Properties

Label 220.3.p.b.61.4
Level $220$
Weight $3$
Character 220.61
Analytic conductor $5.995$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [220,3,Mod(41,220)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(220, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 0, 3]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("220.41");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 220 = 2^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 220.p (of order \(10\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.99456581593\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{10})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 3 x^{15} + 33 x^{14} - 111 x^{13} + 735 x^{12} - 1436 x^{11} + 10633 x^{10} - 25103 x^{9} + \cdots + 75625 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 5 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 61.4
Root \(-3.40337 + 2.47269i\) of defining polynomial
Character \(\chi\) \(=\) 220.61
Dual form 220.3.p.b.101.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(4.71238 + 3.42375i) q^{3} +(0.690983 - 2.12663i) q^{5} +(-2.62857 - 3.61792i) q^{7} +(7.70337 + 23.7085i) q^{9} +(10.9389 + 1.15791i) q^{11} +(9.85015 - 3.20051i) q^{13} +(10.5372 - 7.65573i) q^{15} +(0.409765 + 0.133141i) q^{17} +(-15.0230 + 20.6774i) q^{19} -26.0486i q^{21} -21.0633 q^{23} +(-4.04508 - 2.93893i) q^{25} +(-28.6710 + 88.2404i) q^{27} +(-31.7671 - 43.7237i) q^{29} +(-3.90895 - 12.0305i) q^{31} +(47.5838 + 42.9085i) q^{33} +(-9.51027 + 3.09007i) q^{35} +(-3.37829 + 2.45447i) q^{37} +(57.3755 + 18.6424i) q^{39} +(24.6346 - 33.9066i) q^{41} -84.6483i q^{43} +55.7421 q^{45} +(34.2779 + 24.9043i) q^{47} +(8.96187 - 27.5818i) q^{49} +(1.47513 + 2.03034i) q^{51} +(13.5885 + 41.8211i) q^{53} +(10.0210 - 22.4628i) q^{55} +(-141.588 + 46.0048i) q^{57} +(-53.6564 + 38.9837i) q^{59} +(-39.7732 - 12.9231i) q^{61} +(65.5267 - 90.1898i) q^{63} -23.1591i q^{65} +41.3830 q^{67} +(-99.2582 - 72.1153i) q^{69} +(1.24922 - 3.84472i) q^{71} +(9.80778 + 13.4993i) q^{73} +(-8.99985 - 27.6987i) q^{75} +(-24.5644 - 42.6197i) q^{77} +(49.2252 - 15.9942i) q^{79} +(-255.713 + 185.786i) q^{81} +(60.4230 + 19.6326i) q^{83} +(0.566281 - 0.779419i) q^{85} -314.805i q^{87} -30.4148 q^{89} +(-37.4711 - 27.2243i) q^{91} +(22.7689 - 70.0756i) q^{93} +(33.5924 + 46.2360i) q^{95} +(-52.9856 - 163.073i) q^{97} +(56.8139 + 268.265i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 9 q^{3} + 20 q^{5} + 10 q^{7} - 19 q^{9} + 23 q^{11} - 5 q^{13} + 15 q^{15} + 25 q^{17} + 30 q^{19} - 168 q^{23} - 20 q^{25} - 225 q^{27} - 105 q^{29} + 40 q^{31} + 106 q^{33} - 16 q^{37} + 115 q^{39}+ \cdots + 150 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/220\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(111\) \(177\)
\(\chi(n)\) \(e\left(\frac{9}{10}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 4.71238 + 3.42375i 1.57079 + 1.14125i 0.926390 + 0.376564i \(0.122895\pi\)
0.644404 + 0.764685i \(0.277105\pi\)
\(4\) 0 0
\(5\) 0.690983 2.12663i 0.138197 0.425325i
\(6\) 0 0
\(7\) −2.62857 3.61792i −0.375511 0.516846i 0.578878 0.815414i \(-0.303491\pi\)
−0.954388 + 0.298568i \(0.903491\pi\)
\(8\) 0 0
\(9\) 7.70337 + 23.7085i 0.855930 + 2.63428i
\(10\) 0 0
\(11\) 10.9389 + 1.15791i 0.994444 + 0.105265i
\(12\) 0 0
\(13\) 9.85015 3.20051i 0.757704 0.246193i 0.0954112 0.995438i \(-0.469583\pi\)
0.662293 + 0.749245i \(0.269583\pi\)
\(14\) 0 0
\(15\) 10.5372 7.65573i 0.702481 0.510382i
\(16\) 0 0
\(17\) 0.409765 + 0.133141i 0.0241038 + 0.00783181i 0.321044 0.947064i \(-0.395966\pi\)
−0.296940 + 0.954896i \(0.595966\pi\)
\(18\) 0 0
\(19\) −15.0230 + 20.6774i −0.790683 + 1.08828i 0.203340 + 0.979108i \(0.434820\pi\)
−0.994023 + 0.109174i \(0.965180\pi\)
\(20\) 0 0
\(21\) 26.0486i 1.24041i
\(22\) 0 0
\(23\) −21.0633 −0.915794 −0.457897 0.889005i \(-0.651397\pi\)
−0.457897 + 0.889005i \(0.651397\pi\)
\(24\) 0 0
\(25\) −4.04508 2.93893i −0.161803 0.117557i
\(26\) 0 0
\(27\) −28.6710 + 88.2404i −1.06189 + 3.26816i
\(28\) 0 0
\(29\) −31.7671 43.7237i −1.09542 1.50771i −0.841322 0.540534i \(-0.818222\pi\)
−0.254095 0.967179i \(-0.581778\pi\)
\(30\) 0 0
\(31\) −3.90895 12.0305i −0.126095 0.388081i 0.868004 0.496557i \(-0.165403\pi\)
−0.994099 + 0.108477i \(0.965403\pi\)
\(32\) 0 0
\(33\) 47.5838 + 42.9085i 1.44193 + 1.30026i
\(34\) 0 0
\(35\) −9.51027 + 3.09007i −0.271722 + 0.0882879i
\(36\) 0 0
\(37\) −3.37829 + 2.45447i −0.0913053 + 0.0663372i −0.632501 0.774559i \(-0.717972\pi\)
0.541196 + 0.840896i \(0.317972\pi\)
\(38\) 0 0
\(39\) 57.3755 + 18.6424i 1.47117 + 0.478011i
\(40\) 0 0
\(41\) 24.6346 33.9066i 0.600844 0.826991i −0.394941 0.918706i \(-0.629235\pi\)
0.995785 + 0.0917154i \(0.0292350\pi\)
\(42\) 0 0
\(43\) 84.6483i 1.96857i −0.176600 0.984283i \(-0.556510\pi\)
0.176600 0.984283i \(-0.443490\pi\)
\(44\) 0 0
\(45\) 55.7421 1.23871
\(46\) 0 0
\(47\) 34.2779 + 24.9043i 0.729316 + 0.529879i 0.889347 0.457233i \(-0.151159\pi\)
−0.160031 + 0.987112i \(0.551159\pi\)
\(48\) 0 0
\(49\) 8.96187 27.5818i 0.182895 0.562894i
\(50\) 0 0
\(51\) 1.47513 + 2.03034i 0.0289241 + 0.0398106i
\(52\) 0 0
\(53\) 13.5885 + 41.8211i 0.256387 + 0.789078i 0.993553 + 0.113366i \(0.0361634\pi\)
−0.737166 + 0.675711i \(0.763837\pi\)
\(54\) 0 0
\(55\) 10.0210 22.4628i 0.182201 0.408415i
\(56\) 0 0
\(57\) −141.588 + 46.0048i −2.48400 + 0.807101i
\(58\) 0 0
\(59\) −53.6564 + 38.9837i −0.909430 + 0.660740i −0.940871 0.338766i \(-0.889991\pi\)
0.0314403 + 0.999506i \(0.489991\pi\)
\(60\) 0 0
\(61\) −39.7732 12.9231i −0.652019 0.211854i −0.0357149 0.999362i \(-0.511371\pi\)
−0.616304 + 0.787508i \(0.711371\pi\)
\(62\) 0 0
\(63\) 65.5267 90.1898i 1.04011 1.43158i
\(64\) 0 0
\(65\) 23.1591i 0.356294i
\(66\) 0 0
\(67\) 41.3830 0.617657 0.308828 0.951118i \(-0.400063\pi\)
0.308828 + 0.951118i \(0.400063\pi\)
\(68\) 0 0
\(69\) −99.2582 72.1153i −1.43852 1.04515i
\(70\) 0 0
\(71\) 1.24922 3.84472i 0.0175947 0.0541509i −0.941874 0.335967i \(-0.890937\pi\)
0.959468 + 0.281816i \(0.0909369\pi\)
\(72\) 0 0
\(73\) 9.80778 + 13.4993i 0.134353 + 0.184921i 0.870893 0.491473i \(-0.163541\pi\)
−0.736539 + 0.676395i \(0.763541\pi\)
\(74\) 0 0
\(75\) −8.99985 27.6987i −0.119998 0.369316i
\(76\) 0 0
\(77\) −24.5644 42.6197i −0.319019 0.553503i
\(78\) 0 0
\(79\) 49.2252 15.9942i 0.623103 0.202459i 0.0195856 0.999808i \(-0.493765\pi\)
0.603518 + 0.797350i \(0.293765\pi\)
\(80\) 0 0
\(81\) −255.713 + 185.786i −3.15695 + 2.29366i
\(82\) 0 0
\(83\) 60.4230 + 19.6326i 0.727988 + 0.236538i 0.649483 0.760376i \(-0.274985\pi\)
0.0785052 + 0.996914i \(0.474985\pi\)
\(84\) 0 0
\(85\) 0.566281 0.779419i 0.00666213 0.00916964i
\(86\) 0 0
\(87\) 314.805i 3.61845i
\(88\) 0 0
\(89\) −30.4148 −0.341740 −0.170870 0.985294i \(-0.554658\pi\)
−0.170870 + 0.985294i \(0.554658\pi\)
\(90\) 0 0
\(91\) −37.4711 27.2243i −0.411770 0.299168i
\(92\) 0 0
\(93\) 22.7689 70.0756i 0.244827 0.753501i
\(94\) 0 0
\(95\) 33.5924 + 46.2360i 0.353604 + 0.486695i
\(96\) 0 0
\(97\) −52.9856 163.073i −0.546243 1.68116i −0.718016 0.696027i \(-0.754950\pi\)
0.171773 0.985137i \(-0.445050\pi\)
\(98\) 0 0
\(99\) 56.8139 + 268.265i 0.573877 + 2.70974i
\(100\) 0 0
\(101\) −150.417 + 48.8735i −1.48928 + 0.483896i −0.936870 0.349678i \(-0.886291\pi\)
−0.552408 + 0.833574i \(0.686291\pi\)
\(102\) 0 0
\(103\) −0.0678450 + 0.0492923i −0.000658689 + 0.000478566i −0.588115 0.808778i \(-0.700130\pi\)
0.587456 + 0.809256i \(0.300130\pi\)
\(104\) 0 0
\(105\) −55.3957 17.9992i −0.527578 0.171420i
\(106\) 0 0
\(107\) −38.2168 + 52.6009i −0.357166 + 0.491597i −0.949356 0.314201i \(-0.898263\pi\)
0.592190 + 0.805798i \(0.298263\pi\)
\(108\) 0 0
\(109\) 13.7155i 0.125830i −0.998019 0.0629151i \(-0.979960\pi\)
0.998019 0.0629151i \(-0.0200397\pi\)
\(110\) 0 0
\(111\) −24.3233 −0.219129
\(112\) 0 0
\(113\) −53.0356 38.5326i −0.469342 0.340997i 0.327843 0.944732i \(-0.393678\pi\)
−0.797185 + 0.603736i \(0.793678\pi\)
\(114\) 0 0
\(115\) −14.5544 + 44.7937i −0.126560 + 0.389510i
\(116\) 0 0
\(117\) 151.759 + 208.878i 1.29708 + 1.78528i
\(118\) 0 0
\(119\) −0.595405 1.83247i −0.00500340 0.0153989i
\(120\) 0 0
\(121\) 118.318 + 25.3325i 0.977839 + 0.209360i
\(122\) 0 0
\(123\) 232.176 75.4384i 1.88761 0.613320i
\(124\) 0 0
\(125\) −9.04508 + 6.57164i −0.0723607 + 0.0525731i
\(126\) 0 0
\(127\) 128.796 + 41.8484i 1.01414 + 0.329515i 0.768503 0.639846i \(-0.221002\pi\)
0.245640 + 0.969361i \(0.421002\pi\)
\(128\) 0 0
\(129\) 289.814 398.895i 2.24662 3.09221i
\(130\) 0 0
\(131\) 221.202i 1.68857i 0.535897 + 0.844283i \(0.319973\pi\)
−0.535897 + 0.844283i \(0.680027\pi\)
\(132\) 0 0
\(133\) 114.298 0.859384
\(134\) 0 0
\(135\) 167.843 + 121.945i 1.24328 + 0.903298i
\(136\) 0 0
\(137\) −40.6856 + 125.217i −0.296975 + 0.913996i 0.685576 + 0.728001i \(0.259551\pi\)
−0.982551 + 0.185994i \(0.940449\pi\)
\(138\) 0 0
\(139\) −84.4867 116.286i −0.607818 0.836590i 0.388578 0.921416i \(-0.372967\pi\)
−0.996396 + 0.0848260i \(0.972967\pi\)
\(140\) 0 0
\(141\) 76.2644 + 234.718i 0.540882 + 1.66466i
\(142\) 0 0
\(143\) 111.456 23.6044i 0.779410 0.165066i
\(144\) 0 0
\(145\) −114.934 + 37.3445i −0.792652 + 0.257548i
\(146\) 0 0
\(147\) 136.665 99.2929i 0.929694 0.675462i
\(148\) 0 0
\(149\) −155.742 50.6035i −1.04525 0.339621i −0.264445 0.964401i \(-0.585189\pi\)
−0.780801 + 0.624780i \(0.785189\pi\)
\(150\) 0 0
\(151\) −53.0992 + 73.0848i −0.351650 + 0.484005i −0.947799 0.318869i \(-0.896697\pi\)
0.596148 + 0.802874i \(0.296697\pi\)
\(152\) 0 0
\(153\) 10.7406i 0.0701997i
\(154\) 0 0
\(155\) −28.2854 −0.182486
\(156\) 0 0
\(157\) 198.053 + 143.894i 1.26148 + 0.916522i 0.998830 0.0483680i \(-0.0154020\pi\)
0.262655 + 0.964890i \(0.415402\pi\)
\(158\) 0 0
\(159\) −79.1507 + 243.601i −0.497803 + 1.53208i
\(160\) 0 0
\(161\) 55.3663 + 76.2052i 0.343890 + 0.473324i
\(162\) 0 0
\(163\) 17.8988 + 55.0868i 0.109809 + 0.337956i 0.990829 0.135122i \(-0.0431427\pi\)
−0.881020 + 0.473078i \(0.843143\pi\)
\(164\) 0 0
\(165\) 124.130 71.5440i 0.752303 0.433600i
\(166\) 0 0
\(167\) −152.443 + 49.5318i −0.912834 + 0.296598i −0.727524 0.686082i \(-0.759329\pi\)
−0.185310 + 0.982680i \(0.559329\pi\)
\(168\) 0 0
\(169\) −49.9416 + 36.2847i −0.295512 + 0.214702i
\(170\) 0 0
\(171\) −605.957 196.887i −3.54361 1.15139i
\(172\) 0 0
\(173\) −57.7297 + 79.4582i −0.333698 + 0.459296i −0.942588 0.333959i \(-0.891615\pi\)
0.608890 + 0.793255i \(0.291615\pi\)
\(174\) 0 0
\(175\) 22.3600i 0.127771i
\(176\) 0 0
\(177\) −386.320 −2.18260
\(178\) 0 0
\(179\) 138.886 + 100.907i 0.775901 + 0.563725i 0.903746 0.428069i \(-0.140806\pi\)
−0.127845 + 0.991794i \(0.540806\pi\)
\(180\) 0 0
\(181\) 48.0184 147.785i 0.265295 0.816494i −0.726330 0.687346i \(-0.758776\pi\)
0.991625 0.129148i \(-0.0412242\pi\)
\(182\) 0 0
\(183\) −143.181 197.072i −0.782410 1.07690i
\(184\) 0 0
\(185\) 2.88541 + 8.88037i 0.0155968 + 0.0480020i
\(186\) 0 0
\(187\) 4.32821 + 1.93088i 0.0231455 + 0.0103256i
\(188\) 0 0
\(189\) 394.611 128.217i 2.08789 0.678396i
\(190\) 0 0
\(191\) 212.159 154.143i 1.11078 0.807030i 0.127995 0.991775i \(-0.459146\pi\)
0.982787 + 0.184745i \(0.0591458\pi\)
\(192\) 0 0
\(193\) 71.7361 + 23.3085i 0.371690 + 0.120769i 0.488905 0.872337i \(-0.337397\pi\)
−0.117215 + 0.993107i \(0.537397\pi\)
\(194\) 0 0
\(195\) 79.2909 109.135i 0.406620 0.559665i
\(196\) 0 0
\(197\) 30.3209i 0.153913i 0.997034 + 0.0769565i \(0.0245203\pi\)
−0.997034 + 0.0769565i \(0.975480\pi\)
\(198\) 0 0
\(199\) −241.081 −1.21146 −0.605731 0.795670i \(-0.707119\pi\)
−0.605731 + 0.795670i \(0.707119\pi\)
\(200\) 0 0
\(201\) 195.013 + 141.685i 0.970212 + 0.704901i
\(202\) 0 0
\(203\) −74.6867 + 229.862i −0.367915 + 1.13232i
\(204\) 0 0
\(205\) −55.0847 75.8175i −0.268706 0.369842i
\(206\) 0 0
\(207\) −162.258 499.379i −0.783855 2.41246i
\(208\) 0 0
\(209\) −188.277 + 208.792i −0.900848 + 0.999005i
\(210\) 0 0
\(211\) 97.7727 31.7683i 0.463378 0.150561i −0.0680183 0.997684i \(-0.521668\pi\)
0.531396 + 0.847124i \(0.321668\pi\)
\(212\) 0 0
\(213\) 19.0502 13.8408i 0.0894374 0.0649801i
\(214\) 0 0
\(215\) −180.015 58.4905i −0.837281 0.272049i
\(216\) 0 0
\(217\) −33.2505 + 45.7653i −0.153228 + 0.210900i
\(218\) 0 0
\(219\) 97.1931i 0.443804i
\(220\) 0 0
\(221\) 4.46237 0.0201917
\(222\) 0 0
\(223\) 340.835 + 247.631i 1.52841 + 1.11045i 0.957115 + 0.289710i \(0.0935587\pi\)
0.571295 + 0.820745i \(0.306441\pi\)
\(224\) 0 0
\(225\) 38.5168 118.543i 0.171186 0.526856i
\(226\) 0 0
\(227\) 51.7252 + 71.1936i 0.227864 + 0.313628i 0.907606 0.419824i \(-0.137908\pi\)
−0.679742 + 0.733452i \(0.737908\pi\)
\(228\) 0 0
\(229\) −86.1369 265.102i −0.376144 1.15765i −0.942704 0.333631i \(-0.891726\pi\)
0.566560 0.824020i \(-0.308274\pi\)
\(230\) 0 0
\(231\) 30.1620 284.943i 0.130571 1.23352i
\(232\) 0 0
\(233\) 183.691 59.6849i 0.788375 0.256158i 0.112963 0.993599i \(-0.463966\pi\)
0.675412 + 0.737441i \(0.263966\pi\)
\(234\) 0 0
\(235\) 76.6477 55.6878i 0.326160 0.236969i
\(236\) 0 0
\(237\) 286.728 + 93.1636i 1.20982 + 0.393095i
\(238\) 0 0
\(239\) −241.002 + 331.711i −1.00838 + 1.38791i −0.0883374 + 0.996091i \(0.528155\pi\)
−0.920041 + 0.391823i \(0.871845\pi\)
\(240\) 0 0
\(241\) 119.605i 0.496285i −0.968724 0.248143i \(-0.920180\pi\)
0.968724 0.248143i \(-0.0798201\pi\)
\(242\) 0 0
\(243\) −1006.07 −4.14020
\(244\) 0 0
\(245\) −52.4637 38.1171i −0.214138 0.155580i
\(246\) 0 0
\(247\) −81.8006 + 251.756i −0.331177 + 1.01926i
\(248\) 0 0
\(249\) 217.519 + 299.390i 0.873572 + 1.20237i
\(250\) 0 0
\(251\) 76.3512 + 234.985i 0.304188 + 0.936195i 0.979979 + 0.199101i \(0.0638023\pi\)
−0.675791 + 0.737094i \(0.736198\pi\)
\(252\) 0 0
\(253\) −230.409 24.3894i −0.910706 0.0964008i
\(254\) 0 0
\(255\) 5.33707 1.73412i 0.0209297 0.00680047i
\(256\) 0 0
\(257\) 42.6257 30.9694i 0.165859 0.120504i −0.501760 0.865007i \(-0.667314\pi\)
0.667618 + 0.744504i \(0.267314\pi\)
\(258\) 0 0
\(259\) 17.7602 + 5.77064i 0.0685722 + 0.0222805i
\(260\) 0 0
\(261\) 791.910 1089.97i 3.03414 4.17613i
\(262\) 0 0
\(263\) 138.580i 0.526921i 0.964670 + 0.263460i \(0.0848639\pi\)
−0.964670 + 0.263460i \(0.915136\pi\)
\(264\) 0 0
\(265\) 98.3273 0.371047
\(266\) 0 0
\(267\) −143.326 104.133i −0.536803 0.390010i
\(268\) 0 0
\(269\) 15.8135 48.6690i 0.0587863 0.180926i −0.917351 0.398079i \(-0.869677\pi\)
0.976138 + 0.217153i \(0.0696771\pi\)
\(270\) 0 0
\(271\) 140.346 + 193.169i 0.517881 + 0.712802i 0.985223 0.171275i \(-0.0547885\pi\)
−0.467343 + 0.884076i \(0.654789\pi\)
\(272\) 0 0
\(273\) −83.3688 256.583i −0.305380 0.939864i
\(274\) 0 0
\(275\) −40.8457 36.8324i −0.148530 0.133936i
\(276\) 0 0
\(277\) 196.313 63.7861i 0.708712 0.230275i 0.0675898 0.997713i \(-0.478469\pi\)
0.641122 + 0.767439i \(0.278469\pi\)
\(278\) 0 0
\(279\) 255.113 185.351i 0.914385 0.664339i
\(280\) 0 0
\(281\) −275.315 89.4554i −0.979770 0.318346i −0.225016 0.974355i \(-0.572244\pi\)
−0.754753 + 0.656009i \(0.772244\pi\)
\(282\) 0 0
\(283\) 282.501 388.830i 0.998238 1.37396i 0.0718372 0.997416i \(-0.477114\pi\)
0.926400 0.376540i \(-0.122886\pi\)
\(284\) 0 0
\(285\) 332.894i 1.16805i
\(286\) 0 0
\(287\) −187.425 −0.653050
\(288\) 0 0
\(289\) −233.656 169.761i −0.808497 0.587408i
\(290\) 0 0
\(291\) 308.632 949.871i 1.06059 3.26416i
\(292\) 0 0
\(293\) 271.303 + 373.417i 0.925950 + 1.27446i 0.961418 + 0.275091i \(0.0887079\pi\)
−0.0354679 + 0.999371i \(0.511292\pi\)
\(294\) 0 0
\(295\) 45.8280 + 141.044i 0.155349 + 0.478116i
\(296\) 0 0
\(297\) −415.804 + 932.053i −1.40001 + 3.13823i
\(298\) 0 0
\(299\) −207.476 + 67.4131i −0.693901 + 0.225462i
\(300\) 0 0
\(301\) −306.251 + 222.504i −1.01745 + 0.739217i
\(302\) 0 0
\(303\) −876.153 284.680i −2.89160 0.939536i
\(304\) 0 0
\(305\) −54.9652 + 75.6530i −0.180214 + 0.248043i
\(306\) 0 0
\(307\) 201.403i 0.656035i 0.944672 + 0.328018i \(0.106381\pi\)
−0.944672 + 0.328018i \(0.893619\pi\)
\(308\) 0 0
\(309\) −0.488476 −0.00158083
\(310\) 0 0
\(311\) 368.986 + 268.084i 1.18645 + 0.862006i 0.992884 0.119082i \(-0.0379951\pi\)
0.193565 + 0.981088i \(0.437995\pi\)
\(312\) 0 0
\(313\) −80.6220 + 248.129i −0.257578 + 0.792744i 0.735732 + 0.677272i \(0.236838\pi\)
−0.993311 + 0.115472i \(0.963162\pi\)
\(314\) 0 0
\(315\) −146.522 201.671i −0.465150 0.640224i
\(316\) 0 0
\(317\) −123.515 380.141i −0.389638 1.19918i −0.933059 0.359723i \(-0.882871\pi\)
0.543421 0.839460i \(-0.317129\pi\)
\(318\) 0 0
\(319\) −296.869 515.072i −0.930623 1.61465i
\(320\) 0 0
\(321\) −360.184 + 117.031i −1.12207 + 0.364582i
\(322\) 0 0
\(323\) −8.90889 + 6.47269i −0.0275817 + 0.0200393i
\(324\) 0 0
\(325\) −49.2508 16.0025i −0.151541 0.0492386i
\(326\) 0 0
\(327\) 46.9584 64.6327i 0.143604 0.197654i
\(328\) 0 0
\(329\) 189.478i 0.575920i
\(330\) 0 0
\(331\) 250.595 0.757084 0.378542 0.925584i \(-0.376426\pi\)
0.378542 + 0.925584i \(0.376426\pi\)
\(332\) 0 0
\(333\) −84.2162 61.1867i −0.252902 0.183744i
\(334\) 0 0
\(335\) 28.5950 88.0062i 0.0853581 0.262705i
\(336\) 0 0
\(337\) 151.904 + 209.077i 0.450752 + 0.620407i 0.972559 0.232656i \(-0.0747418\pi\)
−0.521807 + 0.853064i \(0.674742\pi\)
\(338\) 0 0
\(339\) −117.998 363.161i −0.348077 1.07127i
\(340\) 0 0
\(341\) −28.8293 136.127i −0.0845433 0.399198i
\(342\) 0 0
\(343\) −331.749 + 107.792i −0.967198 + 0.314262i
\(344\) 0 0
\(345\) −221.948 + 161.255i −0.643327 + 0.467405i
\(346\) 0 0
\(347\) 264.700 + 86.0063i 0.762824 + 0.247857i 0.664490 0.747297i \(-0.268649\pi\)
0.0983340 + 0.995153i \(0.468649\pi\)
\(348\) 0 0
\(349\) −161.535 + 222.334i −0.462851 + 0.637060i −0.975097 0.221779i \(-0.928814\pi\)
0.512246 + 0.858839i \(0.328814\pi\)
\(350\) 0 0
\(351\) 960.943i 2.73773i
\(352\) 0 0
\(353\) 132.713 0.375956 0.187978 0.982173i \(-0.439807\pi\)
0.187978 + 0.982173i \(0.439807\pi\)
\(354\) 0 0
\(355\) −7.31309 5.31327i −0.0206002 0.0149670i
\(356\) 0 0
\(357\) 3.46813 10.6738i 0.00971465 0.0298986i
\(358\) 0 0
\(359\) 208.563 + 287.062i 0.580955 + 0.799616i 0.993800 0.111185i \(-0.0354647\pi\)
−0.412844 + 0.910802i \(0.635465\pi\)
\(360\) 0 0
\(361\) −90.3081 277.940i −0.250161 0.769916i
\(362\) 0 0
\(363\) 470.830 + 524.469i 1.29705 + 1.44482i
\(364\) 0 0
\(365\) 35.4849 11.5297i 0.0972189 0.0315883i
\(366\) 0 0
\(367\) 265.987 193.251i 0.724759 0.526568i −0.163142 0.986603i \(-0.552163\pi\)
0.887901 + 0.460034i \(0.152163\pi\)
\(368\) 0 0
\(369\) 993.646 + 322.855i 2.69281 + 0.874946i
\(370\) 0 0
\(371\) 115.587 159.092i 0.311556 0.428820i
\(372\) 0 0
\(373\) 532.614i 1.42792i −0.700187 0.713960i \(-0.746900\pi\)
0.700187 0.713960i \(-0.253100\pi\)
\(374\) 0 0
\(375\) −65.1236 −0.173663
\(376\) 0 0
\(377\) −452.849 329.014i −1.20119 0.872716i
\(378\) 0 0
\(379\) −78.8238 + 242.595i −0.207978 + 0.640092i 0.791599 + 0.611040i \(0.209249\pi\)
−0.999578 + 0.0290515i \(0.990751\pi\)
\(380\) 0 0
\(381\) 463.659 + 638.172i 1.21695 + 1.67499i
\(382\) 0 0
\(383\) −49.4611 152.226i −0.129141 0.397456i 0.865492 0.500923i \(-0.167006\pi\)
−0.994633 + 0.103468i \(0.967006\pi\)
\(384\) 0 0
\(385\) −107.610 + 22.7899i −0.279506 + 0.0591946i
\(386\) 0 0
\(387\) 2006.89 652.077i 5.18575 1.68495i
\(388\) 0 0
\(389\) 336.925 244.791i 0.866132 0.629282i −0.0634143 0.997987i \(-0.520199\pi\)
0.929546 + 0.368706i \(0.120199\pi\)
\(390\) 0 0
\(391\) −8.63098 2.80438i −0.0220741 0.00717232i
\(392\) 0 0
\(393\) −757.340 + 1042.39i −1.92707 + 2.65239i
\(394\) 0 0
\(395\) 115.735i 0.293001i
\(396\) 0 0
\(397\) −50.2264 −0.126515 −0.0632574 0.997997i \(-0.520149\pi\)
−0.0632574 + 0.997997i \(0.520149\pi\)
\(398\) 0 0
\(399\) 538.617 + 391.328i 1.34992 + 0.980772i
\(400\) 0 0
\(401\) 11.5455 35.5333i 0.0287917 0.0886118i −0.935628 0.352987i \(-0.885166\pi\)
0.964420 + 0.264376i \(0.0851659\pi\)
\(402\) 0 0
\(403\) −77.0075 105.992i −0.191086 0.263007i
\(404\) 0 0
\(405\) 218.405 + 672.181i 0.539271 + 1.65971i
\(406\) 0 0
\(407\) −39.7968 + 22.9375i −0.0977810 + 0.0563574i
\(408\) 0 0
\(409\) −521.153 + 169.333i −1.27421 + 0.414017i −0.866539 0.499110i \(-0.833660\pi\)
−0.407675 + 0.913127i \(0.633660\pi\)
\(410\) 0 0
\(411\) −620.439 + 450.775i −1.50958 + 1.09678i
\(412\) 0 0
\(413\) 282.080 + 91.6532i 0.683002 + 0.221921i
\(414\) 0 0
\(415\) 83.5026 114.931i 0.201211 0.276943i
\(416\) 0 0
\(417\) 837.246i 2.00778i
\(418\) 0 0
\(419\) 9.71560 0.0231876 0.0115938 0.999933i \(-0.496309\pi\)
0.0115938 + 0.999933i \(0.496309\pi\)
\(420\) 0 0
\(421\) 456.677 + 331.795i 1.08474 + 0.788113i 0.978504 0.206228i \(-0.0661188\pi\)
0.106240 + 0.994341i \(0.466119\pi\)
\(422\) 0 0
\(423\) −326.390 + 1004.52i −0.771607 + 2.37476i
\(424\) 0 0
\(425\) −1.26624 1.74283i −0.00297940 0.00410079i
\(426\) 0 0
\(427\) 57.7920 + 177.866i 0.135344 + 0.416547i
\(428\) 0 0
\(429\) 606.037 + 270.363i 1.41267 + 0.630217i
\(430\) 0 0
\(431\) −486.526 + 158.082i −1.12883 + 0.366779i −0.813131 0.582080i \(-0.802239\pi\)
−0.315699 + 0.948859i \(0.602239\pi\)
\(432\) 0 0
\(433\) 469.914 341.413i 1.08525 0.788482i 0.106661 0.994295i \(-0.465984\pi\)
0.978591 + 0.205813i \(0.0659839\pi\)
\(434\) 0 0
\(435\) −669.474 217.525i −1.53902 0.500058i
\(436\) 0 0
\(437\) 316.433 435.532i 0.724103 0.996642i
\(438\) 0 0
\(439\) 588.239i 1.33995i −0.742383 0.669976i \(-0.766304\pi\)
0.742383 0.669976i \(-0.233696\pi\)
\(440\) 0 0
\(441\) 722.961 1.63937
\(442\) 0 0
\(443\) 312.951 + 227.372i 0.706435 + 0.513255i 0.882022 0.471209i \(-0.156182\pi\)
−0.175587 + 0.984464i \(0.556182\pi\)
\(444\) 0 0
\(445\) −21.0161 + 64.6810i −0.0472273 + 0.145351i
\(446\) 0 0
\(447\) −560.661 771.683i −1.25427 1.72636i
\(448\) 0 0
\(449\) −168.424 518.355i −0.375108 1.15446i −0.943406 0.331641i \(-0.892398\pi\)
0.568297 0.822823i \(-0.307602\pi\)
\(450\) 0 0
\(451\) 308.736 342.376i 0.684559 0.759149i
\(452\) 0 0
\(453\) −500.448 + 162.605i −1.10474 + 0.358952i
\(454\) 0 0
\(455\) −83.7878 + 60.8754i −0.184149 + 0.133792i
\(456\) 0 0
\(457\) 757.002 + 245.965i 1.65646 + 0.538216i 0.980125 0.198379i \(-0.0635676\pi\)
0.676334 + 0.736595i \(0.263568\pi\)
\(458\) 0 0
\(459\) −23.4968 + 32.3405i −0.0511912 + 0.0704587i
\(460\) 0 0
\(461\) 107.301i 0.232758i −0.993205 0.116379i \(-0.962871\pi\)
0.993205 0.116379i \(-0.0371287\pi\)
\(462\) 0 0
\(463\) −183.926 −0.397248 −0.198624 0.980076i \(-0.563647\pi\)
−0.198624 + 0.980076i \(0.563647\pi\)
\(464\) 0 0
\(465\) −133.292 96.8421i −0.286649 0.208263i
\(466\) 0 0
\(467\) 56.5650 174.089i 0.121124 0.372782i −0.872051 0.489415i \(-0.837210\pi\)
0.993175 + 0.116633i \(0.0372102\pi\)
\(468\) 0 0
\(469\) −108.778 149.721i −0.231937 0.319234i
\(470\) 0 0
\(471\) 440.645 + 1356.17i 0.935553 + 2.87934i
\(472\) 0 0
\(473\) 98.0153 925.958i 0.207221 1.95763i
\(474\) 0 0
\(475\) 121.538 39.4902i 0.255870 0.0831373i
\(476\) 0 0
\(477\) −886.840 + 644.327i −1.85920 + 1.35079i
\(478\) 0 0
\(479\) −586.953 190.713i −1.22537 0.398147i −0.376336 0.926483i \(-0.622816\pi\)
−0.849036 + 0.528336i \(0.822816\pi\)
\(480\) 0 0
\(481\) −25.4212 + 34.9892i −0.0528506 + 0.0727427i
\(482\) 0 0
\(483\) 548.669i 1.13596i
\(484\) 0 0
\(485\) −383.407 −0.790530
\(486\) 0 0
\(487\) −607.196 441.154i −1.24681 0.905859i −0.248776 0.968561i \(-0.580028\pi\)
−0.998032 + 0.0627015i \(0.980028\pi\)
\(488\) 0 0
\(489\) −104.257 + 320.871i −0.213205 + 0.656179i
\(490\) 0 0
\(491\) −439.432 604.826i −0.894974 1.23183i −0.972044 0.234800i \(-0.924557\pi\)
0.0770700 0.997026i \(-0.475443\pi\)
\(492\) 0 0
\(493\) −7.19565 22.1459i −0.0145956 0.0449207i
\(494\) 0 0
\(495\) 609.756 + 64.5444i 1.23183 + 0.130393i
\(496\) 0 0
\(497\) −17.1936 + 5.58653i −0.0345947 + 0.0112405i
\(498\) 0 0
\(499\) −11.9100 + 8.65314i −0.0238678 + 0.0173410i −0.599655 0.800258i \(-0.704696\pi\)
0.575787 + 0.817599i \(0.304696\pi\)
\(500\) 0 0
\(501\) −887.956 288.514i −1.77237 0.575877i
\(502\) 0 0
\(503\) −265.974 + 366.082i −0.528775 + 0.727797i −0.986943 0.161069i \(-0.948506\pi\)
0.458168 + 0.888866i \(0.348506\pi\)
\(504\) 0 0
\(505\) 353.652i 0.700300i
\(506\) 0 0
\(507\) −359.574 −0.709218
\(508\) 0 0
\(509\) 330.840 + 240.369i 0.649980 + 0.472238i 0.863264 0.504752i \(-0.168416\pi\)
−0.213284 + 0.976990i \(0.568416\pi\)
\(510\) 0 0
\(511\) 23.0588 70.9676i 0.0451248 0.138880i
\(512\) 0 0
\(513\) −1393.85 1918.47i −2.71706 3.73972i
\(514\) 0 0
\(515\) 0.0579465 + 0.178341i 0.000112518 + 0.000346293i
\(516\) 0 0
\(517\) 346.125 + 312.116i 0.669487 + 0.603707i
\(518\) 0 0
\(519\) −544.090 + 176.785i −1.04834 + 0.340627i
\(520\) 0 0
\(521\) −199.914 + 145.246i −0.383712 + 0.278783i −0.762874 0.646547i \(-0.776212\pi\)
0.379162 + 0.925330i \(0.376212\pi\)
\(522\) 0 0
\(523\) 94.1672 + 30.5968i 0.180052 + 0.0585024i 0.397655 0.917535i \(-0.369824\pi\)
−0.217603 + 0.976037i \(0.569824\pi\)
\(524\) 0 0
\(525\) −76.5550 + 105.369i −0.145819 + 0.200703i
\(526\) 0 0
\(527\) 5.45012i 0.0103418i
\(528\) 0 0
\(529\) −85.3393 −0.161322
\(530\) 0 0
\(531\) −1337.58 971.809i −2.51898 1.83015i
\(532\) 0 0
\(533\) 134.136 412.829i 0.251663 0.774538i
\(534\) 0 0
\(535\) 85.4553 + 117.619i 0.159730 + 0.219849i
\(536\) 0 0
\(537\) 309.006 + 951.024i 0.575431 + 1.77099i
\(538\) 0 0
\(539\) 129.970 291.337i 0.241132 0.540514i
\(540\) 0 0
\(541\) −510.281 + 165.800i −0.943217 + 0.306470i −0.739957 0.672655i \(-0.765154\pi\)
−0.203261 + 0.979125i \(0.565154\pi\)
\(542\) 0 0
\(543\) 732.261 532.019i 1.34855 0.979777i
\(544\) 0 0
\(545\) −29.1677 9.47718i −0.0535188 0.0173893i
\(546\) 0 0
\(547\) −152.494 + 209.889i −0.278782 + 0.383710i −0.925330 0.379163i \(-0.876212\pi\)
0.646548 + 0.762873i \(0.276212\pi\)
\(548\) 0 0
\(549\) 1042.51i 1.89893i
\(550\) 0 0
\(551\) 1381.33 2.50695
\(552\) 0 0
\(553\) −187.258 136.051i −0.338622 0.246023i
\(554\) 0 0
\(555\) −16.8070 + 51.7266i −0.0302829 + 0.0932012i
\(556\) 0 0
\(557\) 37.2226 + 51.2325i 0.0668269 + 0.0919793i 0.841122 0.540845i \(-0.181895\pi\)
−0.774295 + 0.632824i \(0.781895\pi\)
\(558\) 0 0
\(559\) −270.918 833.799i −0.484647 1.49159i
\(560\) 0 0
\(561\) 13.7853 + 23.9177i 0.0245728 + 0.0426341i
\(562\) 0 0
\(563\) 159.488 51.8209i 0.283283 0.0920442i −0.163929 0.986472i \(-0.552417\pi\)
0.447212 + 0.894428i \(0.352417\pi\)
\(564\) 0 0
\(565\) −118.591 + 86.1616i −0.209896 + 0.152498i
\(566\) 0 0
\(567\) 1344.32 + 436.796i 2.37093 + 0.770363i
\(568\) 0 0
\(569\) 186.110 256.158i 0.327083 0.450191i −0.613531 0.789671i \(-0.710251\pi\)
0.940613 + 0.339480i \(0.110251\pi\)
\(570\) 0 0
\(571\) 327.756i 0.574004i −0.957930 0.287002i \(-0.907341\pi\)
0.957930 0.287002i \(-0.0926587\pi\)
\(572\) 0 0
\(573\) 1527.52 2.66583
\(574\) 0 0
\(575\) 85.2027 + 61.9034i 0.148179 + 0.107658i
\(576\) 0 0
\(577\) −263.883 + 812.148i −0.457336 + 1.40754i 0.411035 + 0.911620i \(0.365167\pi\)
−0.868371 + 0.495916i \(0.834833\pi\)
\(578\) 0 0
\(579\) 258.246 + 355.445i 0.446021 + 0.613895i
\(580\) 0 0
\(581\) −87.7971 270.212i −0.151114 0.465080i
\(582\) 0 0
\(583\) 100.218 + 473.211i 0.171900 + 0.811682i
\(584\) 0 0
\(585\) 549.068 178.403i 0.938578 0.304962i
\(586\) 0 0
\(587\) 169.002 122.787i 0.287907 0.209177i −0.434452 0.900695i \(-0.643058\pi\)
0.722359 + 0.691518i \(0.243058\pi\)
\(588\) 0 0
\(589\) 307.483 + 99.9073i 0.522042 + 0.169622i
\(590\) 0 0
\(591\) −103.811 + 142.884i −0.175653 + 0.241766i
\(592\) 0 0
\(593\) 791.888i 1.33539i −0.744433 0.667697i \(-0.767280\pi\)
0.744433 0.667697i \(-0.232720\pi\)
\(594\) 0 0
\(595\) −4.30839 −0.00724099
\(596\) 0 0
\(597\) −1136.07 825.400i −1.90296 1.38258i
\(598\) 0 0
\(599\) −64.4343 + 198.309i −0.107570 + 0.331066i −0.990325 0.138767i \(-0.955686\pi\)
0.882755 + 0.469833i \(0.155686\pi\)
\(600\) 0 0
\(601\) 159.978 + 220.191i 0.266186 + 0.366374i 0.921098 0.389332i \(-0.127294\pi\)
−0.654911 + 0.755706i \(0.727294\pi\)
\(602\) 0 0
\(603\) 318.789 + 981.130i 0.528671 + 1.62708i
\(604\) 0 0
\(605\) 135.629 234.115i 0.224180 0.386967i
\(606\) 0 0
\(607\) −821.821 + 267.026i −1.35391 + 0.439911i −0.894004 0.448059i \(-0.852116\pi\)
−0.459902 + 0.887970i \(0.652116\pi\)
\(608\) 0 0
\(609\) −1138.94 + 827.489i −1.87018 + 1.35877i
\(610\) 0 0
\(611\) 417.349 + 135.605i 0.683059 + 0.221939i
\(612\) 0 0
\(613\) −230.281 + 316.954i −0.375662 + 0.517054i −0.954429 0.298439i \(-0.903534\pi\)
0.578767 + 0.815493i \(0.303534\pi\)
\(614\) 0 0
\(615\) 545.877i 0.887605i
\(616\) 0 0
\(617\) 594.799 0.964019 0.482009 0.876166i \(-0.339907\pi\)
0.482009 + 0.876166i \(0.339907\pi\)
\(618\) 0 0
\(619\) 143.028 + 103.916i 0.231063 + 0.167877i 0.697293 0.716787i \(-0.254388\pi\)
−0.466229 + 0.884664i \(0.654388\pi\)
\(620\) 0 0
\(621\) 603.905 1858.63i 0.972472 2.99296i
\(622\) 0 0
\(623\) 79.9476 + 110.038i 0.128327 + 0.176627i
\(624\) 0 0
\(625\) 7.72542 + 23.7764i 0.0123607 + 0.0380423i
\(626\) 0 0
\(627\) −1602.09 + 339.294i −2.55516 + 0.541139i
\(628\) 0 0
\(629\) −1.71110 + 0.555969i −0.00272035 + 0.000883894i
\(630\) 0 0
\(631\) 61.6775 44.8113i 0.0977456 0.0710163i −0.537839 0.843048i \(-0.680759\pi\)
0.635585 + 0.772031i \(0.280759\pi\)
\(632\) 0 0
\(633\) 569.509 + 185.045i 0.899699 + 0.292330i
\(634\) 0 0
\(635\) 177.992 244.985i 0.280302 0.385803i
\(636\) 0 0
\(637\) 300.368i 0.471535i
\(638\) 0 0
\(639\) 100.776 0.157709
\(640\) 0 0
\(641\) 233.901 + 169.939i 0.364900 + 0.265115i 0.755093 0.655618i \(-0.227592\pi\)
−0.390193 + 0.920733i \(0.627592\pi\)
\(642\) 0 0
\(643\) −98.5800 + 303.398i −0.153313 + 0.471848i −0.997986 0.0634343i \(-0.979795\pi\)
0.844673 + 0.535282i \(0.179795\pi\)
\(644\) 0 0
\(645\) −648.045 891.957i −1.00472 1.38288i
\(646\) 0 0
\(647\) −177.097 545.048i −0.273720 0.842424i −0.989555 0.144154i \(-0.953954\pi\)
0.715835 0.698269i \(-0.246046\pi\)
\(648\) 0 0
\(649\) −632.081 + 364.308i −0.973930 + 0.561338i
\(650\) 0 0
\(651\) −313.378 + 101.823i −0.481379 + 0.156410i
\(652\) 0 0
\(653\) −529.603 + 384.779i −0.811031 + 0.589248i −0.914129 0.405423i \(-0.867124\pi\)
0.103099 + 0.994671i \(0.467124\pi\)
\(654\) 0 0
\(655\) 470.415 + 152.847i 0.718190 + 0.233354i
\(656\) 0 0
\(657\) −244.494 + 336.518i −0.372138 + 0.512204i
\(658\) 0 0
\(659\) 166.011i 0.251913i 0.992036 + 0.125956i \(0.0401999\pi\)
−0.992036 + 0.125956i \(0.959800\pi\)
\(660\) 0 0
\(661\) −63.4298 −0.0959603 −0.0479802 0.998848i \(-0.515278\pi\)
−0.0479802 + 0.998848i \(0.515278\pi\)
\(662\) 0 0
\(663\) 21.0284 + 15.2780i 0.0317170 + 0.0230438i
\(664\) 0 0
\(665\) 78.9780 243.069i 0.118764 0.365518i
\(666\) 0 0
\(667\) 669.119 + 920.963i 1.00318 + 1.38075i
\(668\) 0 0
\(669\) 758.320 + 2333.87i 1.13351 + 3.48859i
\(670\) 0 0
\(671\) −420.110 187.418i −0.626096 0.279311i
\(672\) 0 0
\(673\) −546.179 + 177.464i −0.811559 + 0.263692i −0.685258 0.728300i \(-0.740311\pi\)
−0.126301 + 0.991992i \(0.540311\pi\)
\(674\) 0 0
\(675\) 375.309 272.678i 0.556013 0.403967i
\(676\) 0 0
\(677\) −997.111 323.981i −1.47284 0.478554i −0.540873 0.841104i \(-0.681906\pi\)
−0.931964 + 0.362550i \(0.881906\pi\)
\(678\) 0 0
\(679\) −450.708 + 620.347i −0.663782 + 0.913618i
\(680\) 0 0
\(681\) 512.586i 0.752695i
\(682\) 0 0
\(683\) −44.0462 −0.0644894 −0.0322447 0.999480i \(-0.510266\pi\)
−0.0322447 + 0.999480i \(0.510266\pi\)
\(684\) 0 0
\(685\) 238.178 + 173.046i 0.347705 + 0.252622i
\(686\) 0 0
\(687\) 501.732 1544.17i 0.730324 2.24771i
\(688\) 0 0
\(689\) 267.698 + 368.454i 0.388531 + 0.534767i
\(690\) 0 0
\(691\) −217.996 670.923i −0.315479 0.970945i −0.975557 0.219747i \(-0.929477\pi\)
0.660078 0.751197i \(-0.270523\pi\)
\(692\) 0 0
\(693\) 821.221 910.702i 1.18502 1.31414i
\(694\) 0 0
\(695\) −305.676 + 99.3201i −0.439821 + 0.142907i
\(696\) 0 0
\(697\) 14.6088 10.6139i 0.0209595 0.0152279i
\(698\) 0 0
\(699\) 1069.97 + 347.654i 1.53072 + 0.497360i
\(700\) 0 0
\(701\) 325.452 447.947i 0.464269 0.639011i −0.511118 0.859510i \(-0.670769\pi\)
0.975387 + 0.220499i \(0.0707686\pi\)
\(702\) 0 0
\(703\) 106.728i 0.151818i
\(704\) 0 0
\(705\) 551.854 0.782772
\(706\) 0 0
\(707\) 572.203 + 415.730i 0.809339 + 0.588019i
\(708\) 0 0
\(709\) 195.502 601.694i 0.275744 0.848652i −0.713278 0.700881i \(-0.752790\pi\)
0.989022 0.147771i \(-0.0472097\pi\)
\(710\) 0 0
\(711\) 758.399 + 1043.85i 1.06666 + 1.46814i
\(712\) 0 0
\(713\) 82.3351 + 253.402i 0.115477 + 0.355402i
\(714\) 0 0
\(715\) 26.8162 253.335i 0.0375052 0.354314i
\(716\) 0 0
\(717\) −2271.39 + 738.020i −3.16791 + 1.02932i
\(718\) 0 0
\(719\) 802.680 583.181i 1.11638 0.811100i 0.132726 0.991153i \(-0.457627\pi\)
0.983657 + 0.180053i \(0.0576269\pi\)
\(720\) 0 0
\(721\) 0.356671 + 0.115889i 0.000494689 + 0.000160734i
\(722\) 0 0
\(723\) 409.496 563.623i 0.566385 0.779562i
\(724\) 0 0
\(725\) 270.227i 0.372727i
\(726\) 0 0
\(727\) 356.233 0.490003 0.245002 0.969523i \(-0.421211\pi\)
0.245002 + 0.969523i \(0.421211\pi\)
\(728\) 0 0
\(729\) −2439.57 1772.45i −3.34646 2.43134i
\(730\) 0 0
\(731\) 11.2701 34.6859i 0.0154174 0.0474499i
\(732\) 0 0
\(733\) −97.9819 134.860i −0.133672 0.183984i 0.736934 0.675965i \(-0.236273\pi\)
−0.870606 + 0.491981i \(0.836273\pi\)
\(734\) 0 0
\(735\) −116.726 359.245i −0.158811 0.488769i
\(736\) 0 0
\(737\) 452.684 + 47.9179i 0.614225 + 0.0650175i
\(738\) 0 0
\(739\) −9.94021 + 3.22977i −0.0134509 + 0.00437046i −0.315735 0.948848i \(-0.602251\pi\)
0.302284 + 0.953218i \(0.402251\pi\)
\(740\) 0 0
\(741\) −1247.43 + 906.308i −1.68344 + 1.22309i
\(742\) 0 0
\(743\) −189.440 61.5527i −0.254966 0.0828434i 0.178745 0.983895i \(-0.442796\pi\)
−0.433711 + 0.901052i \(0.642796\pi\)
\(744\) 0 0
\(745\) −215.230 + 296.238i −0.288899 + 0.397635i
\(746\) 0 0
\(747\) 1583.78i 2.12019i
\(748\) 0 0
\(749\) 290.762 0.388200
\(750\) 0 0
\(751\) −657.398 477.628i −0.875363 0.635989i 0.0566573 0.998394i \(-0.481956\pi\)
−0.932021 + 0.362405i \(0.881956\pi\)
\(752\) 0 0
\(753\) −444.733 + 1368.75i −0.590615 + 1.81772i
\(754\) 0 0
\(755\) 118.733 + 163.423i 0.157263 + 0.216454i
\(756\) 0 0
\(757\) 23.4494 + 72.1700i 0.0309768 + 0.0953368i 0.965350 0.260960i \(-0.0840391\pi\)
−0.934373 + 0.356297i \(0.884039\pi\)
\(758\) 0 0
\(759\) −1002.27 903.793i −1.32051 1.19077i
\(760\) 0 0
\(761\) −488.143 + 158.607i −0.641450 + 0.208420i −0.611640 0.791136i \(-0.709490\pi\)
−0.0298093 + 0.999556i \(0.509490\pi\)
\(762\) 0 0
\(763\) −49.6216 + 36.0522i −0.0650349 + 0.0472506i
\(764\) 0 0
\(765\) 22.8411 + 7.42154i 0.0298577 + 0.00970136i
\(766\) 0 0
\(767\) −403.756 + 555.723i −0.526410 + 0.724541i
\(768\) 0 0
\(769\) 346.320i 0.450351i 0.974318 + 0.225176i \(0.0722956\pi\)
−0.974318 + 0.225176i \(0.927704\pi\)
\(770\) 0 0
\(771\) 306.900 0.398055
\(772\) 0 0
\(773\) 1055.22 + 766.660i 1.36509 + 0.991798i 0.998103 + 0.0615739i \(0.0196120\pi\)
0.366991 + 0.930225i \(0.380388\pi\)
\(774\) 0 0
\(775\) −19.5447 + 60.1525i −0.0252190 + 0.0776161i
\(776\) 0 0
\(777\) 63.9357 + 87.9999i 0.0822853 + 0.113256i
\(778\) 0 0
\(779\) 331.014 + 1018.76i 0.424922 + 1.30778i
\(780\) 0 0
\(781\) 18.1170 40.6104i 0.0231971 0.0519980i
\(782\) 0 0
\(783\) 4768.99 1549.54i 6.09066 1.97898i
\(784\) 0 0
\(785\) 442.860 321.757i 0.564153 0.409881i
\(786\) 0 0
\(787\) 819.838 + 266.382i 1.04173 + 0.338477i 0.779416 0.626506i \(-0.215516\pi\)
0.262310 + 0.964984i \(0.415516\pi\)
\(788\) 0 0
\(789\) −474.464 + 653.043i −0.601348 + 0.827685i
\(790\) 0 0
\(791\) 293.165i 0.370625i
\(792\) 0 0
\(793\) −433.132 −0.546195
\(794\) 0 0
\(795\) 463.356 + 336.648i 0.582838 + 0.423457i
\(796\) 0 0
\(797\) 8.35552 25.7156i 0.0104837 0.0322656i −0.945678 0.325105i \(-0.894600\pi\)
0.956162 + 0.292840i \(0.0946002\pi\)
\(798\) 0 0
\(799\) 10.7301 + 14.7687i 0.0134294 + 0.0184840i
\(800\) 0 0
\(801\) −234.297 721.091i −0.292505 0.900238i
\(802\) 0 0
\(803\) 91.6553 + 159.023i 0.114141 + 0.198037i
\(804\) 0 0
\(805\) 200.317 65.0870i 0.248841 0.0808535i
\(806\) 0 0
\(807\) 241.150 175.205i 0.298822 0.217107i
\(808\) 0 0
\(809\) 449.120 + 145.928i 0.555155 + 0.180381i 0.573140 0.819457i \(-0.305725\pi\)
−0.0179850 + 0.999838i \(0.505725\pi\)
\(810\) 0 0
\(811\) −522.584 + 719.275i −0.644369 + 0.886898i −0.998839 0.0481691i \(-0.984661\pi\)
0.354470 + 0.935067i \(0.384661\pi\)
\(812\) 0 0
\(813\) 1390.80i 1.71070i
\(814\) 0 0
\(815\) 129.517 0.158916
\(816\) 0 0
\(817\) 1750.30 + 1271.67i 2.14235 + 1.55651i
\(818\) 0 0
\(819\) 356.795 1098.10i 0.435647 1.34078i
\(820\) 0 0
\(821\) 122.442 + 168.527i 0.149138 + 0.205270i 0.877049 0.480401i \(-0.159509\pi\)
−0.727911 + 0.685671i \(0.759509\pi\)
\(822\) 0 0
\(823\) −409.105 1259.09i −0.497089 1.52988i −0.813675 0.581320i \(-0.802536\pi\)
0.316586 0.948564i \(-0.397464\pi\)
\(824\) 0 0
\(825\) −66.3757 313.414i −0.0804554 0.379896i
\(826\) 0 0
\(827\) −773.306 + 251.262i −0.935074 + 0.303824i −0.736636 0.676289i \(-0.763587\pi\)
−0.198438 + 0.980113i \(0.563587\pi\)
\(828\) 0 0
\(829\) 476.182 345.966i 0.574405 0.417330i −0.262298 0.964987i \(-0.584480\pi\)
0.836703 + 0.547657i \(0.184480\pi\)
\(830\) 0 0
\(831\) 1143.49 + 371.543i 1.37604 + 0.447103i
\(832\) 0 0
\(833\) 7.34452 10.1089i 0.00881695 0.0121355i
\(834\) 0 0
\(835\) 358.416i 0.429240i
\(836\) 0 0
\(837\) 1173.65 1.40221
\(838\) 0 0
\(839\) −297.249 215.964i −0.354290 0.257407i 0.396377 0.918088i \(-0.370267\pi\)
−0.750666 + 0.660681i \(0.770267\pi\)
\(840\) 0 0
\(841\) −642.727 + 1978.11i −0.764242 + 2.35209i
\(842\) 0 0
\(843\) −991.119 1364.16i −1.17570 1.61822i
\(844\) 0 0
\(845\) 42.6552 + 131.279i 0.0504795 + 0.155360i
\(846\) 0 0
\(847\) −219.358 494.656i −0.258982 0.584009i
\(848\) 0 0
\(849\) 2662.51 865.102i 3.13605 1.01897i
\(850\) 0 0
\(851\) 71.1579 51.6992i 0.0836168 0.0607511i
\(852\) 0 0
\(853\) −242.057 78.6490i −0.283771 0.0922028i 0.163673 0.986515i \(-0.447666\pi\)
−0.447444 + 0.894312i \(0.647666\pi\)
\(854\) 0 0
\(855\) −837.412 + 1152.60i −0.979429 + 1.34807i
\(856\) 0 0
\(857\) 667.813i 0.779245i −0.920975 0.389622i \(-0.872606\pi\)
0.920975 0.389622i \(-0.127394\pi\)
\(858\) 0 0
\(859\) 318.739 0.371058 0.185529 0.982639i \(-0.440600\pi\)
0.185529 + 0.982639i \(0.440600\pi\)
\(860\) 0 0
\(861\) −883.221 641.698i −1.02581 0.745293i
\(862\) 0 0
\(863\) 275.648 848.358i 0.319407 0.983034i −0.654495 0.756066i \(-0.727119\pi\)
0.973902 0.226968i \(-0.0728812\pi\)
\(864\) 0 0
\(865\) 129.088 + 177.674i 0.149234 + 0.205403i
\(866\) 0 0
\(867\) −519.857 1599.96i −0.599605 1.84539i
\(868\) 0 0
\(869\) 556.988 117.961i 0.640953 0.135743i
\(870\) 0 0
\(871\) 407.629 132.447i 0.468001 0.152063i
\(872\) 0 0
\(873\) 3458.05 2512.42i 3.96111 2.87791i
\(874\) 0 0
\(875\) 47.5514 + 15.4504i 0.0543444 + 0.0176576i
\(876\) 0 0
\(877\) −573.243 + 789.001i −0.653641 + 0.899660i −0.999250 0.0387190i \(-0.987672\pi\)
0.345609 + 0.938379i \(0.387672\pi\)
\(878\) 0 0
\(879\) 2688.56i 3.05866i
\(880\) 0 0
\(881\) −1097.87 −1.24617 −0.623083 0.782156i \(-0.714120\pi\)
−0.623083 + 0.782156i \(0.714120\pi\)
\(882\) 0 0
\(883\) −865.026 628.478i −0.979645 0.711754i −0.0220155 0.999758i \(-0.507008\pi\)
−0.957629 + 0.288004i \(0.907008\pi\)
\(884\) 0 0
\(885\) −266.940 + 821.558i −0.301628 + 0.928314i
\(886\) 0 0
\(887\) −370.279 509.645i −0.417451 0.574572i 0.547565 0.836763i \(-0.315555\pi\)
−0.965016 + 0.262191i \(0.915555\pi\)
\(888\) 0 0
\(889\) −187.146 575.976i −0.210513 0.647892i
\(890\) 0 0
\(891\) −3012.34 + 1736.20i −3.38085 + 1.94860i
\(892\) 0 0
\(893\) −1029.91 + 334.639i −1.15332 + 0.374735i
\(894\) 0 0
\(895\) 310.559 225.635i 0.346994 0.252106i
\(896\) 0 0
\(897\) −1208.51 392.670i −1.34728 0.437759i
\(898\) 0 0
\(899\) −401.842 + 553.088i −0.446988 + 0.615226i
\(900\) 0 0
\(901\) 18.9460i 0.0210278i
\(902\) 0 0
\(903\) −2204.97 −2.44183
\(904\) 0 0
\(905\) −281.104 204.234i −0.310613 0.225673i
\(906\) 0 0
\(907\) −151.248 + 465.494i −0.166757 + 0.513224i −0.999161 0.0409440i \(-0.986963\pi\)
0.832405 + 0.554168i \(0.186963\pi\)
\(908\) 0 0
\(909\) −2317.44 3189.68i −2.54943 3.50899i
\(910\) 0 0
\(911\) 108.565 + 334.129i 0.119171 + 0.366772i 0.992794 0.119832i \(-0.0382355\pi\)
−0.873623 + 0.486604i \(0.838236\pi\)
\(912\) 0 0
\(913\) 638.228 + 284.724i 0.699045 + 0.311855i
\(914\) 0 0
\(915\) −518.034 + 168.319i −0.566157 + 0.183956i
\(916\) 0 0
\(917\) 800.292 581.446i 0.872729 0.634075i
\(918\) 0 0
\(919\) −1127.93 366.486i −1.22734 0.398787i −0.377591 0.925972i \(-0.623247\pi\)
−0.849751 + 0.527185i \(0.823247\pi\)
\(920\) 0 0
\(921\) −689.552 + 949.087i −0.748700 + 1.03050i
\(922\) 0 0
\(923\) 41.8692i 0.0453621i
\(924\) 0 0
\(925\) 20.8790 0.0225719
\(926\) 0 0
\(927\) −1.69128 1.22879i −0.00182447 0.00132555i
\(928\) 0 0
\(929\) 237.583 731.206i 0.255741 0.787090i −0.737942 0.674864i \(-0.764202\pi\)
0.993683 0.112225i \(-0.0357978\pi\)
\(930\) 0 0
\(931\) 435.685 + 599.669i 0.467975 + 0.644113i
\(932\) 0 0
\(933\) 820.951 + 2526.63i 0.879905 + 2.70807i
\(934\) 0 0
\(935\) 7.09698 7.87027i 0.00759036 0.00841741i
\(936\) 0 0
\(937\) 923.916 300.199i 0.986037 0.320383i 0.228764 0.973482i \(-0.426531\pi\)
0.757272 + 0.653099i \(0.226531\pi\)
\(938\) 0 0
\(939\) −1229.45 + 893.250i −1.30932 + 0.951278i
\(940\) 0 0
\(941\) 292.660 + 95.0911i 0.311010 + 0.101053i 0.460363 0.887731i \(-0.347719\pi\)
−0.149353 + 0.988784i \(0.547719\pi\)
\(942\) 0 0
\(943\) −518.885 + 714.184i −0.550249 + 0.757353i
\(944\) 0 0
\(945\) 927.786i 0.981784i
\(946\) 0 0
\(947\) −606.076 −0.639996 −0.319998 0.947418i \(-0.603682\pi\)
−0.319998 + 0.947418i \(0.603682\pi\)
\(948\) 0 0
\(949\) 139.813 + 101.580i 0.147326 + 0.107039i
\(950\) 0 0
\(951\) 719.455 2214.26i 0.756525 2.32835i
\(952\) 0 0
\(953\) −654.017 900.178i −0.686272 0.944573i 0.313716 0.949517i \(-0.398426\pi\)
−0.999988 + 0.00494435i \(0.998426\pi\)
\(954\) 0 0
\(955\) −181.206 557.694i −0.189744 0.583973i
\(956\) 0 0
\(957\) 364.517 3443.62i 0.380895 3.59835i
\(958\) 0 0
\(959\) 559.972 181.946i 0.583913 0.189725i
\(960\) 0 0
\(961\) 648.012 470.808i 0.674310 0.489915i
\(962\) 0 0
\(963\) −1541.49 500.859i −1.60071 0.520103i
\(964\) 0 0
\(965\) 99.1369 136.450i 0.102733 0.141399i
\(966\) 0 0
\(967\) 669.469i 0.692316i −0.938176 0.346158i \(-0.887486\pi\)
0.938176 0.346158i \(-0.112514\pi\)
\(968\) 0 0
\(969\) −64.1429 −0.0661950
\(970\) 0 0
\(971\) −116.931 84.9556i −0.120424 0.0874929i 0.525943 0.850520i \(-0.323712\pi\)
−0.646367 + 0.763027i \(0.723712\pi\)
\(972\) 0 0
\(973\) −198.634 + 611.333i −0.204146 + 0.628297i
\(974\) 0 0
\(975\) −177.300 244.032i −0.181846 0.250290i
\(976\) 0 0
\(977\) −436.988 1344.91i −0.447276 1.37657i −0.879969 0.475032i \(-0.842437\pi\)
0.432693 0.901541i \(-0.357563\pi\)
\(978\) 0 0
\(979\) −332.704 35.2177i −0.339841 0.0359731i
\(980\) 0 0
\(981\) 325.174 105.655i 0.331472 0.107702i
\(982\) 0 0
\(983\) −524.533 + 381.095i −0.533604 + 0.387686i −0.821704 0.569914i \(-0.806976\pi\)
0.288100 + 0.957600i \(0.406976\pi\)
\(984\) 0 0
\(985\) 64.4812 + 20.9512i 0.0654631 + 0.0212703i
\(986\) 0 0
\(987\) 648.723 892.891i 0.657268 0.904652i
\(988\) 0 0
\(989\) 1782.97i 1.80280i
\(990\) 0 0
\(991\) −1885.73 −1.90285 −0.951425 0.307879i \(-0.900381\pi\)
−0.951425 + 0.307879i \(0.900381\pi\)
\(992\) 0 0
\(993\) 1180.90 + 857.974i 1.18922 + 0.864022i
\(994\) 0 0
\(995\) −166.583 + 512.689i −0.167420 + 0.515265i
\(996\) 0 0
\(997\) 698.097 + 960.848i 0.700198 + 0.963740i 0.999953 + 0.00972333i \(0.00309508\pi\)
−0.299755 + 0.954016i \(0.596905\pi\)
\(998\) 0 0
\(999\) −119.725 368.474i −0.119844 0.368843i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 220.3.p.b.61.4 16
11.2 odd 10 inner 220.3.p.b.101.4 yes 16
11.3 even 5 2420.3.f.a.241.2 16
11.8 odd 10 2420.3.f.a.241.1 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
220.3.p.b.61.4 16 1.1 even 1 trivial
220.3.p.b.101.4 yes 16 11.2 odd 10 inner
2420.3.f.a.241.1 16 11.8 odd 10
2420.3.f.a.241.2 16 11.3 even 5