.359100i −0.504381 0.863481i \(-0.668279\pi\)
0.863481 + 0.504381i \(0.168279\pi\)
\(558\) −819.313 4.61886i −1.46830 0.00827753i
\(559\) 309.248 0.553216
\(560\) −1.05631 + 183.798i −0.00188626 + 0.328211i
\(561\) −832.042 1595.81i −1.48314 2.84457i
\(562\) 4.52536 802.727i 0.00805224 1.42834i
\(563\) −392.703 + 392.703i −0.697519 + 0.697519i −0.963875 0.266356i \(-0.914180\pi\)
0.266356 + 0.963875i \(0.414180\pi\)
\(564\) −185.735 2.09423i −0.329318 0.00371317i
\(565\) 661.992 11.1243i 1.17167 0.0196889i
\(566\) 455.539 450.432i 0.804840 0.795816i
\(567\) 151.206 + 151.206i 0.266677 + 0.266677i
\(568\) −7.75692 + 458.613i −0.0136565 + 0.807416i
\(569\) 152.775 0.268497 0.134248 0.990948i \(-0.457138\pi\)
0.134248 + 0.990948i \(0.457138\pi\)
\(570\) −310.519 + 3.46715i −0.544770 + 0.00608273i
\(571\) −1125.27 −1.97070 −0.985351 0.170541i \(-0.945449\pi\)
−0.985351 + 0.170541i \(0.945449\pi\)
\(572\) −266.137 + 813.824i −0.465274 + 1.42277i
\(573\) 217.528 217.528i 0.379630 0.379630i
\(574\) 146.429 144.787i 0.255103 0.252243i
\(575\) 152.600 163.217i 0.265391 0.283855i
\(576\) −39.9107 + 1179.48i −0.0692895 + 2.04772i
\(577\) −105.873 105.873i −0.183489 0.183489i 0.609385 0.792874i \(-0.291416\pi\)
−0.792874 + 0.609385i \(0.791416\pi\)
\(578\) −7.74013 + 1372.98i −0.0133912 + 2.37539i
\(579\) 758.921i 1.31074i
\(580\) −484.042 478.720i −0.834555 0.825379i
\(581\) −219.526 −0.377841
\(582\) 3.09575 549.137i 0.00531916 0.943535i
\(583\) −541.511 170.351i −0.928835 0.292197i
\(584\) −265.511 274.647i −0.454642 0.470286i
\(585\) 1793.95 30.1459i 3.06658 0.0515314i
\(586\) 202.663 + 204.961i 0.345841 + 0.349762i
\(587\) −115.724 + 115.724i −0.197145 + 0.197145i −0.798775 0.601630i \(-0.794518\pi\)
0.601630 + 0.798775i \(0.294518\pi\)
\(588\) 655.048 640.441i 1.11403 1.08919i
\(589\) 131.701 0.223601
\(590\) 60.7249 + 59.3838i 0.102923 + 0.100650i
\(591\) 900.383 1.52349
\(592\) 136.306 + 142.596i 0.230246 + 0.240871i
\(593\) −305.757 305.757i −0.515611 0.515611i 0.400629 0.916240i \(-0.368792\pi\)
−0.916240 + 0.400629i \(0.868792\pi\)
\(594\) 1035.90 + 332.307i 1.74394 + 0.559439i
\(595\) −257.930 249.405i −0.433496 0.419168i
\(596\) 376.667 + 4.24704i 0.631992 + 0.00712591i
\(597\) 335.392 + 335.392i 0.561796 + 0.561796i
\(598\) −1.96098 + 347.847i −0.00327923 + 0.581684i
\(599\) 159.646 0.266521 0.133261 0.991081i \(-0.457455\pi\)
0.133261 + 0.991081i \(0.457455\pi\)
\(600\) 728.341 753.073i 1.21390 1.25512i
\(601\) 721.536i 1.20056i 0.799790 + 0.600279i \(0.204944\pi\)
−0.799790 + 0.600279i \(0.795056\pi\)
\(602\) 73.0209 + 0.411654i 0.121297 + 0.000683811i
\(603\) 931.153 + 931.153i 1.54420 + 1.54420i
\(604\) 803.766 + 9.06272i 1.33074 + 0.0150045i
\(605\) 593.809 115.825i 0.981503 0.191446i
\(606\) −883.579 + 873.673i −1.45805 + 1.44170i
\(607\) −633.148 633.148i −1.04308 1.04308i −0.999029 0.0440488i \(-0.985974\pi\)
−0.0440488 0.999029i \(-0.514026\pi\)
\(608\) 5.34646 189.627i 0.00879351 0.311887i
\(609\) 409.666i 0.672687i
\(610\) −450.076 + 460.241i −0.737830 + 0.754493i
\(611\) −172.509 −0.282338
\(612\) −1610.52 1647.26i −2.63157 2.69159i
\(613\) 380.705 + 380.705i 0.621052 + 0.621052i 0.945800 0.324749i \(-0.105280\pi\)
−0.324749 + 0.945800i \(0.605280\pi\)
\(614\) 442.219 + 447.234i 0.720227 + 0.728394i
\(615\) −1173.60 + 19.7214i −1.90829 + 0.0320674i
\(616\) −63.9247 + 191.809i −0.103774 + 0.311379i
\(617\) 138.695 + 138.695i 0.224789 + 0.224789i 0.810512 0.585723i \(-0.199189\pi\)
−0.585723 + 0.810512i \(0.699189\pi\)
\(618\) 11.0304 1956.61i 0.0178485 3.16604i
\(619\) 434.682 0.702233 0.351116 0.936332i \(-0.385802\pi\)
0.351116 + 0.936332i \(0.385802\pi\)
\(620\) −312.440 + 315.914i −0.503936 + 0.509538i
\(621\) 441.966 0.711700
\(622\) −4.86558 + 863.077i −0.00782248 + 1.38758i
\(623\) 22.4423 22.4423i 0.0360230 0.0360230i
\(624\) −36.7753 + 1630.58i −0.0589347 + 2.61311i
\(625\) −623.589 + 41.9750i −0.997742 + 0.0671600i
\(626\) 389.878 385.507i 0.622809 0.615826i
\(627\) −325.849 102.507i −0.519695 0.163488i
\(628\) −215.405 220.318i −0.343002 0.350825i
\(629\) −385.070 −0.612193
\(630\) 423.635 4.73017i 0.672436 0.00750821i
\(631\) 20.0839i 0.0318287i 0.999873 + 0.0159144i \(0.00506591\pi\)
−0.999873 + 0.0159144i \(0.994934\pi\)
\(632\) −12.3186 + 728.316i −0.0194915 + 1.15240i
\(633\) −896.518 896.518i −1.41630 1.41630i
\(634\) 460.413 + 465.634i 0.726204 + 0.734438i
\(635\) 17.6969 + 1053.12i 0.0278692 + 1.65846i
\(636\) −1081.26 12.1916i −1.70010 0.0191691i
\(637\) 601.617 601.617i 0.944453 0.944453i
\(638\) −342.470 665.967i −0.536786 1.04384i
\(639\) 1057.25 1.65454
\(640\) 442.179 + 462.686i 0.690904 + 0.722946i
\(641\) 177.219 0.276473 0.138237 0.990399i \(-0.455857\pi\)
0.138237 + 0.990399i \(0.455857\pi\)
\(642\) −1.58259 + 280.727i −0.00246510 + 0.437269i
\(643\) 605.787 + 605.787i 0.942127 + 0.942127i 0.998415 0.0562879i \(-0.0179265\pi\)
−0.0562879 + 0.998415i \(0.517926\pi\)
\(644\) −0.926071 + 82.1326i −0.00143800 + 0.127535i
\(645\) −299.219 289.329i −0.463906 0.448572i
\(646\) 260.369 + 263.321i 0.403048 + 0.407618i
\(647\) −315.852 + 315.852i −0.488180 + 0.488180i −0.907731 0.419552i \(-0.862187\pi\)
0.419552 + 0.907731i \(0.362187\pi\)
\(648\) 744.480 + 12.5920i 1.14889 + 0.0194322i
\(649\) 43.1943 + 82.8440i 0.0665551 + 0.127649i
\(650\) 668.502 706.982i 1.02846 1.08766i
\(651\) −267.372 −0.410710
\(652\) −640.035 654.633i −0.981649 1.00404i
\(653\) 332.094 332.094i 0.508567 0.508567i −0.405520 0.914086i \(-0.632909\pi\)
0.914086 + 0.405520i \(0.132909\pi\)
\(654\) 373.579 + 377.814i 0.571221 + 0.577698i
\(655\) −512.457 495.519i −0.782377 0.756517i
\(656\) 16.1675 716.851i 0.0246456 1.09276i
\(657\) −622.620 + 622.620i −0.947672 + 0.947672i
\(658\) −40.7335 0.229634i −0.0619050 0.000348988i
\(659\) 337.270i 0.511790i −0.966705 0.255895i \(-0.917630\pi\)
0.966705 0.255895i \(-0.0823702\pi\)
\(660\) 1018.91 538.438i 1.54381 0.815814i
\(661\) −800.999 −1.21180 −0.605899 0.795541i \(-0.707187\pi\)
−0.605899 + 0.795541i \(0.707187\pi\)
\(662\) −5.82463 + 1033.20i −0.00879854 + 1.56072i
\(663\) −2251.29 2251.29i −3.39561 3.39561i
\(664\) −549.572 + 531.290i −0.827668 + 0.800136i
\(665\) −68.0910 + 1.14422i −0.102392 + 0.00172063i
\(666\) 323.323 319.698i 0.485469 0.480026i
\(667\) −215.125 215.125i −0.322526 0.322526i
\(668\) −373.325 381.840i −0.558870 0.571617i
\(669\) 66.8998i 0.0999997i
\(670\) 714.082 7.97322i 1.06579 0.0119003i
\(671\) −627.884 + 327.374i −0.935744 + 0.487890i
\(672\) −10.8541 + 384.970i −0.0161519 + 0.572873i
\(673\) −197.870 197.870i −0.294012 0.294012i 0.544651 0.838663i \(-0.316662\pi\)
−0.838663 + 0.544651i \(0.816662\pi\)
\(674\) −183.801 + 181.740i −0.272702 + 0.269644i
\(675\) −903.032 844.291i −1.33783 1.25080i
\(676\) −9.45656 + 838.696i −0.0139890 + 1.24067i
\(677\) 322.660 322.660i 0.476602 0.476602i −0.427441 0.904043i \(-0.640585\pi\)
0.904043 + 0.427441i \(0.140585\pi\)
\(678\) 1387.26 + 7.82067i 2.04611 + 0.0115349i
\(679\) 120.427i 0.177359i
\(680\) −1249.32 0.136956i −1.83723 0.000201406i
\(681\) 492.605i 0.723355i
\(682\) −434.649 + 223.516i −0.637315 + 0.327735i
\(683\) −727.235 727.235i −1.06477 1.06477i −0.997752 0.0670137i \(-0.978653\pi\)
−0.0670137 0.997752i \(-0.521347\pi\)
\(684\) −437.236 4.92998i −0.639234 0.00720757i
\(685\) −8.59626 511.554i −0.0125493 0.746794i
\(686\) 302.962 299.565i 0.441635 0.436684i
\(687\) 481.161 481.161i 0.700379 0.700379i
\(688\) 183.801 175.693i 0.267152 0.255367i
\(689\) −1004.26 −1.45756
\(690\) 327.340 334.732i 0.474405 0.485119i
\(691\) 778.221i 1.12622i 0.826381 + 0.563112i \(0.190396\pi\)
−0.826381 + 0.563112i \(0.809604\pi\)
\(692\) −270.996 277.177i −0.391613 0.400544i
\(693\) 444.549 + 139.848i 0.641485 + 0.201801i
\(694\) −474.335 479.714i −0.683480 0.691230i
\(695\) 101.489 104.958i 0.146027 0.151018i
\(696\) −991.464 1025.58i −1.42452 1.47353i
\(697\) 989.733 + 989.733i 1.41999 + 1.41999i
\(698\) −187.666 1.05796i −0.268862 0.00151570i
\(699\) 900.218i 1.28787i
\(700\) 158.791 166.046i 0.226844 0.237208i
\(701\) 290.062i 0.413783i −0.978364 0.206892i \(-0.933665\pi\)
0.978364 0.206892i \(-0.0663348\pi\)
\(702\) 1924.54 + 10.8496i 2.74151 + 0.0154552i
\(703\) −51.6814 + 51.6814i −0.0735154 + 0.0735154i
\(704\) 304.180 + 634.894i 0.432073 + 0.901838i
\(705\) 166.914 + 161.397i 0.236758 + 0.228932i
\(706\) −771.177 + 762.531i −1.09232 + 1.08007i
\(707\) −192.685 + 192.685i −0.272538 + 0.272538i
\(708\) 124.414 + 127.252i 0.175727 + 0.179735i
\(709\) 68.4706i 0.0965735i 0.998834 + 0.0482867i \(0.0153761\pi\)
−0.998834 + 0.0482867i \(0.984624\pi\)
\(710\) 400.866 409.919i 0.564600 0.577351i
\(711\) 1679.01 2.36147
\(712\) 1.86894 110.498i 0.00262492 0.155193i
\(713\) −140.403 + 140.403i −0.196919 + 0.196919i
\(714\) −528.587 534.580i −0.740317 0.748712i
\(715\) 940.593 510.699i 1.31551 0.714265i
\(716\) 499.779 + 5.63517i 0.698015 + 0.00787035i
\(717\) −224.579 + 224.579i −0.313220 + 0.313220i
\(718\) −0.646646 + 114.705i −0.000900621 + 0.159756i
\(719\) 113.225 0.157476 0.0787380 0.996895i \(-0.474911\pi\)
0.0787380 + 0.996895i \(0.474911\pi\)
\(720\) 1049.10 1037.11i 1.45708 1.44043i
\(721\) 429.089i 0.595131i
\(722\) −651.702 3.67396i −0.902635 0.00508859i
\(723\) −460.021 + 460.021i −0.636267 + 0.636267i
\(724\) 238.884 + 2.69349i 0.329950 + 0.00372029i
\(725\) 28.5921 + 850.502i 0.0394374 + 1.17311i
\(726\) 1249.36 214.711i 1.72088 0.295746i
\(727\) 245.971 245.971i 0.338337 0.338337i −0.517404 0.855741i \(-0.673102\pi\)
0.855741 + 0.517404i \(0.173102\pi\)
\(728\) −6.04880 + 357.624i −0.00830879 + 0.491241i
\(729\) 615.028i 0.843660i
\(730\) 5.33133 + 477.475i 0.00730320 + 0.654075i
\(731\) 496.341i 0.678989i
\(732\) −964.459 + 942.952i −1.31757 + 1.28819i
\(733\) 246.021 + 246.021i 0.335635 + 0.335635i 0.854722 0.519087i \(-0.173728\pi\)
−0.519087 + 0.854722i \(0.673728\pi\)
\(734\) −786.695 + 777.875i −1.07179 + 1.05977i
\(735\) −1144.97 + 19.2404i −1.55779 + 0.0261774i
\(736\) 196.457 + 207.856i 0.266925 + 0.282413i
\(737\) 749.336 + 235.730i 1.01674 + 0.319850i
\(738\) −1652.74 9.31727i −2.23948 0.0126250i
\(739\) 886.339i 1.19938i −0.800234 0.599688i \(-0.795291\pi\)
0.800234 0.599688i \(-0.204709\pi\)
\(740\) −1.36303 246.575i −0.00184193 0.333210i
\(741\) −604.304 −0.815525
\(742\) −237.130 1.33682i −0.319583 0.00180164i
\(743\) 149.673 149.673i 0.201444 0.201444i −0.599175 0.800618i \(-0.704505\pi\)
0.800618 + 0.599175i \(0.204505\pi\)
\(744\) −669.353 + 647.087i −0.899668 + 0.869740i
\(745\) −338.498 327.310i −0.454360 0.439342i
\(746\) 471.594 + 476.941i 0.632164 + 0.639332i
\(747\) 1245.87 + 1245.87i 1.66783 + 1.66783i
\(748\) −1306.18 427.148i −1.74623 0.571053i
\(749\) 61.5640i 0.0821949i
\(750\) −1308.27 + 58.6110i −1.74436 + 0.0781479i
\(751\) 836.006i 1.11319i 0.830784 + 0.556595i \(0.187892\pi\)
−0.830784 + 0.556595i \(0.812108\pi\)
\(752\) −102.530 + 98.0072i −0.136343 + 0.130329i
\(753\) −1409.62 + 1409.62i −1.87200 + 1.87200i
\(754\) −931.480 942.042i −1.23539 1.24939i
\(755\) −722.318 698.443i −0.956712 0.925090i
\(756\) 454.416 + 5.12369i 0.601080 + 0.00677737i
\(757\) −556.320 556.320i −0.734902 0.734902i 0.236685 0.971586i \(-0.423939\pi\)
−0.971586 + 0.236685i \(0.923939\pi\)
\(758\) −226.719 1.27812i −0.299101 0.00168618i
\(759\) 456.659 238.099i 0.601658 0.313700i
\(760\) −167.693 + 167.656i −0.220649 + 0.220601i
\(761\) 977.034i 1.28388i 0.766754 + 0.641941i \(0.221871\pi\)
−0.766754 + 0.641941i \(0.778129\pi\)
\(762\) −12.4414 + 2206.92i −0.0163274 + 2.89621i
\(763\) 82.3910 + 82.3910i 0.107983 + 0.107983i
\(764\) 2.64850 234.893i 0.00346662 0.307452i
\(765\) 48.3839 + 2879.27i 0.0632470 + 3.76376i
\(766\) −637.454 644.682i −0.832185 0.841621i
\(767\) 116.872 + 116.872i 0.152376 + 0.152376i
\(768\) 904.523 + 990.023i 1.17776 + 1.28909i
\(769\) 1509.11 1.96243 0.981216 0.192911i \(-0.0617930\pi\)
0.981216 + 0.192911i \(0.0617930\pi\)
\(770\) 222.777 119.336i 0.289320 0.154982i
\(771\) 426.902i 0.553699i
\(772\) 405.133 + 414.373i 0.524783 + 0.536752i
\(773\) −24.1418 + 24.1418i −0.0312312 + 0.0312312i −0.722550 0.691319i \(-0.757030\pi\)
0.691319 + 0.722550i \(0.257030\pi\)
\(774\) −412.078 416.751i −0.532401 0.538438i
\(775\) 555.087 18.6609i 0.716241 0.0240785i
\(776\) −291.454 301.483i −0.375585 0.388509i
\(777\) 104.921 104.921i 0.135033 0.135033i
\(778\) 3.92033 695.405i 0.00503899 0.893837i
\(779\) 265.670 0.341040
\(780\) 1433.62 1449.56i 1.83797 1.85840i
\(781\) 559.233 291.580i 0.716047 0.373342i
\(782\) −558.292 3.14736i −0.713929 0.00402476i
\(783\) −1190.22 + 1190.22i −1.52008 + 1.52008i
\(784\) 15.7731 699.365i 0.0201188 0.892047i
\(785\) 6.47129 + 385.099i 0.00824368 + 0.490572i
\(786\) −1050.20 1062.11i −1.33613 1.35128i
\(787\) 857.123 + 857.123i 1.08910 + 1.08910i 0.995621 + 0.0934806i \(0.0297993\pi\)
0.0934806 + 0.995621i \(0.470201\pi\)
\(788\) 491.612 480.649i 0.623873 0.609961i
\(789\) 594.511 0.753500
\(790\) 636.610 650.986i 0.805835 0.824034i
\(791\) 304.230 0.384614
\(792\) 1451.36 725.782i 1.83253 0.916392i
\(793\) −885.789 + 885.789i −1.11701 + 1.11701i
\(794\) 1076.10 + 1088.30i 1.35529 + 1.37066i
\(795\) 971.693 + 939.576i 1.22226 + 1.18186i
\(796\) 362.167 + 4.08355i 0.454983 + 0.00513008i
\(797\) 674.477 + 674.477i 0.846269 + 0.846269i 0.989665 0.143396i \(-0.0458023\pi\)
−0.143396 + 0.989665i \(0.545802\pi\)
\(798\) −142.691 0.804417i −0.178811 0.00100804i
\(799\) 276.875i 0.346527i
\(800\) −4.33452 799.988i −0.00541815 0.999985i
\(801\) −254.733 −0.318019
\(802\) −29.2401 0.164841i −0.0364590 0.000205537i
\(803\) −157.622 + 501.047i −0.196291 + 0.623969i
\(804\) 1496.23 + 16.8705i 1.86099 + 0.0209832i
\(805\) 71.3702 73.8098i 0.0886586 0.0916892i
\(806\) −614.831 + 607.938i −0.762818 + 0.754266i
\(807\) −1114.41 + 1114.41i −1.38093 + 1.38093i
\(808\) −16.0463 + 948.706i −0.0198593 + 1.17414i
\(809\) 68.6077 0.0848055 0.0424028 0.999101i \(-0.486499\pi\)
0.0424028 + 0.999101i \(0.486499\pi\)
\(810\) −665.435 650.739i −0.821524 0.803381i
\(811\) 464.005 0.572139 0.286070 0.958209i \(-0.407651\pi\)
0.286070 + 0.958209i \(0.407651\pi\)
\(812\) −218.691 223.679i −0.269324 0.275467i
\(813\) −419.710 419.710i −0.516249 0.516249i
\(814\) 82.8517 258.273i 0.101783 0.317289i
\(815\) 19.2282 + 1144.25i 0.0235929 + 1.40398i
\(816\) −2617.07 59.0241i −3.20719 0.0723334i
\(817\) 66.6154 + 66.6154i 0.0815366 + 0.0815366i
\(818\) 1252.17 + 7.05909i 1.53077 + 0.00862969i
\(819\) 824.440 1.00664
\(820\) −630.261 + 637.268i −0.768611 + 0.777156i
\(821\) 453.370i 0.552217i 0.961127 + 0.276108i \(0.0890449\pi\)
−0.961127 + 0.276108i \(0.910955\pi\)
\(822\) 6.04342 1072.01i 0.00735209 1.30414i
\(823\) −185.347 185.347i −0.225209 0.225209i 0.585479 0.810688i \(-0.300907\pi\)
−0.810688 + 0.585479i \(0.800907\pi\)
\(824\) −1038.47 1074.20i −1.26028 1.30365i
\(825\) −1387.89 385.872i −1.68230 0.467723i
\(826\) 27.4408 + 27.7520i 0.0332213 + 0.0335980i
\(827\) −757.186 757.186i −0.915582 0.915582i 0.0811220 0.996704i \(-0.474150\pi\)
−0.996704 + 0.0811220i \(0.974150\pi\)
\(828\) 471.381 460.870i 0.569301 0.556606i
\(829\) 941.265i 1.13542i −0.823228 0.567711i \(-0.807829\pi\)
0.823228 0.567711i \(-0.192171\pi\)
\(830\) 955.433 10.6681i 1.15112 0.0128531i
\(831\) −685.685 −0.825133
\(832\) 850.368 + 909.932i 1.02208 + 1.09367i
\(833\) 965.590 + 965.590i 1.15917 + 1.15917i
\(834\) 217.533 215.094i 0.260831 0.257907i
\(835\) 11.2156 + 667.426i 0.0134318 + 0.799313i
\(836\) −232.635 + 117.978i −0.278272 + 0.141122i
\(837\) 776.810 + 776.810i 0.928088 + 0.928088i
\(838\) 637.896 + 3.59613i 0.761213 + 0.00429132i
\(839\) −1309.36 −1.56062 −0.780308 0.625396i \(-0.784938\pi\)
−0.780308 + 0.625396i \(0.784938\pi\)
\(840\) 340.442 340.367i 0.405288 0.405199i
\(841\) 317.673 0.377733
\(842\) 213.457 + 1.20336i 0.253511 + 0.00142917i
\(843\) −1486.70 + 1486.70i −1.76358 + 1.76358i
\(844\) −968.087 10.9155i −1.14702 0.0129331i
\(845\) 728.796 753.708i 0.862480 0.891962i
\(846\) 229.871 + 232.477i 0.271715 + 0.274796i
\(847\) 273.713 48.6297i 0.323155 0.0574140i
\(848\) −596.879 + 570.550i −0.703867 + 0.672818i
\(849\) −1677.91 −1.97633
\(850\) 1134.70 + 1072.94i 1.33494 + 1.26228i
\(851\) 110.192i 0.129486i
\(852\) 859.007 839.852i 1.00822 0.985742i
\(853\) −84.1524 84.1524i −0.0986546 0.0986546i 0.656057 0.754711i \(-0.272223\pi\)
−0.754711 + 0.656057i \(0.772223\pi\)
\(854\) −210.335 + 207.977i −0.246294 + 0.243533i
\(855\) 392.930 + 379.942i 0.459567 + 0.444377i
\(856\) 148.996 + 154.122i 0.174060 + 0.180050i
\(857\) 110.641 110.641i 0.129102 0.129102i −0.639603 0.768705i \(-0.720901\pi\)
0.768705 + 0.639603i \(0.220901\pi\)
\(858\) 1994.37 1025.59i 2.32444 1.19533i
\(859\) −960.357 −1.11799 −0.558997 0.829169i \(-0.688814\pi\)
−0.558997 + 0.829169i \(0.688814\pi\)
\(860\) −317.826 + 1.75690i −0.369565 + 0.00204290i
\(861\) −539.348 −0.626421
\(862\) −14.2797 0.0805016i −0.0165658 9.33893e-5i
\(863\) −350.117 350.117i −0.405697 0.405697i 0.474538 0.880235i \(-0.342615\pi\)
−0.880235 + 0.474538i \(0.842615\pi\)
\(864\) 1150.01 1086.94i 1.33103 1.25803i
\(865\) 8.14136 + 484.483i 0.00941198 + 0.560096i
\(866\) 440.097 435.163i 0.508196 0.502498i
\(867\) 2542.83 2542.83i 2.93290 2.93290i
\(868\) −145.986 + 142.731i −0.168187 + 0.164436i
\(869\) 888.109 463.054i 1.02199 0.532858i
\(870\) 19.9081 + 1782.98i 0.0228829 + 2.04940i
\(871\) 1389.68 1.59550
\(872\) 405.663 + 6.86133i 0.465209 + 0.00786849i
\(873\) −683.458 + 683.458i −0.782884 + 0.782884i
\(874\) −75.3525 + 74.5076i −0.0862157 + 0.0852490i
\(875\) −286.824 + 14.4705i −0.327799 + 0.0165377i
\(876\) −11.2806 + 1000.47i −0.0128774 + 1.14208i
\(877\) 682.311 682.311i 0.778006 0.778006i −0.201485 0.979492i \(-0.564577\pi\)
0.979492 + 0.201485i \(0.0645768\pi\)
\(878\) 8.28699 1469.98i 0.00943848 1.67424i
\(879\) 754.941i 0.858863i
\(880\) 268.896 837.911i 0.305563 0.952172i
\(881\) −864.371 −0.981124 −0.490562 0.871406i \(-0.663209\pi\)
−0.490562 + 0.871406i \(0.663209\pi\)
\(882\) −1612.42 9.08999i −1.82814 0.0103061i
\(883\) 726.979 + 726.979i 0.823306 + 0.823306i 0.986581 0.163274i \(-0.0522056\pi\)
−0.163274 + 0.986581i \(0.552206\pi\)
\(884\) −2431.01 27.4104i −2.75001 0.0310072i
\(885\) −3.73771 222.427i −0.00422340 0.251330i
\(886\) −1050.55 1062.46i −1.18572 1.19917i
\(887\) −987.287 987.287i −1.11306 1.11306i −0.992734 0.120329i \(-0.961605\pi\)
−0.120329 0.992734i \(-0.538395\pi\)
\(888\) 8.73753 516.590i 0.00983957 0.581745i
\(889\) 483.981i 0.544411i
\(890\) −96.5843 + 98.7656i −0.108522 + 0.110973i
\(891\) −473.331 907.820i −0.531236 1.01888i
\(892\) −35.7129 36.5275i −0.0400369 0.0409501i
\(893\) −37.1602 37.1602i −0.0416128 0.0416128i
\(894\) −693.697 701.563i −0.775948 0.784746i
\(895\) −449.135 434.289i −0.501827 0.485240i
\(896\) 199.581 + 215.989i 0.222747 + 0.241059i
\(897\) 644.232 644.232i 0.718207 0.718207i
\(898\) −2.62486 + 465.608i −0.00292300 + 0.518494i
\(899\) 756.217i 0.841176i
\(900\) −1843.54 + 41.1739i −2.04838 + 0.0457488i
\(901\) 1611.83i 1.78894i
\(902\) −876.783 + 450.880i −0.972043 + 0.499867i
\(903\) −135.239 135.239i −0.149766 0.149766i
\(904\) 761.625 736.289i 0.842505 0.814479i
\(905\) −214.677 207.581i −0.237212 0.229372i
\(906\) −1480.27 1497.06i −1.63386 1.65238i
\(907\) −337.668 + 337.668i −0.372291 + 0.372291i −0.868311 0.496020i \(-0.834794\pi\)
0.496020 + 0.868311i \(0.334794\pi\)
\(908\) 262.966 + 268.964i 0.289610 + 0.296215i
\(909\) 2187.08 2.40603
\(910\) 312.593 319.653i 0.343509 0.351267i
\(911\) 77.6555i 0.0852421i −0.999091 0.0426210i \(-0.986429\pi\)
0.999091 0.0426210i \(-0.0135708\pi\)
\(912\) −359.166 + 343.323i −0.393823 + 0.376450i
\(913\) 1002.60 + 315.403i 1.09814 + 0.345458i
\(914\) 79.6647 78.7715i 0.0871605 0.0861833i
\(915\) 1685.80 28.3285i 1.84240 0.0309601i
\(916\) 5.85834 519.572i 0.00639556 0.567218i
\(917\) −231.616 231.616i −0.252581 0.252581i
\(918\) −17.4135 + 3088.87i −0.0189689 + 3.36479i
\(919\) 206.054i 0.224216i −0.993696 0.112108i \(-0.964240\pi\)
0.993696 0.112108i \(-0.0357603\pi\)
\(920\) 0.0391917 357.507i 4.25996e−5 0.388595i
\(921\) 1647.32i 1.78862i
\(922\) 8.91935 1582.15i 0.00967391 1.71600i
\(923\) 788.939 788.939i 0.854755 0.854755i
\(924\) 472.283 239.512i 0.511129 0.259212i
\(925\) −210.501 + 225.147i −0.227569 + 0.243402i
\(926\) −371.150 375.359i −0.400810 0.405355i
\(927\) −2435.20 + 2435.20i −2.62697 + 2.62697i
\(928\) −1088.82 30.6989i −1.17330 0.0330808i
\(929\) 148.983i 0.160369i 0.996780 + 0.0801845i \(0.0255509\pi\)
−0.996780 + 0.0801845i \(0.974449\pi\)
\(930\) 1163.67 12.9932i 1.25126 0.0139712i
\(931\) 259.190 0.278399
\(932\) 480.561 + 491.522i 0.515624 + 0.527384i
\(933\) 1598.47 1598.47i 1.71325 1.71325i
\(934\) −509.362 + 503.651i −0.545355 + 0.539241i
\(935\) 819.668 + 1509.65i 0.876651 + 1.61459i
\(936\) 2063.94 1995.29i 2.20507 2.13172i
\(937\) 268.109 268.109i 0.286135 0.286135i −0.549415 0.835550i \(-0.685149\pi\)
0.835550 + 0.549415i \(0.185149\pi\)
\(938\) 328.138 + 1.84987i 0.349827 + 0.00197214i
\(939\) −1436.06 −1.52935
\(940\) 177.294 0.980055i 0.188610 0.00104261i
\(941\) 918.269i 0.975843i 0.872887 + 0.487922i \(0.162245\pi\)
−0.872887 + 0.487922i \(0.837755\pi\)
\(942\) −4.54950 + 807.010i −0.00482962 + 0.856698i
\(943\) −283.224 + 283.224i −0.300343 + 0.300343i
\(944\) 135.861 + 3.06415i 0.143921 + 0.00324592i
\(945\) −408.369 394.871i −0.432136 0.417853i
\(946\) −332.904 106.793i −0.351907 0.112889i
\(947\) 1054.63 1054.63i 1.11366 1.11366i 0.121004 0.992652i \(-0.461389\pi\)
0.992652 0.121004i \(-0.0386113\pi\)
\(948\) 1364.18 1333.76i 1.43900 1.40692i
\(949\) 929.219i 0.979156i
\(950\) 296.294 8.28888i 0.311889 0.00872513i
\(951\) 1715.09i 1.80346i
\(952\) −573.983 9.70828i −0.602924 0.0101978i
\(953\) −1079.46 1079.46i −1.13269 1.13269i −0.989727 0.142967i \(-0.954336\pi\)
−0.142967 0.989727i \(-0.545664\pi\)
\(954\) 1338.20 + 1353.37i 1.40272 + 1.41863i
\(955\) −204.114 + 211.091i −0.213732 + 0.221037i
\(956\) −2.73434 + 242.507i −0.00286019 + 0.253668i
\(957\) −588.588 + 1871.00i −0.615034 + 1.95507i
\(958\) 4.58530 813.359i 0.00478632 0.849018i
\(959\) 235.093i 0.245144i
\(960\) 28.5318 1676.02i 0.0297206 1.74585i
\(961\) 467.449 0.486419
\(962\) 2.70504 479.832i 0.00281190 0.498786i
\(963\) 349.393 349.393i 0.362818 0.362818i
\(964\) −5.60096 + 496.745i −0.00581012 + 0.515295i
\(965\) −12.1711 724.291i −0.0126126 0.750561i
\(966\) 152.976 151.261i 0.158361 0.156585i
\(967\) −619.752 619.752i −0.640902 0.640902i 0.309875 0.950777i \(-0.399713\pi\)
−0.950777 + 0.309875i \(0.899713\pi\)
\(968\) 567.534 784.174i 0.586295 0.810097i
\(969\) 969.903i 1.00093i
\(970\) 5.85227 + 524.130i 0.00603327 + 0.540340i
\(971\) 1583.36i 1.63064i −0.579008 0.815322i \(-0.696560\pi\)
0.579008 0.815322i \(-0.303440\pi\)
\(972\) −118.847 121.558i −0.122271 0.125059i
\(973\) 47.4380 47.4380i 0.0487544 0.0487544i
\(974\) 189.129 187.008i 0.194178 0.192000i
\(975\) −2546.99 + 85.6245i −2.61230 + 0.0878200i
\(976\) −23.2235 + 1029.71i −0.0237946 + 1.05503i
\(977\) 704.972 + 704.972i 0.721568 + 0.721568i 0.968925 0.247356i \(-0.0795618\pi\)
−0.247356 + 0.968925i \(0.579562\pi\)
\(978\) −13.5180 + 2397.87i −0.0138220 + 2.45181i
\(979\) −134.741 + 70.2530i −0.137631 + 0.0717600i
\(980\) −614.887 + 621.723i −0.627436 + 0.634411i
\(981\) 935.185i 0.953298i
\(982\) −1483.10 8.36093i −1.51028 0.00851419i
\(983\) 608.596 + 608.596i 0.619121 + 0.619121i 0.945306 0.326185i \(-0.105763\pi\)
−0.326185 + 0.945306i \(0.605763\pi\)
\(984\) −1350.23 + 1305.32i −1.37219 + 1.32654i
\(985\) −859.299 + 14.4398i −0.872385 + 0.0146597i
\(986\) 1511.97 1495.02i 1.53344 1.51625i
\(987\) 75.4406 + 75.4406i 0.0764343 + 0.0764343i
\(988\) −329.952 + 322.594i −0.333959 + 0.326512i
\(989\) −142.034 −0.143613
\(990\) −1941.59 587.053i −1.96120 0.592983i
\(991\) 1202.88i 1.21380i 0.794776 + 0.606902i \(0.207588\pi\)
−0.794776 + 0.606902i \(0.792412\pi\)
\(992\) −20.0359 + 710.630i −0.0201975 + 0.716361i
\(993\) 1913.54 1913.54i 1.92703 1.92703i
\(994\) 187.338 185.237i 0.188469 0.186356i
\(995\) −325.467 314.710i −0.327103 0.316291i
\(996\) 2001.94 + 22.5726i 2.00998 + 0.0226632i
\(997\) −524.498 + 524.498i −0.526076 + 0.526076i −0.919400 0.393324i \(-0.871325\pi\)
0.393324 + 0.919400i \(0.371325\pi\)
\(998\) 1855.13 + 10.4583i 1.85885 + 0.0104792i
\(999\) −609.662 −0.610273
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 220.3.i.a.87.1 yes 136
4.3 odd 2 inner 220.3.i.a.87.35 yes 136
5.3 odd 4 inner 220.3.i.a.43.34 yes 136
11.10 odd 2 inner 220.3.i.a.87.68 yes 136
20.3 even 4 inner 220.3.i.a.43.68 yes 136
44.43 even 2 inner 220.3.i.a.87.34 yes 136
55.43 even 4 inner 220.3.i.a.43.35 yes 136
220.43 odd 4 inner 220.3.i.a.43.1 136
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
220.3.i.a.43.1 136 220.43 odd 4 inner
220.3.i.a.43.34 yes 136 5.3 odd 4 inner
220.3.i.a.43.35 yes 136 55.43 even 4 inner
220.3.i.a.43.68 yes 136 20.3 even 4 inner
220.3.i.a.87.1 yes 136 1.1 even 1 trivial
220.3.i.a.87.34 yes 136 44.43 even 2 inner
220.3.i.a.87.35 yes 136 4.3 odd 2 inner
220.3.i.a.87.68 yes 136 11.10 odd 2 inner