Properties

Label 220.3.q.a.29.3
Level $220$
Weight $3$
Character 220.29
Analytic conductor $5.995$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [220,3,Mod(29,220)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(220, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 5, 7]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("220.29");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 220 = 2^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 220.q (of order \(10\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.99456581593\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(12\) over \(\Q(\zeta_{10})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 29.3
Character \(\chi\) \(=\) 220.29
Dual form 220.3.q.a.129.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-3.83667 - 1.24661i) q^{3} +(-4.92332 + 0.872318i) q^{5} +(-0.101776 - 0.313235i) q^{7} +(5.88485 + 4.27559i) q^{9} +(7.92623 + 7.62725i) q^{11} +(-5.19406 - 3.77371i) q^{13} +(19.9766 + 2.79066i) q^{15} +(18.3110 - 13.3037i) q^{17} +(26.2028 + 8.51380i) q^{19} +1.32865i q^{21} +26.5778i q^{23} +(23.4781 - 8.58940i) q^{25} +(4.09250 + 5.63285i) q^{27} +(-0.693449 + 0.225315i) q^{29} +(-7.02505 - 5.10400i) q^{31} +(-20.9021 - 39.1441i) q^{33} +(0.774317 + 1.45337i) q^{35} +(-2.92359 + 0.949933i) q^{37} +(15.2236 + 20.9534i) q^{39} +(27.5889 + 8.96419i) q^{41} -53.5197 q^{43} +(-32.7027 - 15.9166i) q^{45} +(62.5341 + 20.3186i) q^{47} +(39.5541 - 28.7377i) q^{49} +(-86.8376 + 28.2152i) q^{51} +(-40.5229 + 55.7749i) q^{53} +(-45.6767 - 30.6372i) q^{55} +(-89.9181 - 65.3293i) q^{57} +(17.7615 + 54.6642i) q^{59} +(-47.9102 - 65.9427i) q^{61} +(0.740328 - 2.27849i) q^{63} +(28.8639 + 14.0483i) q^{65} +65.6000i q^{67} +(33.1321 - 101.970i) q^{69} +(-24.8061 + 18.0227i) q^{71} +(12.8287 + 39.4826i) q^{73} +(-100.785 + 3.68662i) q^{75} +(1.58242 - 3.25904i) q^{77} +(41.8643 - 57.6213i) q^{79} +(-28.9099 - 88.9756i) q^{81} +(90.6212 - 65.8402i) q^{83} +(-78.5456 + 81.4713i) q^{85} +2.94141 q^{87} +76.2467 q^{89} +(-0.653425 + 2.01104i) q^{91} +(20.5901 + 28.3399i) q^{93} +(-136.431 - 19.0590i) q^{95} +(-31.4114 + 43.2341i) q^{97} +(14.0337 + 78.7745i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 5 q^{5} + 20 q^{9} - 23 q^{15} - 7 q^{25} - 74 q^{31} + 155 q^{35} + 80 q^{39} - 20 q^{41} + 12 q^{45} + 102 q^{49} + 220 q^{51} - 69 q^{55} + 40 q^{59} - 290 q^{61} - 234 q^{69} - 406 q^{71} + 153 q^{75}+ \cdots - 382 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/220\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(111\) \(177\)
\(\chi(n)\) \(e\left(\frac{7}{10}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −3.83667 1.24661i −1.27889 0.415537i −0.410701 0.911770i \(-0.634716\pi\)
−0.868189 + 0.496234i \(0.834716\pi\)
\(4\) 0 0
\(5\) −4.92332 + 0.872318i −0.984664 + 0.174464i
\(6\) 0 0
\(7\) −0.101776 0.313235i −0.0145395 0.0447479i 0.943524 0.331305i \(-0.107489\pi\)
−0.958063 + 0.286558i \(0.907489\pi\)
\(8\) 0 0
\(9\) 5.88485 + 4.27559i 0.653872 + 0.475066i
\(10\) 0 0
\(11\) 7.92623 + 7.62725i 0.720566 + 0.693386i
\(12\) 0 0
\(13\) −5.19406 3.77371i −0.399543 0.290285i 0.369812 0.929107i \(-0.379422\pi\)
−0.769355 + 0.638822i \(0.779422\pi\)
\(14\) 0 0
\(15\) 19.9766 + 2.79066i 1.33177 + 0.186044i
\(16\) 0 0
\(17\) 18.3110 13.3037i 1.07712 0.782570i 0.0999374 0.994994i \(-0.468136\pi\)
0.977178 + 0.212424i \(0.0681358\pi\)
\(18\) 0 0
\(19\) 26.2028 + 8.51380i 1.37909 + 0.448095i 0.902372 0.430959i \(-0.141825\pi\)
0.476723 + 0.879054i \(0.341825\pi\)
\(20\) 0 0
\(21\) 1.32865i 0.0632693i
\(22\) 0 0
\(23\) 26.5778i 1.15556i 0.816194 + 0.577778i \(0.196080\pi\)
−0.816194 + 0.577778i \(0.803920\pi\)
\(24\) 0 0
\(25\) 23.4781 8.58940i 0.939125 0.343576i
\(26\) 0 0
\(27\) 4.09250 + 5.63285i 0.151574 + 0.208624i
\(28\) 0 0
\(29\) −0.693449 + 0.225315i −0.0239120 + 0.00776949i −0.320949 0.947097i \(-0.604002\pi\)
0.297037 + 0.954866i \(0.404002\pi\)
\(30\) 0 0
\(31\) −7.02505 5.10400i −0.226615 0.164645i 0.468685 0.883366i \(-0.344728\pi\)
−0.695299 + 0.718720i \(0.744728\pi\)
\(32\) 0 0
\(33\) −20.9021 39.1441i −0.633398 1.18619i
\(34\) 0 0
\(35\) 0.774317 + 1.45337i 0.0221233 + 0.0415250i
\(36\) 0 0
\(37\) −2.92359 + 0.949933i −0.0790160 + 0.0256739i −0.348258 0.937399i \(-0.613227\pi\)
0.269242 + 0.963072i \(0.413227\pi\)
\(38\) 0 0
\(39\) 15.2236 + 20.9534i 0.390348 + 0.537268i
\(40\) 0 0
\(41\) 27.5889 + 8.96419i 0.672901 + 0.218639i 0.625485 0.780236i \(-0.284901\pi\)
0.0474164 + 0.998875i \(0.484901\pi\)
\(42\) 0 0
\(43\) −53.5197 −1.24464 −0.622322 0.782761i \(-0.713811\pi\)
−0.622322 + 0.782761i \(0.713811\pi\)
\(44\) 0 0
\(45\) −32.7027 15.9166i −0.726726 0.353703i
\(46\) 0 0
\(47\) 62.5341 + 20.3186i 1.33051 + 0.432310i 0.886093 0.463508i \(-0.153410\pi\)
0.444421 + 0.895818i \(0.353410\pi\)
\(48\) 0 0
\(49\) 39.5541 28.7377i 0.807226 0.586484i
\(50\) 0 0
\(51\) −86.8376 + 28.2152i −1.70270 + 0.553240i
\(52\) 0 0
\(53\) −40.5229 + 55.7749i −0.764582 + 1.05236i 0.232237 + 0.972659i \(0.425396\pi\)
−0.996819 + 0.0796979i \(0.974604\pi\)
\(54\) 0 0
\(55\) −45.6767 30.6372i −0.830486 0.557040i
\(56\) 0 0
\(57\) −89.9181 65.3293i −1.57751 1.14613i
\(58\) 0 0
\(59\) 17.7615 + 54.6642i 0.301042 + 0.926512i 0.981125 + 0.193377i \(0.0619440\pi\)
−0.680082 + 0.733136i \(0.738056\pi\)
\(60\) 0 0
\(61\) −47.9102 65.9427i −0.785413 1.08103i −0.994664 0.103166i \(-0.967103\pi\)
0.209252 0.977862i \(-0.432897\pi\)
\(62\) 0 0
\(63\) 0.740328 2.27849i 0.0117512 0.0361666i
\(64\) 0 0
\(65\) 28.8639 + 14.0483i 0.444060 + 0.216128i
\(66\) 0 0
\(67\) 65.6000i 0.979104i 0.871974 + 0.489552i \(0.162840\pi\)
−0.871974 + 0.489552i \(0.837160\pi\)
\(68\) 0 0
\(69\) 33.1321 101.970i 0.480176 1.47783i
\(70\) 0 0
\(71\) −24.8061 + 18.0227i −0.349382 + 0.253841i −0.748610 0.663011i \(-0.769278\pi\)
0.399228 + 0.916852i \(0.369278\pi\)
\(72\) 0 0
\(73\) 12.8287 + 39.4826i 0.175735 + 0.540858i 0.999666 0.0258323i \(-0.00822361\pi\)
−0.823931 + 0.566690i \(0.808224\pi\)
\(74\) 0 0
\(75\) −100.785 + 3.68662i −1.34381 + 0.0491550i
\(76\) 0 0
\(77\) 1.58242 3.25904i 0.0205509 0.0423253i
\(78\) 0 0
\(79\) 41.8643 57.6213i 0.529928 0.729384i −0.457191 0.889368i \(-0.651144\pi\)
0.987120 + 0.159985i \(0.0511445\pi\)
\(80\) 0 0
\(81\) −28.9099 88.9756i −0.356913 1.09846i
\(82\) 0 0
\(83\) 90.6212 65.8402i 1.09182 0.793255i 0.112116 0.993695i \(-0.464237\pi\)
0.979706 + 0.200440i \(0.0642371\pi\)
\(84\) 0 0
\(85\) −78.5456 + 81.4713i −0.924066 + 0.958485i
\(86\) 0 0
\(87\) 2.94141 0.0338094
\(88\) 0 0
\(89\) 76.2467 0.856704 0.428352 0.903612i \(-0.359094\pi\)
0.428352 + 0.903612i \(0.359094\pi\)
\(90\) 0 0
\(91\) −0.653425 + 2.01104i −0.00718050 + 0.0220993i
\(92\) 0 0
\(93\) 20.5901 + 28.3399i 0.221399 + 0.304730i
\(94\) 0 0
\(95\) −136.431 19.0590i −1.43612 0.200621i
\(96\) 0 0
\(97\) −31.4114 + 43.2341i −0.323829 + 0.445713i −0.939632 0.342188i \(-0.888832\pi\)
0.615802 + 0.787901i \(0.288832\pi\)
\(98\) 0 0
\(99\) 14.0337 + 78.7745i 0.141754 + 0.795702i
\(100\) 0 0
\(101\) 46.3016 63.7287i 0.458432 0.630977i −0.515751 0.856739i \(-0.672487\pi\)
0.974183 + 0.225761i \(0.0724870\pi\)
\(102\) 0 0
\(103\) 142.507 46.3033i 1.38356 0.449546i 0.479723 0.877420i \(-0.340737\pi\)
0.903838 + 0.427874i \(0.140737\pi\)
\(104\) 0 0
\(105\) −1.15901 6.54139i −0.0110382 0.0622989i
\(106\) 0 0
\(107\) −22.4926 + 69.2252i −0.210212 + 0.646965i 0.789247 + 0.614075i \(0.210471\pi\)
−0.999459 + 0.0328895i \(0.989529\pi\)
\(108\) 0 0
\(109\) 71.8548i 0.659218i 0.944117 + 0.329609i \(0.106917\pi\)
−0.944117 + 0.329609i \(0.893083\pi\)
\(110\) 0 0
\(111\) 12.4011 0.111721
\(112\) 0 0
\(113\) 98.3423 + 31.9533i 0.870286 + 0.282773i 0.709918 0.704284i \(-0.248732\pi\)
0.160368 + 0.987057i \(0.448732\pi\)
\(114\) 0 0
\(115\) −23.1843 130.851i −0.201602 1.13783i
\(116\) 0 0
\(117\) −14.4314 44.4154i −0.123346 0.379619i
\(118\) 0 0
\(119\) −6.03080 4.38163i −0.0506790 0.0368204i
\(120\) 0 0
\(121\) 4.65019 + 120.911i 0.0384313 + 0.999261i
\(122\) 0 0
\(123\) −94.6748 68.7853i −0.769714 0.559230i
\(124\) 0 0
\(125\) −108.098 + 62.7687i −0.864781 + 0.502150i
\(126\) 0 0
\(127\) 105.663 76.7688i 0.831994 0.604479i −0.0881289 0.996109i \(-0.528089\pi\)
0.920123 + 0.391630i \(0.128089\pi\)
\(128\) 0 0
\(129\) 205.337 + 66.7182i 1.59176 + 0.517195i
\(130\) 0 0
\(131\) 225.296i 1.71982i 0.510447 + 0.859909i \(0.329480\pi\)
−0.510447 + 0.859909i \(0.670520\pi\)
\(132\) 0 0
\(133\) 9.07413i 0.0682266i
\(134\) 0 0
\(135\) −25.0623 24.1623i −0.185647 0.178980i
\(136\) 0 0
\(137\) −64.1439 88.2865i −0.468203 0.644427i 0.507981 0.861368i \(-0.330392\pi\)
−0.976185 + 0.216941i \(0.930392\pi\)
\(138\) 0 0
\(139\) 8.20353 2.66549i 0.0590182 0.0191762i −0.279359 0.960187i \(-0.590122\pi\)
0.338377 + 0.941011i \(0.390122\pi\)
\(140\) 0 0
\(141\) −214.593 155.911i −1.52194 1.10575i
\(142\) 0 0
\(143\) −12.3863 69.5277i −0.0866177 0.486207i
\(144\) 0 0
\(145\) 3.21752 1.71421i 0.0221898 0.0118221i
\(146\) 0 0
\(147\) −187.581 + 60.9487i −1.27606 + 0.414617i
\(148\) 0 0
\(149\) 157.379 + 216.614i 1.05624 + 1.45378i 0.883275 + 0.468856i \(0.155334\pi\)
0.172962 + 0.984929i \(0.444666\pi\)
\(150\) 0 0
\(151\) 16.2876 + 5.29217i 0.107865 + 0.0350475i 0.362452 0.932002i \(-0.381940\pi\)
−0.254587 + 0.967050i \(0.581940\pi\)
\(152\) 0 0
\(153\) 164.638 1.07607
\(154\) 0 0
\(155\) 39.0389 + 19.0005i 0.251864 + 0.122584i
\(156\) 0 0
\(157\) −100.632 32.6973i −0.640967 0.208263i −0.0295401 0.999564i \(-0.509404\pi\)
−0.611427 + 0.791301i \(0.709404\pi\)
\(158\) 0 0
\(159\) 225.002 163.474i 1.41511 1.02814i
\(160\) 0 0
\(161\) 8.32509 2.70499i 0.0517087 0.0168012i
\(162\) 0 0
\(163\) 4.55107 6.26402i 0.0279207 0.0384295i −0.794828 0.606834i \(-0.792439\pi\)
0.822749 + 0.568405i \(0.192439\pi\)
\(164\) 0 0
\(165\) 137.054 + 174.486i 0.830630 + 1.05749i
\(166\) 0 0
\(167\) 178.324 + 129.560i 1.06781 + 0.775810i 0.975517 0.219922i \(-0.0705804\pi\)
0.0922930 + 0.995732i \(0.470580\pi\)
\(168\) 0 0
\(169\) −39.4865 121.527i −0.233648 0.719094i
\(170\) 0 0
\(171\) 117.798 + 162.135i 0.688877 + 0.948157i
\(172\) 0 0
\(173\) 72.6938 223.728i 0.420195 1.29323i −0.487326 0.873220i \(-0.662028\pi\)
0.907521 0.420007i \(-0.137972\pi\)
\(174\) 0 0
\(175\) −5.08001 6.47997i −0.0290287 0.0370284i
\(176\) 0 0
\(177\) 231.870i 1.31000i
\(178\) 0 0
\(179\) −8.11479 + 24.9748i −0.0453340 + 0.139524i −0.971161 0.238423i \(-0.923370\pi\)
0.925827 + 0.377946i \(0.123370\pi\)
\(180\) 0 0
\(181\) 33.1864 24.1113i 0.183350 0.133212i −0.492324 0.870412i \(-0.663853\pi\)
0.675674 + 0.737200i \(0.263853\pi\)
\(182\) 0 0
\(183\) 101.611 + 312.726i 0.555250 + 1.70888i
\(184\) 0 0
\(185\) 13.5651 7.22712i 0.0733250 0.0390655i
\(186\) 0 0
\(187\) 246.607 + 34.2141i 1.31876 + 0.182963i
\(188\) 0 0
\(189\) 1.34789 1.85520i 0.00713167 0.00981590i
\(190\) 0 0
\(191\) 47.4961 + 146.178i 0.248671 + 0.765330i 0.995011 + 0.0997652i \(0.0318092\pi\)
−0.746340 + 0.665565i \(0.768191\pi\)
\(192\) 0 0
\(193\) −191.005 + 138.774i −0.989666 + 0.719034i −0.959848 0.280521i \(-0.909493\pi\)
−0.0298179 + 0.999555i \(0.509493\pi\)
\(194\) 0 0
\(195\) −93.2285 89.8807i −0.478095 0.460926i
\(196\) 0 0
\(197\) 193.400 0.981725 0.490863 0.871237i \(-0.336682\pi\)
0.490863 + 0.871237i \(0.336682\pi\)
\(198\) 0 0
\(199\) −145.484 −0.731077 −0.365538 0.930796i \(-0.619115\pi\)
−0.365538 + 0.930796i \(0.619115\pi\)
\(200\) 0 0
\(201\) 81.7775 251.685i 0.406853 1.25217i
\(202\) 0 0
\(203\) 0.141153 + 0.194281i 0.000695336 + 0.000957048i
\(204\) 0 0
\(205\) −143.649 20.0672i −0.700726 0.0978890i
\(206\) 0 0
\(207\) −113.636 + 156.406i −0.548965 + 0.755586i
\(208\) 0 0
\(209\) 142.752 + 267.337i 0.683026 + 1.27913i
\(210\) 0 0
\(211\) 148.470 204.352i 0.703651 0.968493i −0.296259 0.955108i \(-0.595739\pi\)
0.999910 0.0133852i \(-0.00426077\pi\)
\(212\) 0 0
\(213\) 117.640 38.2236i 0.552301 0.179453i
\(214\) 0 0
\(215\) 263.495 46.6862i 1.22556 0.217145i
\(216\) 0 0
\(217\) −0.883768 + 2.71996i −0.00407266 + 0.0125344i
\(218\) 0 0
\(219\) 167.474i 0.764722i
\(220\) 0 0
\(221\) −145.312 −0.657522
\(222\) 0 0
\(223\) −379.770 123.395i −1.70300 0.553339i −0.713860 0.700289i \(-0.753055\pi\)
−0.989144 + 0.146949i \(0.953055\pi\)
\(224\) 0 0
\(225\) 174.890 + 49.8356i 0.777289 + 0.221492i
\(226\) 0 0
\(227\) 3.96727 + 12.2100i 0.0174770 + 0.0537886i 0.959415 0.281999i \(-0.0909975\pi\)
−0.941938 + 0.335788i \(0.890998\pi\)
\(228\) 0 0
\(229\) −314.493 228.492i −1.37333 0.997783i −0.997469 0.0711075i \(-0.977347\pi\)
−0.375862 0.926676i \(-0.622653\pi\)
\(230\) 0 0
\(231\) −10.1340 + 10.5312i −0.0438700 + 0.0455897i
\(232\) 0 0
\(233\) −319.338 232.012i −1.37055 0.995761i −0.997694 0.0678710i \(-0.978379\pi\)
−0.372854 0.927890i \(-0.621621\pi\)
\(234\) 0 0
\(235\) −325.600 45.4851i −1.38553 0.193554i
\(236\) 0 0
\(237\) −232.451 + 168.886i −0.980806 + 0.712597i
\(238\) 0 0
\(239\) −249.429 81.0444i −1.04364 0.339098i −0.263468 0.964668i \(-0.584866\pi\)
−0.780168 + 0.625570i \(0.784866\pi\)
\(240\) 0 0
\(241\) 153.597i 0.637334i 0.947867 + 0.318667i \(0.103235\pi\)
−0.947867 + 0.318667i \(0.896765\pi\)
\(242\) 0 0
\(243\) 314.746i 1.29525i
\(244\) 0 0
\(245\) −169.669 + 175.989i −0.692526 + 0.718321i
\(246\) 0 0
\(247\) −103.970 143.103i −0.420932 0.579364i
\(248\) 0 0
\(249\) −429.761 + 139.638i −1.72595 + 0.560794i
\(250\) 0 0
\(251\) −299.713 217.754i −1.19408 0.867546i −0.200386 0.979717i \(-0.564220\pi\)
−0.993689 + 0.112171i \(0.964220\pi\)
\(252\) 0 0
\(253\) −202.715 + 210.662i −0.801247 + 0.832655i
\(254\) 0 0
\(255\) 402.916 214.663i 1.58006 0.841814i
\(256\) 0 0
\(257\) 262.422 85.2662i 1.02110 0.331775i 0.249833 0.968289i \(-0.419624\pi\)
0.771265 + 0.636514i \(0.219624\pi\)
\(258\) 0 0
\(259\) 0.595104 + 0.819091i 0.00229770 + 0.00316251i
\(260\) 0 0
\(261\) −5.04420 1.63896i −0.0193264 0.00627954i
\(262\) 0 0
\(263\) −507.646 −1.93021 −0.965106 0.261861i \(-0.915664\pi\)
−0.965106 + 0.261861i \(0.915664\pi\)
\(264\) 0 0
\(265\) 150.853 309.947i 0.569258 1.16961i
\(266\) 0 0
\(267\) −292.533 95.0498i −1.09563 0.355992i
\(268\) 0 0
\(269\) −179.547 + 130.448i −0.667460 + 0.484938i −0.869174 0.494507i \(-0.835349\pi\)
0.201714 + 0.979444i \(0.435349\pi\)
\(270\) 0 0
\(271\) −19.1301 + 6.21576i −0.0705910 + 0.0229364i −0.344100 0.938933i \(-0.611816\pi\)
0.273509 + 0.961870i \(0.411816\pi\)
\(272\) 0 0
\(273\) 5.01395 6.90112i 0.0183661 0.0252788i
\(274\) 0 0
\(275\) 251.606 + 110.992i 0.914932 + 0.403607i
\(276\) 0 0
\(277\) 134.590 + 97.7857i 0.485886 + 0.353017i 0.803600 0.595170i \(-0.202915\pi\)
−0.317714 + 0.948187i \(0.602915\pi\)
\(278\) 0 0
\(279\) −19.5188 60.0725i −0.0699597 0.215314i
\(280\) 0 0
\(281\) −10.1298 13.9425i −0.0360491 0.0496173i 0.790612 0.612317i \(-0.209763\pi\)
−0.826661 + 0.562700i \(0.809763\pi\)
\(282\) 0 0
\(283\) 146.754 451.661i 0.518564 1.59598i −0.258137 0.966108i \(-0.583109\pi\)
0.776702 0.629869i \(-0.216891\pi\)
\(284\) 0 0
\(285\) 499.683 + 243.200i 1.75327 + 0.853333i
\(286\) 0 0
\(287\) 9.55417i 0.0332898i
\(288\) 0 0
\(289\) 68.9971 212.351i 0.238744 0.734779i
\(290\) 0 0
\(291\) 174.411 126.717i 0.599352 0.435455i
\(292\) 0 0
\(293\) 167.468 + 515.412i 0.571562 + 1.75909i 0.647599 + 0.761981i \(0.275773\pi\)
−0.0760375 + 0.997105i \(0.524227\pi\)
\(294\) 0 0
\(295\) −135.130 253.636i −0.458068 0.859782i
\(296\) 0 0
\(297\) −10.5250 + 75.8617i −0.0354377 + 0.255427i
\(298\) 0 0
\(299\) 100.297 138.047i 0.335441 0.461695i
\(300\) 0 0
\(301\) 5.44703 + 16.7642i 0.0180965 + 0.0556952i
\(302\) 0 0
\(303\) −257.089 + 186.786i −0.848478 + 0.616455i
\(304\) 0 0
\(305\) 293.400 + 282.864i 0.961967 + 0.927423i
\(306\) 0 0
\(307\) 197.533 0.643429 0.321715 0.946837i \(-0.395741\pi\)
0.321715 + 0.946837i \(0.395741\pi\)
\(308\) 0 0
\(309\) −604.474 −1.95623
\(310\) 0 0
\(311\) −144.391 + 444.389i −0.464278 + 1.42890i 0.395609 + 0.918419i \(0.370533\pi\)
−0.859888 + 0.510483i \(0.829467\pi\)
\(312\) 0 0
\(313\) 27.3209 + 37.6040i 0.0872873 + 0.120141i 0.850427 0.526092i \(-0.176343\pi\)
−0.763140 + 0.646233i \(0.776343\pi\)
\(314\) 0 0
\(315\) −1.65730 + 11.8636i −0.00526126 + 0.0376621i
\(316\) 0 0
\(317\) 45.5360 62.6749i 0.143647 0.197713i −0.731131 0.682237i \(-0.761007\pi\)
0.874778 + 0.484524i \(0.161007\pi\)
\(318\) 0 0
\(319\) −7.21497 3.50321i −0.0226175 0.0109818i
\(320\) 0 0
\(321\) 172.594 237.555i 0.537675 0.740046i
\(322\) 0 0
\(323\) 593.063 192.698i 1.83611 0.596588i
\(324\) 0 0
\(325\) −154.361 43.9857i −0.474956 0.135341i
\(326\) 0 0
\(327\) 89.5749 275.683i 0.273929 0.843068i
\(328\) 0 0
\(329\) 21.6558i 0.0658232i
\(330\) 0 0
\(331\) 372.688 1.12594 0.562972 0.826476i \(-0.309658\pi\)
0.562972 + 0.826476i \(0.309658\pi\)
\(332\) 0 0
\(333\) −21.2664 6.90988i −0.0638632 0.0207504i
\(334\) 0 0
\(335\) −57.2240 322.969i −0.170818 0.964088i
\(336\) 0 0
\(337\) 173.727 + 534.677i 0.515510 + 1.58658i 0.782352 + 0.622837i \(0.214020\pi\)
−0.266841 + 0.963740i \(0.585980\pi\)
\(338\) 0 0
\(339\) −337.474 245.189i −0.995497 0.723271i
\(340\) 0 0
\(341\) −16.7527 94.0373i −0.0491282 0.275769i
\(342\) 0 0
\(343\) −26.0835 18.9508i −0.0760453 0.0552502i
\(344\) 0 0
\(345\) −74.1696 + 530.934i −0.214984 + 1.53894i
\(346\) 0 0
\(347\) 156.720 113.864i 0.451644 0.328139i −0.338600 0.940930i \(-0.609953\pi\)
0.790245 + 0.612792i \(0.209953\pi\)
\(348\) 0 0
\(349\) 246.547 + 80.1081i 0.706440 + 0.229536i 0.640134 0.768263i \(-0.278879\pi\)
0.0663055 + 0.997799i \(0.478879\pi\)
\(350\) 0 0
\(351\) 44.7013i 0.127354i
\(352\) 0 0
\(353\) 313.093i 0.886949i 0.896287 + 0.443475i \(0.146254\pi\)
−0.896287 + 0.443475i \(0.853746\pi\)
\(354\) 0 0
\(355\) 106.407 110.370i 0.299738 0.310902i
\(356\) 0 0
\(357\) 17.6760 + 24.3289i 0.0495126 + 0.0681483i
\(358\) 0 0
\(359\) 118.727 38.5767i 0.330716 0.107456i −0.138953 0.990299i \(-0.544374\pi\)
0.469668 + 0.882843i \(0.344374\pi\)
\(360\) 0 0
\(361\) 322.046 + 233.980i 0.892095 + 0.648145i
\(362\) 0 0
\(363\) 132.887 469.691i 0.366080 1.29391i
\(364\) 0 0
\(365\) −97.6011 183.195i −0.267400 0.501904i
\(366\) 0 0
\(367\) −417.755 + 135.737i −1.13830 + 0.369855i −0.816723 0.577030i \(-0.804212\pi\)
−0.321574 + 0.946885i \(0.604212\pi\)
\(368\) 0 0
\(369\) 124.030 + 170.712i 0.336124 + 0.462634i
\(370\) 0 0
\(371\) 21.5949 + 7.01662i 0.0582073 + 0.0189127i
\(372\) 0 0
\(373\) −29.9460 −0.0802841 −0.0401420 0.999194i \(-0.512781\pi\)
−0.0401420 + 0.999194i \(0.512781\pi\)
\(374\) 0 0
\(375\) 492.983 106.067i 1.31462 0.282846i
\(376\) 0 0
\(377\) 4.45209 + 1.44657i 0.0118093 + 0.00383706i
\(378\) 0 0
\(379\) −175.405 + 127.439i −0.462810 + 0.336251i −0.794632 0.607091i \(-0.792336\pi\)
0.331823 + 0.943342i \(0.392336\pi\)
\(380\) 0 0
\(381\) −501.096 + 162.816i −1.31521 + 0.427338i
\(382\) 0 0
\(383\) 43.5625 59.9586i 0.113740 0.156550i −0.748351 0.663303i \(-0.769154\pi\)
0.862091 + 0.506753i \(0.169154\pi\)
\(384\) 0 0
\(385\) −4.94783 + 17.4257i −0.0128515 + 0.0452615i
\(386\) 0 0
\(387\) −314.955 228.828i −0.813838 0.591288i
\(388\) 0 0
\(389\) 13.4884 + 41.5130i 0.0346745 + 0.106717i 0.966896 0.255172i \(-0.0821320\pi\)
−0.932221 + 0.361889i \(0.882132\pi\)
\(390\) 0 0
\(391\) 353.583 + 486.665i 0.904303 + 1.24467i
\(392\) 0 0
\(393\) 280.856 864.387i 0.714647 2.19946i
\(394\) 0 0
\(395\) −155.847 + 320.207i −0.394550 + 0.810651i
\(396\) 0 0
\(397\) 349.486i 0.880317i −0.897920 0.440158i \(-0.854922\pi\)
0.897920 0.440158i \(-0.145078\pi\)
\(398\) 0 0
\(399\) −11.3119 + 34.8145i −0.0283506 + 0.0872543i
\(400\) 0 0
\(401\) 374.461 272.062i 0.933818 0.678459i −0.0131064 0.999914i \(-0.504172\pi\)
0.946925 + 0.321455i \(0.104172\pi\)
\(402\) 0 0
\(403\) 17.2276 + 53.0210i 0.0427483 + 0.131566i
\(404\) 0 0
\(405\) 219.948 + 412.837i 0.543081 + 1.01935i
\(406\) 0 0
\(407\) −30.4184 14.7696i −0.0747382 0.0362889i
\(408\) 0 0
\(409\) −401.816 + 553.052i −0.982435 + 1.35221i −0.0469278 + 0.998898i \(0.514943\pi\)
−0.935507 + 0.353308i \(0.885057\pi\)
\(410\) 0 0
\(411\) 136.040 + 418.688i 0.330998 + 1.01871i
\(412\) 0 0
\(413\) 15.3151 11.1270i 0.0370825 0.0269420i
\(414\) 0 0
\(415\) −388.724 + 403.203i −0.936683 + 0.971573i
\(416\) 0 0
\(417\) −34.7971 −0.0834462
\(418\) 0 0
\(419\) −707.515 −1.68858 −0.844290 0.535887i \(-0.819977\pi\)
−0.844290 + 0.535887i \(0.819977\pi\)
\(420\) 0 0
\(421\) 75.3508 231.906i 0.178980 0.550845i −0.820812 0.571198i \(-0.806479\pi\)
0.999793 + 0.0203526i \(0.00647888\pi\)
\(422\) 0 0
\(423\) 281.130 + 386.942i 0.664610 + 0.914757i
\(424\) 0 0
\(425\) 315.636 469.626i 0.742673 1.10500i
\(426\) 0 0
\(427\) −15.7794 + 21.7185i −0.0369542 + 0.0508631i
\(428\) 0 0
\(429\) −39.1516 + 282.196i −0.0912625 + 0.657799i
\(430\) 0 0
\(431\) 127.709 175.777i 0.296309 0.407834i −0.634742 0.772724i \(-0.718893\pi\)
0.931051 + 0.364890i \(0.118893\pi\)
\(432\) 0 0
\(433\) 781.028 253.771i 1.80376 0.586077i 0.803799 0.594901i \(-0.202809\pi\)
0.999961 + 0.00882412i \(0.00280884\pi\)
\(434\) 0 0
\(435\) −14.4815 + 2.56585i −0.0332908 + 0.00589850i
\(436\) 0 0
\(437\) −226.278 + 696.412i −0.517799 + 1.59362i
\(438\) 0 0
\(439\) 148.110i 0.337381i −0.985669 0.168690i \(-0.946046\pi\)
0.985669 0.168690i \(-0.0539538\pi\)
\(440\) 0 0
\(441\) 355.641 0.806441
\(442\) 0 0
\(443\) 445.670 + 144.807i 1.00603 + 0.326878i 0.765271 0.643708i \(-0.222605\pi\)
0.240756 + 0.970586i \(0.422605\pi\)
\(444\) 0 0
\(445\) −375.387 + 66.5113i −0.843565 + 0.149464i
\(446\) 0 0
\(447\) −333.779 1027.27i −0.746710 2.29814i
\(448\) 0 0
\(449\) 29.1101 + 21.1497i 0.0648332 + 0.0471041i 0.619730 0.784815i \(-0.287242\pi\)
−0.554897 + 0.831919i \(0.687242\pi\)
\(450\) 0 0
\(451\) 150.304 + 281.480i 0.333269 + 0.624124i
\(452\) 0 0
\(453\) −55.8929 40.6086i −0.123384 0.0896437i
\(454\) 0 0
\(455\) 1.46276 10.4710i 0.00321485 0.0230131i
\(456\) 0 0
\(457\) 348.643 253.304i 0.762895 0.554276i −0.136902 0.990585i \(-0.543714\pi\)
0.899797 + 0.436309i \(0.143714\pi\)
\(458\) 0 0
\(459\) 149.875 + 48.6974i 0.326526 + 0.106095i
\(460\) 0 0
\(461\) 575.058i 1.24742i −0.781658 0.623708i \(-0.785626\pi\)
0.781658 0.623708i \(-0.214374\pi\)
\(462\) 0 0
\(463\) 597.953i 1.29148i 0.763559 + 0.645738i \(0.223450\pi\)
−0.763559 + 0.645738i \(0.776550\pi\)
\(464\) 0 0
\(465\) −126.093 121.565i −0.271168 0.261430i
\(466\) 0 0
\(467\) 144.452 + 198.821i 0.309319 + 0.425742i 0.935169 0.354202i \(-0.115248\pi\)
−0.625849 + 0.779944i \(0.715248\pi\)
\(468\) 0 0
\(469\) 20.5482 6.67652i 0.0438128 0.0142356i
\(470\) 0 0
\(471\) 345.331 + 250.897i 0.733186 + 0.532691i
\(472\) 0 0
\(473\) −424.209 408.208i −0.896849 0.863019i
\(474\) 0 0
\(475\) 688.321 25.1780i 1.44910 0.0530064i
\(476\) 0 0
\(477\) −476.942 + 154.968i −0.999878 + 0.324880i
\(478\) 0 0
\(479\) −99.1187 136.425i −0.206928 0.284812i 0.692921 0.721014i \(-0.256324\pi\)
−0.899849 + 0.436201i \(0.856324\pi\)
\(480\) 0 0
\(481\) 18.7701 + 6.09877i 0.0390231 + 0.0126794i
\(482\) 0 0
\(483\) −35.3127 −0.0731112
\(484\) 0 0
\(485\) 116.935 240.256i 0.241102 0.495374i
\(486\) 0 0
\(487\) 546.027 + 177.415i 1.12121 + 0.364302i 0.810228 0.586115i \(-0.199343\pi\)
0.310978 + 0.950417i \(0.399343\pi\)
\(488\) 0 0
\(489\) −25.2698 + 18.3596i −0.0516764 + 0.0375451i
\(490\) 0 0
\(491\) −376.115 + 122.207i −0.766018 + 0.248894i −0.665860 0.746077i \(-0.731935\pi\)
−0.100159 + 0.994971i \(0.531935\pi\)
\(492\) 0 0
\(493\) −9.70019 + 13.3512i −0.0196758 + 0.0270815i
\(494\) 0 0
\(495\) −137.809 375.590i −0.278401 0.758768i
\(496\) 0 0
\(497\) 8.17001 + 5.93586i 0.0164386 + 0.0119434i
\(498\) 0 0
\(499\) −269.630 829.836i −0.540341 1.66300i −0.731818 0.681500i \(-0.761328\pi\)
0.191477 0.981497i \(-0.438672\pi\)
\(500\) 0 0
\(501\) −522.661 719.381i −1.04323 1.43589i
\(502\) 0 0
\(503\) −206.446 + 635.375i −0.410429 + 1.26317i 0.505847 + 0.862623i \(0.331180\pi\)
−0.916276 + 0.400548i \(0.868820\pi\)
\(504\) 0 0
\(505\) −172.366 + 354.146i −0.341319 + 0.701280i
\(506\) 0 0
\(507\) 515.482i 1.01673i
\(508\) 0 0
\(509\) 291.921 898.441i 0.573519 1.76511i −0.0676497 0.997709i \(-0.521550\pi\)
0.641168 0.767400i \(-0.278450\pi\)
\(510\) 0 0
\(511\) 11.0617 8.03679i 0.0216471 0.0157276i
\(512\) 0 0
\(513\) 59.2780 + 182.439i 0.115552 + 0.355632i
\(514\) 0 0
\(515\) −661.215 + 352.277i −1.28391 + 0.684033i
\(516\) 0 0
\(517\) 340.685 + 638.013i 0.658965 + 1.23407i
\(518\) 0 0
\(519\) −557.804 + 767.751i −1.07477 + 1.47929i
\(520\) 0 0
\(521\) −235.542 724.923i −0.452095 1.39141i −0.874512 0.485005i \(-0.838818\pi\)
0.422416 0.906402i \(-0.361182\pi\)
\(522\) 0 0
\(523\) 668.203 485.478i 1.27763 0.928256i 0.278155 0.960536i \(-0.410277\pi\)
0.999479 + 0.0322804i \(0.0102770\pi\)
\(524\) 0 0
\(525\) 11.4123 + 31.1943i 0.0217378 + 0.0594177i
\(526\) 0 0
\(527\) −196.537 −0.372936
\(528\) 0 0
\(529\) −177.379 −0.335310
\(530\) 0 0
\(531\) −129.198 + 397.632i −0.243311 + 0.748836i
\(532\) 0 0
\(533\) −109.470 150.673i −0.205386 0.282689i
\(534\) 0 0
\(535\) 50.3520 360.439i 0.0941160 0.673717i
\(536\) 0 0
\(537\) 62.2675 85.7039i 0.115954 0.159598i
\(538\) 0 0
\(539\) 532.704 + 73.9070i 0.988320 + 0.137119i
\(540\) 0 0
\(541\) −548.025 + 754.292i −1.01299 + 1.39425i −0.0959786 + 0.995383i \(0.530598\pi\)
−0.917007 + 0.398871i \(0.869402\pi\)
\(542\) 0 0
\(543\) −157.383 + 51.1368i −0.289839 + 0.0941745i
\(544\) 0 0
\(545\) −62.6802 353.764i −0.115010 0.649108i
\(546\) 0 0
\(547\) −64.7653 + 199.327i −0.118401 + 0.364401i −0.992641 0.121093i \(-0.961360\pi\)
0.874240 + 0.485494i \(0.161360\pi\)
\(548\) 0 0
\(549\) 592.907i 1.07998i
\(550\) 0 0
\(551\) −20.0886 −0.0364584
\(552\) 0 0
\(553\) −22.3098 7.24890i −0.0403432 0.0131083i
\(554\) 0 0
\(555\) −61.0543 + 10.8177i −0.110008 + 0.0194913i
\(556\) 0 0
\(557\) −108.478 333.860i −0.194753 0.599389i −0.999979 0.00642113i \(-0.997956\pi\)
0.805226 0.592968i \(-0.202044\pi\)
\(558\) 0 0
\(559\) 277.985 + 201.968i 0.497289 + 0.361302i
\(560\) 0 0
\(561\) −903.499 438.691i −1.61052 0.781981i
\(562\) 0 0
\(563\) −218.952 159.078i −0.388903 0.282555i 0.376103 0.926578i \(-0.377264\pi\)
−0.765006 + 0.644023i \(0.777264\pi\)
\(564\) 0 0
\(565\) −512.044 71.5308i −0.906272 0.126603i
\(566\) 0 0
\(567\) −24.9279 + 18.1112i −0.0439646 + 0.0319422i
\(568\) 0 0
\(569\) 397.866 + 129.274i 0.699237 + 0.227196i 0.636998 0.770866i \(-0.280176\pi\)
0.0622388 + 0.998061i \(0.480176\pi\)
\(570\) 0 0
\(571\) 711.709i 1.24643i 0.782052 + 0.623213i \(0.214173\pi\)
−0.782052 + 0.623213i \(0.785827\pi\)
\(572\) 0 0
\(573\) 620.046i 1.08210i
\(574\) 0 0
\(575\) 228.287 + 623.997i 0.397021 + 1.08521i
\(576\) 0 0
\(577\) −386.572 532.071i −0.669969 0.922133i 0.329791 0.944054i \(-0.393022\pi\)
−0.999760 + 0.0219209i \(0.993022\pi\)
\(578\) 0 0
\(579\) 905.822 294.319i 1.56446 0.508323i
\(580\) 0 0
\(581\) −29.8465 21.6848i −0.0513710 0.0373232i
\(582\) 0 0
\(583\) −746.603 + 133.007i −1.28062 + 0.228142i
\(584\) 0 0
\(585\) 109.795 + 206.082i 0.187684 + 0.352278i
\(586\) 0 0
\(587\) −304.789 + 99.0320i −0.519232 + 0.168709i −0.556897 0.830582i \(-0.688008\pi\)
0.0376647 + 0.999290i \(0.488008\pi\)
\(588\) 0 0
\(589\) −140.622 193.549i −0.238746 0.328606i
\(590\) 0 0
\(591\) −742.012 241.094i −1.25552 0.407943i
\(592\) 0 0
\(593\) −530.847 −0.895189 −0.447595 0.894237i \(-0.647719\pi\)
−0.447595 + 0.894237i \(0.647719\pi\)
\(594\) 0 0
\(595\) 33.5137 + 16.3114i 0.0563256 + 0.0274141i
\(596\) 0 0
\(597\) 558.175 + 181.362i 0.934967 + 0.303789i
\(598\) 0 0
\(599\) −602.735 + 437.912i −1.00624 + 0.731073i −0.963416 0.268010i \(-0.913634\pi\)
−0.0428190 + 0.999083i \(0.513634\pi\)
\(600\) 0 0
\(601\) 898.863 292.058i 1.49561 0.485954i 0.556878 0.830594i \(-0.311999\pi\)
0.938735 + 0.344640i \(0.111999\pi\)
\(602\) 0 0
\(603\) −280.479 + 386.046i −0.465139 + 0.640209i
\(604\) 0 0
\(605\) −128.367 591.225i −0.212177 0.977231i
\(606\) 0 0
\(607\) −159.275 115.720i −0.262398 0.190643i 0.448806 0.893629i \(-0.351850\pi\)
−0.711203 + 0.702986i \(0.751850\pi\)
\(608\) 0 0
\(609\) −0.299366 0.921354i −0.000491570 0.00151290i
\(610\) 0 0
\(611\) −248.130 341.521i −0.406104 0.558955i
\(612\) 0 0
\(613\) −290.171 + 893.056i −0.473363 + 1.45686i 0.374790 + 0.927110i \(0.377715\pi\)
−0.848153 + 0.529751i \(0.822285\pi\)
\(614\) 0 0
\(615\) 526.117 + 256.065i 0.855475 + 0.416366i
\(616\) 0 0
\(617\) 425.600i 0.689789i 0.938641 + 0.344895i \(0.112085\pi\)
−0.938641 + 0.344895i \(0.887915\pi\)
\(618\) 0 0
\(619\) −27.1880 + 83.6761i −0.0439225 + 0.135179i −0.970613 0.240646i \(-0.922641\pi\)
0.926691 + 0.375825i \(0.122641\pi\)
\(620\) 0 0
\(621\) −149.709 + 108.770i −0.241077 + 0.175152i
\(622\) 0 0
\(623\) −7.76010 23.8831i −0.0124560 0.0383357i
\(624\) 0 0
\(625\) 477.445 403.326i 0.763911 0.645321i
\(626\) 0 0
\(627\) −214.428 1203.64i −0.341991 1.91968i
\(628\) 0 0
\(629\) −40.8962 + 56.2887i −0.0650178 + 0.0894893i
\(630\) 0 0
\(631\) 159.104 + 489.671i 0.252146 + 0.776024i 0.994379 + 0.105882i \(0.0337667\pi\)
−0.742233 + 0.670142i \(0.766233\pi\)
\(632\) 0 0
\(633\) −824.379 + 598.946i −1.30234 + 0.946203i
\(634\) 0 0
\(635\) −453.247 + 470.129i −0.713774 + 0.740361i
\(636\) 0 0
\(637\) −313.894 −0.492769
\(638\) 0 0
\(639\) −223.038 −0.349042
\(640\) 0 0
\(641\) 128.796 396.393i 0.200930 0.618398i −0.798926 0.601429i \(-0.794598\pi\)
0.999856 0.0169692i \(-0.00540174\pi\)
\(642\) 0 0
\(643\) −152.972 210.548i −0.237903 0.327446i 0.673326 0.739346i \(-0.264865\pi\)
−0.911229 + 0.411900i \(0.864865\pi\)
\(644\) 0 0
\(645\) −1069.14 149.355i −1.65758 0.231559i
\(646\) 0 0
\(647\) 138.801 191.043i 0.214529 0.295274i −0.688167 0.725552i \(-0.741584\pi\)
0.902697 + 0.430278i \(0.141584\pi\)
\(648\) 0 0
\(649\) −276.156 + 568.752i −0.425510 + 0.876352i
\(650\) 0 0
\(651\) 6.78145 9.33387i 0.0104170 0.0143377i
\(652\) 0 0
\(653\) −335.701 + 109.076i −0.514090 + 0.167038i −0.554562 0.832143i \(-0.687114\pi\)
0.0404715 + 0.999181i \(0.487114\pi\)
\(654\) 0 0
\(655\) −196.530 1109.20i −0.300046 1.69344i
\(656\) 0 0
\(657\) −93.3168 + 287.200i −0.142035 + 0.437138i
\(658\) 0 0
\(659\) 1104.98i 1.67675i −0.545097 0.838373i \(-0.683507\pi\)
0.545097 0.838373i \(-0.316493\pi\)
\(660\) 0 0
\(661\) 1002.47 1.51659 0.758295 0.651912i \(-0.226033\pi\)
0.758295 + 0.651912i \(0.226033\pi\)
\(662\) 0 0
\(663\) 557.516 + 181.148i 0.840899 + 0.273225i
\(664\) 0 0
\(665\) 7.91553 + 44.6748i 0.0119030 + 0.0671802i
\(666\) 0 0
\(667\) −5.98838 18.4303i −0.00897808 0.0276317i
\(668\) 0 0
\(669\) 1303.23 + 946.850i 1.94802 + 1.41532i
\(670\) 0 0
\(671\) 123.214 888.100i 0.183628 1.32355i
\(672\) 0 0
\(673\) −186.414 135.438i −0.276990 0.201245i 0.440613 0.897697i \(-0.354761\pi\)
−0.717603 + 0.696452i \(0.754761\pi\)
\(674\) 0 0
\(675\) 144.467 + 97.0965i 0.214025 + 0.143847i
\(676\) 0 0
\(677\) 573.766 416.865i 0.847512 0.615754i −0.0769468 0.997035i \(-0.524517\pi\)
0.924459 + 0.381282i \(0.124517\pi\)
\(678\) 0 0
\(679\) 16.7394 + 5.43895i 0.0246530 + 0.00801024i
\(680\) 0 0
\(681\) 51.7914i 0.0760520i
\(682\) 0 0
\(683\) 448.387i 0.656497i −0.944591 0.328248i \(-0.893542\pi\)
0.944591 0.328248i \(-0.106458\pi\)
\(684\) 0 0
\(685\) 392.815 + 378.709i 0.573452 + 0.552859i
\(686\) 0 0
\(687\) 921.764 + 1268.70i 1.34172 + 1.84672i
\(688\) 0 0
\(689\) 420.957 136.777i 0.610967 0.198515i
\(690\) 0 0
\(691\) 386.122 + 280.534i 0.558788 + 0.405983i 0.831015 0.556250i \(-0.187760\pi\)
−0.272227 + 0.962233i \(0.587760\pi\)
\(692\) 0 0
\(693\) 23.2467 12.4132i 0.0335449 0.0179123i
\(694\) 0 0
\(695\) −38.0634 + 20.2791i −0.0547675 + 0.0291786i
\(696\) 0 0
\(697\) 624.437 202.892i 0.895892 0.291093i
\(698\) 0 0
\(699\) 935.964 + 1288.24i 1.33900 + 1.84298i
\(700\) 0 0
\(701\) −305.767 99.3498i −0.436187 0.141726i 0.0826886 0.996575i \(-0.473649\pi\)
−0.518876 + 0.854850i \(0.673649\pi\)
\(702\) 0 0
\(703\) −84.6938 −0.120475
\(704\) 0 0
\(705\) 1192.52 + 580.407i 1.69151 + 0.823273i
\(706\) 0 0
\(707\) −24.6745 8.01722i −0.0349002 0.0113398i
\(708\) 0 0
\(709\) 825.864 600.025i 1.16483 0.846298i 0.174448 0.984666i \(-0.444186\pi\)
0.990381 + 0.138369i \(0.0441859\pi\)
\(710\) 0 0
\(711\) 492.731 160.098i 0.693011 0.225173i
\(712\) 0 0
\(713\) 135.653 186.710i 0.190257 0.261866i
\(714\) 0 0
\(715\) 121.632 + 331.502i 0.170115 + 0.463639i
\(716\) 0 0
\(717\) 855.947 + 621.882i 1.19379 + 0.867338i
\(718\) 0 0
\(719\) 124.798 + 384.088i 0.173571 + 0.534197i 0.999565 0.0294817i \(-0.00938568\pi\)
−0.825994 + 0.563679i \(0.809386\pi\)
\(720\) 0 0
\(721\) −29.0076 39.9255i −0.0402325 0.0553752i
\(722\) 0 0
\(723\) 191.476 589.303i 0.264836 0.815080i
\(724\) 0 0
\(725\) −14.3456 + 11.2463i −0.0197870 + 0.0155121i
\(726\) 0 0
\(727\) 984.907i 1.35475i −0.735636 0.677377i \(-0.763116\pi\)
0.735636 0.677377i \(-0.236884\pi\)
\(728\) 0 0
\(729\) 132.176 406.797i 0.181312 0.558021i
\(730\) 0 0
\(731\) −979.997 + 712.009i −1.34062 + 0.974021i
\(732\) 0 0
\(733\) −272.723 839.356i −0.372065 1.14510i −0.945438 0.325803i \(-0.894365\pi\)
0.573373 0.819294i \(-0.305635\pi\)
\(734\) 0 0
\(735\) 870.353 463.700i 1.18415 0.630884i
\(736\) 0 0
\(737\) −500.347 + 519.960i −0.678897 + 0.705509i
\(738\) 0 0
\(739\) −599.010 + 824.467i −0.810569 + 1.11565i 0.180667 + 0.983544i \(0.442174\pi\)
−0.991235 + 0.132108i \(0.957826\pi\)
\(740\) 0 0
\(741\) 220.506 + 678.649i 0.297580 + 0.915856i
\(742\) 0 0
\(743\) −39.7064 + 28.8484i −0.0534406 + 0.0388269i −0.614185 0.789162i \(-0.710515\pi\)
0.560744 + 0.827989i \(0.310515\pi\)
\(744\) 0 0
\(745\) −963.784 929.175i −1.29367 1.24721i
\(746\) 0 0
\(747\) 814.798 1.09076
\(748\) 0 0
\(749\) 23.9730 0.0320067
\(750\) 0 0
\(751\) −316.258 + 973.343i −0.421116 + 1.29606i 0.485548 + 0.874210i \(0.338620\pi\)
−0.906664 + 0.421853i \(0.861380\pi\)
\(752\) 0 0
\(753\) 878.445 + 1209.08i 1.16659 + 1.60568i
\(754\) 0 0
\(755\) −84.8056 11.8470i −0.112325 0.0156914i
\(756\) 0 0
\(757\) 223.751 307.967i 0.295576 0.406826i −0.635239 0.772315i \(-0.719098\pi\)
0.930815 + 0.365490i \(0.119098\pi\)
\(758\) 0 0
\(759\) 1040.36 555.532i 1.37070 0.731926i
\(760\) 0 0
\(761\) 236.882 326.039i 0.311277 0.428436i −0.624502 0.781023i \(-0.714698\pi\)
0.935779 + 0.352588i \(0.114698\pi\)
\(762\) 0 0
\(763\) 22.5074 7.31311i 0.0294986 0.00958468i
\(764\) 0 0
\(765\) −810.567 + 143.617i −1.05956 + 0.187735i
\(766\) 0 0
\(767\) 114.033 350.956i 0.148673 0.457570i
\(768\) 0 0
\(769\) 157.816i 0.205223i −0.994722 0.102611i \(-0.967280\pi\)
0.994722 0.102611i \(-0.0327198\pi\)
\(770\) 0 0
\(771\) −1113.12 −1.44374
\(772\) 0 0
\(773\) −471.540 153.213i −0.610013 0.198205i −0.0123121 0.999924i \(-0.503919\pi\)
−0.597701 + 0.801719i \(0.703919\pi\)
\(774\) 0 0
\(775\) −208.775 59.4914i −0.269388 0.0767631i
\(776\) 0 0
\(777\) −1.26213 3.88444i −0.00162437 0.00499929i
\(778\) 0 0
\(779\) 646.588 + 469.774i 0.830023 + 0.603047i
\(780\) 0 0
\(781\) −334.082 46.3503i −0.427762 0.0593474i
\(782\) 0 0
\(783\) −4.10711 2.98399i −0.00524535 0.00381097i
\(784\) 0 0
\(785\) 523.965 + 73.1961i 0.667471 + 0.0932435i
\(786\) 0 0
\(787\) −1214.36 + 882.282i −1.54302 + 1.12107i −0.594615 + 0.804011i \(0.702695\pi\)
−0.948406 + 0.317059i \(0.897305\pi\)
\(788\) 0 0
\(789\) 1947.67 + 632.836i 2.46853 + 0.802073i
\(790\) 0 0
\(791\) 34.0563i 0.0430548i
\(792\) 0 0
\(793\) 523.309i 0.659911i
\(794\) 0 0
\(795\) −965.157 + 1001.11i −1.21403 + 1.25925i
\(796\) 0 0
\(797\) −878.944 1209.76i −1.10282 1.51790i −0.831599 0.555377i \(-0.812574\pi\)
−0.271216 0.962518i \(-0.587426\pi\)
\(798\) 0 0
\(799\) 1415.37 459.882i 1.77143 0.575572i
\(800\) 0 0
\(801\) 448.700 + 326.000i 0.560175 + 0.406991i
\(802\) 0 0
\(803\) −199.461 + 410.796i −0.248394 + 0.511576i
\(804\) 0 0
\(805\) −38.6275 + 20.5796i −0.0479844 + 0.0255648i
\(806\) 0 0
\(807\) 851.480 276.662i 1.05512 0.342828i
\(808\) 0 0
\(809\) −229.935 316.478i −0.284221 0.391197i 0.642905 0.765946i \(-0.277729\pi\)
−0.927126 + 0.374749i \(0.877729\pi\)
\(810\) 0 0
\(811\) 403.812 + 131.206i 0.497918 + 0.161783i 0.547201 0.837001i \(-0.315693\pi\)
−0.0492825 + 0.998785i \(0.515693\pi\)
\(812\) 0 0
\(813\) 81.1447 0.0998090
\(814\) 0 0
\(815\) −16.9422 + 34.8097i −0.0207879 + 0.0427113i
\(816\) 0 0
\(817\) −1402.37 455.656i −1.71648 0.557719i
\(818\) 0 0
\(819\) −12.4437 + 9.04086i −0.0151937 + 0.0110389i
\(820\) 0 0
\(821\) −74.9621 + 24.3567i −0.0913059 + 0.0296671i −0.354314 0.935127i \(-0.615285\pi\)
0.263008 + 0.964794i \(0.415285\pi\)
\(822\) 0 0
\(823\) 417.453 574.575i 0.507234 0.698148i −0.476216 0.879328i \(-0.657992\pi\)
0.983450 + 0.181181i \(0.0579919\pi\)
\(824\) 0 0
\(825\) −826.967 739.495i −1.00238 0.896357i
\(826\) 0 0
\(827\) −8.41147 6.11129i −0.0101711 0.00738971i 0.582688 0.812696i \(-0.302001\pi\)
−0.592859 + 0.805306i \(0.702001\pi\)
\(828\) 0 0
\(829\) −168.549 518.739i −0.203316 0.625741i −0.999778 0.0210534i \(-0.993298\pi\)
0.796463 0.604688i \(-0.206702\pi\)
\(830\) 0 0
\(831\) −394.479 542.953i −0.474703 0.653373i
\(832\) 0 0
\(833\) 341.955 1052.43i 0.410511 1.26342i
\(834\) 0 0
\(835\) −990.965 482.311i −1.18678 0.577618i
\(836\) 0 0
\(837\) 60.4592i 0.0722332i
\(838\) 0 0
\(839\) −87.0345 + 267.865i −0.103736 + 0.319267i −0.989432 0.145000i \(-0.953682\pi\)
0.885696 + 0.464266i \(0.153682\pi\)
\(840\) 0 0
\(841\) −679.953 + 494.015i −0.808506 + 0.587414i
\(842\) 0 0
\(843\) 21.4838 + 66.1205i 0.0254850 + 0.0784347i
\(844\) 0 0
\(845\) 300.414 + 563.870i 0.355520 + 0.667302i
\(846\) 0 0
\(847\) 37.4002 13.7624i 0.0441560 0.0162484i
\(848\) 0 0
\(849\) −1126.09 + 1549.93i −1.32637 + 1.82560i
\(850\) 0 0
\(851\) −25.2471 77.7026i −0.0296676 0.0913074i
\(852\) 0 0
\(853\) 476.106 345.911i 0.558154 0.405523i −0.272629 0.962119i \(-0.587893\pi\)
0.830783 + 0.556596i \(0.187893\pi\)
\(854\) 0 0
\(855\) −721.390 695.485i −0.843731 0.813432i
\(856\) 0 0
\(857\) −1169.51 −1.36466 −0.682329 0.731045i \(-0.739033\pi\)
−0.682329 + 0.731045i \(0.739033\pi\)
\(858\) 0 0
\(859\) −847.128 −0.986179 −0.493089 0.869979i \(-0.664132\pi\)
−0.493089 + 0.869979i \(0.664132\pi\)
\(860\) 0 0
\(861\) −11.9103 + 36.6562i −0.0138331 + 0.0425740i
\(862\) 0 0
\(863\) −346.990 477.591i −0.402075 0.553408i 0.559189 0.829041i \(-0.311113\pi\)
−0.961263 + 0.275632i \(0.911113\pi\)
\(864\) 0 0
\(865\) −162.732 + 1164.90i −0.188130 + 1.34670i
\(866\) 0 0
\(867\) −529.438 + 728.709i −0.610655 + 0.840495i
\(868\) 0 0
\(869\) 771.318 137.410i 0.887593 0.158124i
\(870\) 0 0
\(871\) 247.555 340.730i 0.284219 0.391194i
\(872\) 0 0
\(873\) −369.703 + 120.124i −0.423486 + 0.137599i
\(874\) 0 0
\(875\) 30.6631 + 27.4716i 0.0350436 + 0.0313961i
\(876\) 0 0
\(877\) 116.074 357.238i 0.132353 0.407341i −0.862816 0.505518i \(-0.831301\pi\)
0.995169 + 0.0981776i \(0.0313013\pi\)
\(878\) 0 0
\(879\) 2186.23i 2.48718i
\(880\) 0 0
\(881\) −36.1533 −0.0410367 −0.0205183 0.999789i \(-0.506532\pi\)
−0.0205183 + 0.999789i \(0.506532\pi\)
\(882\) 0 0
\(883\) 76.3685 + 24.8136i 0.0864876 + 0.0281015i 0.351941 0.936022i \(-0.385522\pi\)
−0.265454 + 0.964124i \(0.585522\pi\)
\(884\) 0 0
\(885\) 202.265 + 1141.57i 0.228548 + 1.28991i
\(886\) 0 0
\(887\) 211.476 + 650.855i 0.238417 + 0.733771i 0.996650 + 0.0817877i \(0.0260630\pi\)
−0.758233 + 0.651984i \(0.773937\pi\)
\(888\) 0 0
\(889\) −34.8007 25.2842i −0.0391459 0.0284411i
\(890\) 0 0
\(891\) 449.492 925.744i 0.504481 1.03899i
\(892\) 0 0
\(893\) 1465.58 + 1064.81i 1.64119 + 1.19239i
\(894\) 0 0
\(895\) 18.1658 130.037i 0.0202969 0.145293i
\(896\) 0 0
\(897\) −556.896 + 404.609i −0.620843 + 0.451069i
\(898\) 0 0
\(899\) 6.02152 + 1.95651i 0.00669802 + 0.00217632i
\(900\) 0 0
\(901\) 1560.40i 1.73185i
\(902\) 0 0
\(903\) 71.1092i 0.0787477i
\(904\) 0 0
\(905\) −142.355 + 147.657i −0.157298 + 0.163157i
\(906\) 0 0
\(907\) 93.2767 + 128.384i 0.102841 + 0.141548i 0.857336 0.514758i \(-0.172118\pi\)
−0.754495 + 0.656306i \(0.772118\pi\)
\(908\) 0 0
\(909\) 544.956 177.067i 0.599512 0.194793i
\(910\) 0 0
\(911\) −1015.13 737.536i −1.11430 0.809589i −0.130968 0.991387i \(-0.541808\pi\)
−0.983336 + 0.181798i \(0.941808\pi\)
\(912\) 0 0
\(913\) 1220.46 + 169.326i 1.33676 + 0.185461i
\(914\) 0 0
\(915\) −773.058 1451.01i −0.844872 1.58580i
\(916\) 0 0
\(917\) 70.5707 22.9298i 0.0769582 0.0250052i
\(918\) 0 0
\(919\) 560.745 + 771.800i 0.610169 + 0.839825i 0.996591 0.0824965i \(-0.0262893\pi\)
−0.386422 + 0.922322i \(0.626289\pi\)
\(920\) 0 0
\(921\) −757.868 246.246i −0.822875 0.267368i
\(922\) 0 0
\(923\) 196.857 0.213279
\(924\) 0 0
\(925\) −60.4811 + 47.4145i −0.0653850 + 0.0512590i
\(926\) 0 0
\(927\) 1036.60 + 336.813i 1.11824 + 0.363337i
\(928\) 0 0
\(929\) −593.886 + 431.484i −0.639275 + 0.464460i −0.859601 0.510966i \(-0.829288\pi\)
0.220326 + 0.975426i \(0.429288\pi\)
\(930\) 0 0
\(931\) 1281.09 416.253i 1.37604 0.447103i
\(932\) 0 0
\(933\) 1107.96 1524.97i 1.18752 1.63448i
\(934\) 0 0
\(935\) −1243.97 + 46.6729i −1.33045 + 0.0499176i
\(936\) 0 0
\(937\) 946.417 + 687.612i 1.01005 + 0.733844i 0.964220 0.265105i \(-0.0854067\pi\)
0.0458302 + 0.998949i \(0.485407\pi\)
\(938\) 0 0
\(939\) −57.9439 178.333i −0.0617080 0.189918i
\(940\) 0 0
\(941\) −720.775 992.061i −0.765967 1.05426i −0.996694 0.0812442i \(-0.974111\pi\)
0.230728 0.973018i \(-0.425889\pi\)
\(942\) 0 0
\(943\) −238.248 + 733.253i −0.252649 + 0.777575i
\(944\) 0 0
\(945\) −5.01774 + 10.3095i −0.00530978 + 0.0109096i
\(946\) 0 0
\(947\) 287.197i 0.303270i 0.988437 + 0.151635i \(0.0484539\pi\)
−0.988437 + 0.151635i \(0.951546\pi\)
\(948\) 0 0
\(949\) 82.3629 253.487i 0.0867891 0.267110i
\(950\) 0 0
\(951\) −252.838 + 183.697i −0.265865 + 0.193162i
\(952\) 0 0
\(953\) 245.100 + 754.339i 0.257187 + 0.791541i 0.993391 + 0.114781i \(0.0366167\pi\)
−0.736203 + 0.676760i \(0.763383\pi\)
\(954\) 0 0
\(955\) −361.352 678.249i −0.378379 0.710208i
\(956\) 0 0
\(957\) 23.3143 + 22.4349i 0.0243619 + 0.0234429i
\(958\) 0 0
\(959\) −21.1261 + 29.0776i −0.0220293 + 0.0303207i
\(960\) 0 0
\(961\) −273.665 842.254i −0.284771 0.876435i
\(962\) 0 0
\(963\) −428.345 + 311.211i −0.444803 + 0.323168i
\(964\) 0 0
\(965\) 819.326 849.844i 0.849043 0.880667i
\(966\) 0 0
\(967\) 141.449 0.146276 0.0731381 0.997322i \(-0.476699\pi\)
0.0731381 + 0.997322i \(0.476699\pi\)
\(968\) 0 0
\(969\) −2515.61 −2.59609
\(970\) 0 0
\(971\) −47.2954 + 145.560i −0.0487079 + 0.149908i −0.972452 0.233102i \(-0.925112\pi\)
0.923744 + 0.383010i \(0.125112\pi\)
\(972\) 0 0
\(973\) −1.66985 2.29835i −0.00171619 0.00236213i
\(974\) 0 0
\(975\) 537.398 + 361.186i 0.551178 + 0.370447i
\(976\) 0 0
\(977\) 888.630 1223.09i 0.909550 1.25189i −0.0577699 0.998330i \(-0.518399\pi\)
0.967320 0.253558i \(-0.0816010\pi\)
\(978\) 0 0
\(979\) 604.348 + 581.552i 0.617312 + 0.594027i
\(980\) 0 0
\(981\) −307.222 + 422.855i −0.313172 + 0.431045i
\(982\) 0 0
\(983\) 1.50113 0.487748i 0.00152709 0.000496183i −0.308253 0.951304i \(-0.599744\pi\)
0.309780 + 0.950808i \(0.399744\pi\)
\(984\) 0 0
\(985\) −952.169 + 168.706i −0.966669 + 0.171275i
\(986\) 0 0
\(987\) −26.9964 + 83.0863i −0.0273519 + 0.0841806i
\(988\) 0 0
\(989\) 1422.44i 1.43826i
\(990\) 0 0
\(991\) 860.757 0.868574 0.434287 0.900775i \(-0.357000\pi\)
0.434287 + 0.900775i \(0.357000\pi\)
\(992\) 0 0
\(993\) −1429.88 464.596i −1.43996 0.467871i
\(994\) 0 0
\(995\) 716.265 126.909i 0.719865 0.127546i
\(996\) 0 0
\(997\) 12.1700 + 37.4555i 0.0122067 + 0.0375682i 0.956974 0.290173i \(-0.0937127\pi\)
−0.944768 + 0.327741i \(0.893713\pi\)
\(998\) 0 0
\(999\) −17.3156 12.5805i −0.0173330 0.0125931i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 220.3.q.a.29.3 48
5.4 even 2 inner 220.3.q.a.29.10 yes 48
11.8 odd 10 inner 220.3.q.a.129.10 yes 48
55.19 odd 10 inner 220.3.q.a.129.3 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
220.3.q.a.29.3 48 1.1 even 1 trivial
220.3.q.a.29.10 yes 48 5.4 even 2 inner
220.3.q.a.129.3 yes 48 55.19 odd 10 inner
220.3.q.a.129.10 yes 48 11.8 odd 10 inner