Properties

Label 220.3.q.a.29.8
Level $220$
Weight $3$
Character 220.29
Analytic conductor $5.995$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [220,3,Mod(29,220)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(220, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 5, 7]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("220.29");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 220 = 2^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 220.q (of order \(10\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.99456581593\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(12\) over \(\Q(\zeta_{10})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 29.8
Character \(\chi\) \(=\) 220.29
Dual form 220.3.q.a.129.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.914119 + 0.297015i) q^{3} +(-2.13757 - 4.52004i) q^{5} +(-1.31985 - 4.06207i) q^{7} +(-6.53376 - 4.74705i) q^{9} +(-4.47784 + 10.0473i) q^{11} +(-12.1628 - 8.83682i) q^{13} +(-0.611469 - 4.76675i) q^{15} +(1.04632 - 0.760193i) q^{17} +(-0.958233 - 0.311349i) q^{19} -4.10523i q^{21} -41.0620i q^{23} +(-15.8616 + 19.3238i) q^{25} +(-9.64730 - 13.2784i) q^{27} +(41.4155 - 13.4567i) q^{29} +(13.1808 + 9.57644i) q^{31} +(-7.07750 + 7.85447i) q^{33} +(-15.5395 + 14.6487i) q^{35} +(-10.7632 + 3.49717i) q^{37} +(-8.49362 - 11.6905i) q^{39} +(-55.1488 - 17.9189i) q^{41} +43.5352 q^{43} +(-7.49054 + 39.6800i) q^{45} +(10.9380 + 3.55398i) q^{47} +(24.8834 - 18.0789i) q^{49} +(1.18225 - 0.384135i) q^{51} +(-28.8912 + 39.7654i) q^{53} +(54.9861 - 1.23680i) q^{55} +(-0.783464 - 0.569220i) q^{57} +(-24.8092 - 76.3547i) q^{59} +(33.4826 + 46.0848i) q^{61} +(-10.6593 + 32.8060i) q^{63} +(-13.9439 + 73.8659i) q^{65} +57.7942i q^{67} +(12.1960 - 37.5355i) q^{69} +(18.7185 - 13.5998i) q^{71} +(29.5919 + 91.0744i) q^{73} +(-20.2389 + 12.9531i) q^{75} +(46.7230 + 4.92838i) q^{77} +(40.5651 - 55.8330i) q^{79} +(17.5862 + 54.1246i) q^{81} +(98.7827 - 71.7698i) q^{83} +(-5.67267 - 3.10443i) q^{85} +41.8556 q^{87} +43.8574 q^{89} +(-19.8427 + 61.0696i) q^{91} +(9.20451 + 12.6689i) q^{93} +(0.640978 + 4.99679i) q^{95} +(-80.2155 + 110.407i) q^{97} +(76.9524 - 44.3903i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 5 q^{5} + 20 q^{9} - 23 q^{15} - 7 q^{25} - 74 q^{31} + 155 q^{35} + 80 q^{39} - 20 q^{41} + 12 q^{45} + 102 q^{49} + 220 q^{51} - 69 q^{55} + 40 q^{59} - 290 q^{61} - 234 q^{69} - 406 q^{71} + 153 q^{75}+ \cdots - 382 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/220\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(111\) \(177\)
\(\chi(n)\) \(e\left(\frac{7}{10}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.914119 + 0.297015i 0.304706 + 0.0990051i 0.457379 0.889272i \(-0.348788\pi\)
−0.152673 + 0.988277i \(0.548788\pi\)
\(4\) 0 0
\(5\) −2.13757 4.52004i −0.427514 0.904009i
\(6\) 0 0
\(7\) −1.31985 4.06207i −0.188550 0.580296i 0.811442 0.584433i \(-0.198683\pi\)
−0.999991 + 0.00413726i \(0.998683\pi\)
\(8\) 0 0
\(9\) −6.53376 4.74705i −0.725973 0.527450i
\(10\) 0 0
\(11\) −4.47784 + 10.0473i −0.407077 + 0.913394i
\(12\) 0 0
\(13\) −12.1628 8.83682i −0.935603 0.679755i 0.0117552 0.999931i \(-0.496258\pi\)
−0.947358 + 0.320176i \(0.896258\pi\)
\(14\) 0 0
\(15\) −0.611469 4.76675i −0.0407646 0.317783i
\(16\) 0 0
\(17\) 1.04632 0.760193i 0.0615480 0.0447172i −0.556586 0.830790i \(-0.687889\pi\)
0.618134 + 0.786073i \(0.287889\pi\)
\(18\) 0 0
\(19\) −0.958233 0.311349i −0.0504333 0.0163868i 0.283692 0.958916i \(-0.408441\pi\)
−0.334125 + 0.942529i \(0.608441\pi\)
\(20\) 0 0
\(21\) 4.10523i 0.195487i
\(22\) 0 0
\(23\) 41.0620i 1.78530i −0.450747 0.892652i \(-0.648842\pi\)
0.450747 0.892652i \(-0.351158\pi\)
\(24\) 0 0
\(25\) −15.8616 + 19.3238i −0.634464 + 0.772952i
\(26\) 0 0
\(27\) −9.64730 13.2784i −0.357307 0.491791i
\(28\) 0 0
\(29\) 41.4155 13.4567i 1.42812 0.464025i 0.509948 0.860205i \(-0.329665\pi\)
0.918173 + 0.396181i \(0.129665\pi\)
\(30\) 0 0
\(31\) 13.1808 + 9.57644i 0.425188 + 0.308917i 0.779722 0.626126i \(-0.215360\pi\)
−0.354534 + 0.935043i \(0.615360\pi\)
\(32\) 0 0
\(33\) −7.07750 + 7.85447i −0.214470 + 0.238014i
\(34\) 0 0
\(35\) −15.5395 + 14.6487i −0.443985 + 0.418535i
\(36\) 0 0
\(37\) −10.7632 + 3.49717i −0.290897 + 0.0945180i −0.450830 0.892610i \(-0.648872\pi\)
0.159934 + 0.987128i \(0.448872\pi\)
\(38\) 0 0
\(39\) −8.49362 11.6905i −0.217785 0.299755i
\(40\) 0 0
\(41\) −55.1488 17.9189i −1.34509 0.437047i −0.454053 0.890974i \(-0.650022\pi\)
−0.891039 + 0.453928i \(0.850022\pi\)
\(42\) 0 0
\(43\) 43.5352 1.01245 0.506223 0.862403i \(-0.331041\pi\)
0.506223 + 0.862403i \(0.331041\pi\)
\(44\) 0 0
\(45\) −7.49054 + 39.6800i −0.166456 + 0.881778i
\(46\) 0 0
\(47\) 10.9380 + 3.55398i 0.232724 + 0.0756165i 0.423057 0.906103i \(-0.360957\pi\)
−0.190333 + 0.981719i \(0.560957\pi\)
\(48\) 0 0
\(49\) 24.8834 18.0789i 0.507825 0.368956i
\(50\) 0 0
\(51\) 1.18225 0.384135i 0.0231813 0.00753206i
\(52\) 0 0
\(53\) −28.8912 + 39.7654i −0.545117 + 0.750290i −0.989340 0.145627i \(-0.953480\pi\)
0.444222 + 0.895917i \(0.353480\pi\)
\(54\) 0 0
\(55\) 54.9861 1.23680i 0.999747 0.0224873i
\(56\) 0 0
\(57\) −0.783464 0.569220i −0.0137450 0.00998632i
\(58\) 0 0
\(59\) −24.8092 76.3547i −0.420494 1.29415i −0.907243 0.420606i \(-0.861817\pi\)
0.486749 0.873542i \(-0.338183\pi\)
\(60\) 0 0
\(61\) 33.4826 + 46.0848i 0.548894 + 0.755488i 0.989862 0.142035i \(-0.0453645\pi\)
−0.440967 + 0.897523i \(0.645365\pi\)
\(62\) 0 0
\(63\) −10.6593 + 32.8060i −0.169195 + 0.520730i
\(64\) 0 0
\(65\) −13.9439 + 73.8659i −0.214522 + 1.13640i
\(66\) 0 0
\(67\) 57.7942i 0.862600i 0.902209 + 0.431300i \(0.141945\pi\)
−0.902209 + 0.431300i \(0.858055\pi\)
\(68\) 0 0
\(69\) 12.1960 37.5355i 0.176754 0.543993i
\(70\) 0 0
\(71\) 18.7185 13.5998i 0.263640 0.191546i −0.448110 0.893978i \(-0.647903\pi\)
0.711750 + 0.702433i \(0.247903\pi\)
\(72\) 0 0
\(73\) 29.5919 + 91.0744i 0.405368 + 1.24759i 0.920588 + 0.390536i \(0.127710\pi\)
−0.515220 + 0.857058i \(0.672290\pi\)
\(74\) 0 0
\(75\) −20.2389 + 12.9531i −0.269852 + 0.172708i
\(76\) 0 0
\(77\) 46.7230 + 4.92838i 0.606793 + 0.0640049i
\(78\) 0 0
\(79\) 40.5651 55.8330i 0.513482 0.706747i −0.471020 0.882123i \(-0.656114\pi\)
0.984502 + 0.175375i \(0.0561139\pi\)
\(80\) 0 0
\(81\) 17.5862 + 54.1246i 0.217113 + 0.668205i
\(82\) 0 0
\(83\) 98.7827 71.7698i 1.19015 0.864697i 0.196872 0.980429i \(-0.436922\pi\)
0.993280 + 0.115733i \(0.0369215\pi\)
\(84\) 0 0
\(85\) −5.67267 3.10443i −0.0667373 0.0365227i
\(86\) 0 0
\(87\) 41.8556 0.481098
\(88\) 0 0
\(89\) 43.8574 0.492780 0.246390 0.969171i \(-0.420756\pi\)
0.246390 + 0.969171i \(0.420756\pi\)
\(90\) 0 0
\(91\) −19.8427 + 61.0696i −0.218052 + 0.671094i
\(92\) 0 0
\(93\) 9.20451 + 12.6689i 0.0989732 + 0.136225i
\(94\) 0 0
\(95\) 0.640978 + 4.99679i 0.00674714 + 0.0525978i
\(96\) 0 0
\(97\) −80.2155 + 110.407i −0.826964 + 1.13822i 0.161516 + 0.986870i \(0.448362\pi\)
−0.988480 + 0.151348i \(0.951638\pi\)
\(98\) 0 0
\(99\) 76.9524 44.3903i 0.777297 0.448387i
\(100\) 0 0
\(101\) −52.7600 + 72.6179i −0.522376 + 0.718989i −0.985945 0.167072i \(-0.946569\pi\)
0.463568 + 0.886061i \(0.346569\pi\)
\(102\) 0 0
\(103\) −62.0354 + 20.1565i −0.602285 + 0.195694i −0.594259 0.804273i \(-0.702555\pi\)
−0.00802580 + 0.999968i \(0.502555\pi\)
\(104\) 0 0
\(105\) −18.5558 + 8.77521i −0.176722 + 0.0835735i
\(106\) 0 0
\(107\) 44.6896 137.540i 0.417660 1.28542i −0.492191 0.870487i \(-0.663804\pi\)
0.909850 0.414937i \(-0.136196\pi\)
\(108\) 0 0
\(109\) 172.365i 1.58133i −0.612247 0.790667i \(-0.709734\pi\)
0.612247 0.790667i \(-0.290266\pi\)
\(110\) 0 0
\(111\) −10.8775 −0.0979959
\(112\) 0 0
\(113\) −134.881 43.8254i −1.19363 0.387835i −0.356218 0.934403i \(-0.615934\pi\)
−0.837415 + 0.546568i \(0.815934\pi\)
\(114\) 0 0
\(115\) −185.602 + 87.7728i −1.61393 + 0.763241i
\(116\) 0 0
\(117\) 37.5202 + 115.475i 0.320685 + 0.986968i
\(118\) 0 0
\(119\) −4.46893 3.24687i −0.0375541 0.0272846i
\(120\) 0 0
\(121\) −80.8978 89.9808i −0.668577 0.743643i
\(122\) 0 0
\(123\) −45.0904 32.7601i −0.366588 0.266342i
\(124\) 0 0
\(125\) 121.250 + 30.3892i 0.969998 + 0.243114i
\(126\) 0 0
\(127\) 54.0994 39.3055i 0.425979 0.309492i −0.354060 0.935223i \(-0.615199\pi\)
0.780039 + 0.625731i \(0.215199\pi\)
\(128\) 0 0
\(129\) 39.7963 + 12.9306i 0.308499 + 0.100237i
\(130\) 0 0
\(131\) 47.9864i 0.366309i −0.983084 0.183154i \(-0.941369\pi\)
0.983084 0.183154i \(-0.0586308\pi\)
\(132\) 0 0
\(133\) 4.30335i 0.0323560i
\(134\) 0 0
\(135\) −39.3971 + 71.9896i −0.291830 + 0.533257i
\(136\) 0 0
\(137\) −139.941 192.612i −1.02146 1.40593i −0.911172 0.412026i \(-0.864821\pi\)
−0.110293 0.993899i \(-0.535179\pi\)
\(138\) 0 0
\(139\) 56.5353 18.3694i 0.406729 0.132154i −0.0985054 0.995137i \(-0.531406\pi\)
0.505234 + 0.862982i \(0.331406\pi\)
\(140\) 0 0
\(141\) 8.94307 + 6.49752i 0.0634260 + 0.0460817i
\(142\) 0 0
\(143\) 143.250 82.6342i 1.00175 0.577862i
\(144\) 0 0
\(145\) −149.353 158.435i −1.03002 1.09266i
\(146\) 0 0
\(147\) 28.1161 9.13548i 0.191266 0.0621461i
\(148\) 0 0
\(149\) −28.0581 38.6187i −0.188310 0.259186i 0.704415 0.709788i \(-0.251209\pi\)
−0.892725 + 0.450602i \(0.851209\pi\)
\(150\) 0 0
\(151\) 107.583 + 34.9557i 0.712467 + 0.231495i 0.642754 0.766073i \(-0.277792\pi\)
0.0697129 + 0.997567i \(0.477792\pi\)
\(152\) 0 0
\(153\) −10.4450 −0.0682683
\(154\) 0 0
\(155\) 15.1110 80.0482i 0.0974903 0.516440i
\(156\) 0 0
\(157\) −19.3068 6.27317i −0.122974 0.0399565i 0.246884 0.969045i \(-0.420593\pi\)
−0.369857 + 0.929089i \(0.620593\pi\)
\(158\) 0 0
\(159\) −38.2210 + 27.7691i −0.240383 + 0.174649i
\(160\) 0 0
\(161\) −166.797 + 54.1955i −1.03600 + 0.336618i
\(162\) 0 0
\(163\) −138.897 + 191.175i −0.852126 + 1.17285i 0.131264 + 0.991347i \(0.458096\pi\)
−0.983390 + 0.181503i \(0.941904\pi\)
\(164\) 0 0
\(165\) 50.6312 + 15.2011i 0.306856 + 0.0921281i
\(166\) 0 0
\(167\) −253.976 184.524i −1.52081 1.10494i −0.961083 0.276261i \(-0.910905\pi\)
−0.559731 0.828674i \(-0.689095\pi\)
\(168\) 0 0
\(169\) 17.6214 + 54.2331i 0.104269 + 0.320906i
\(170\) 0 0
\(171\) 4.78287 + 6.58306i 0.0279700 + 0.0384974i
\(172\) 0 0
\(173\) 49.7200 153.023i 0.287399 0.884523i −0.698270 0.715834i \(-0.746047\pi\)
0.985669 0.168689i \(-0.0539534\pi\)
\(174\) 0 0
\(175\) 99.4296 + 38.9265i 0.568169 + 0.222437i
\(176\) 0 0
\(177\) 77.1661i 0.435966i
\(178\) 0 0
\(179\) 60.7656 187.017i 0.339473 1.04479i −0.625004 0.780621i \(-0.714903\pi\)
0.964477 0.264168i \(-0.0850972\pi\)
\(180\) 0 0
\(181\) 60.3506 43.8473i 0.333429 0.242250i −0.408455 0.912778i \(-0.633932\pi\)
0.741884 + 0.670528i \(0.233932\pi\)
\(182\) 0 0
\(183\) 16.9192 + 52.0718i 0.0924544 + 0.284546i
\(184\) 0 0
\(185\) 38.8144 + 41.1746i 0.209807 + 0.222565i
\(186\) 0 0
\(187\) 2.95267 + 13.9167i 0.0157897 + 0.0744209i
\(188\) 0 0
\(189\) −41.2047 + 56.7134i −0.218014 + 0.300071i
\(190\) 0 0
\(191\) 33.4581 + 102.974i 0.175173 + 0.539129i 0.999641 0.0267802i \(-0.00852543\pi\)
−0.824468 + 0.565909i \(0.808525\pi\)
\(192\) 0 0
\(193\) 87.3140 63.4373i 0.452404 0.328691i −0.338140 0.941096i \(-0.609798\pi\)
0.790544 + 0.612405i \(0.209798\pi\)
\(194\) 0 0
\(195\) −34.6857 + 63.3807i −0.177875 + 0.325029i
\(196\) 0 0
\(197\) 296.778 1.50649 0.753243 0.657742i \(-0.228488\pi\)
0.753243 + 0.657742i \(0.228488\pi\)
\(198\) 0 0
\(199\) −286.494 −1.43967 −0.719835 0.694146i \(-0.755782\pi\)
−0.719835 + 0.694146i \(0.755782\pi\)
\(200\) 0 0
\(201\) −17.1658 + 52.8308i −0.0854018 + 0.262840i
\(202\) 0 0
\(203\) −109.324 150.472i −0.538543 0.741241i
\(204\) 0 0
\(205\) 36.8899 + 287.578i 0.179951 + 1.40282i
\(206\) 0 0
\(207\) −194.923 + 268.289i −0.941659 + 1.29608i
\(208\) 0 0
\(209\) 7.41905 8.23352i 0.0354978 0.0393948i
\(210\) 0 0
\(211\) 49.3979 67.9904i 0.234113 0.322229i −0.675755 0.737126i \(-0.736182\pi\)
0.909868 + 0.414897i \(0.136182\pi\)
\(212\) 0 0
\(213\) 21.1502 6.87213i 0.0992969 0.0322635i
\(214\) 0 0
\(215\) −93.0594 196.781i −0.432834 0.915260i
\(216\) 0 0
\(217\) 21.5035 66.1809i 0.0990944 0.304981i
\(218\) 0 0
\(219\) 92.0421i 0.420283i
\(220\) 0 0
\(221\) −19.4439 −0.0879812
\(222\) 0 0
\(223\) −45.2745 14.7106i −0.203025 0.0659667i 0.205739 0.978607i \(-0.434040\pi\)
−0.408764 + 0.912640i \(0.634040\pi\)
\(224\) 0 0
\(225\) 195.367 50.9612i 0.868298 0.226494i
\(226\) 0 0
\(227\) 104.489 + 321.585i 0.460305 + 1.41667i 0.864792 + 0.502130i \(0.167450\pi\)
−0.404487 + 0.914544i \(0.632550\pi\)
\(228\) 0 0
\(229\) 127.052 + 92.3084i 0.554810 + 0.403093i 0.829556 0.558424i \(-0.188594\pi\)
−0.274746 + 0.961517i \(0.588594\pi\)
\(230\) 0 0
\(231\) 41.2466 + 18.3826i 0.178557 + 0.0795783i
\(232\) 0 0
\(233\) −126.628 92.0004i −0.543466 0.394851i 0.281904 0.959443i \(-0.409034\pi\)
−0.825371 + 0.564591i \(0.809034\pi\)
\(234\) 0 0
\(235\) −7.31662 57.0372i −0.0311345 0.242711i
\(236\) 0 0
\(237\) 53.6646 38.9896i 0.226433 0.164513i
\(238\) 0 0
\(239\) 154.190 + 50.0994i 0.645147 + 0.209621i 0.613273 0.789871i \(-0.289853\pi\)
0.0318738 + 0.999492i \(0.489853\pi\)
\(240\) 0 0
\(241\) 58.3751i 0.242220i −0.992639 0.121110i \(-0.961355\pi\)
0.992639 0.121110i \(-0.0386454\pi\)
\(242\) 0 0
\(243\) 202.416i 0.832989i
\(244\) 0 0
\(245\) −134.907 73.8293i −0.550642 0.301344i
\(246\) 0 0
\(247\) 8.90351 + 12.2546i 0.0360466 + 0.0496139i
\(248\) 0 0
\(249\) 111.616 36.2662i 0.448257 0.145647i
\(250\) 0 0
\(251\) 216.567 + 157.345i 0.862817 + 0.626873i 0.928650 0.370957i \(-0.120970\pi\)
−0.0658327 + 0.997831i \(0.520970\pi\)
\(252\) 0 0
\(253\) 412.563 + 183.869i 1.63069 + 0.726755i
\(254\) 0 0
\(255\) −4.26344 4.52269i −0.0167194 0.0177360i
\(256\) 0 0
\(257\) −31.3465 + 10.1851i −0.121971 + 0.0396308i −0.369366 0.929284i \(-0.620425\pi\)
0.247396 + 0.968915i \(0.420425\pi\)
\(258\) 0 0
\(259\) 28.4115 + 39.1051i 0.109697 + 0.150985i
\(260\) 0 0
\(261\) −334.479 108.679i −1.28153 0.416393i
\(262\) 0 0
\(263\) 253.267 0.962993 0.481496 0.876448i \(-0.340093\pi\)
0.481496 + 0.876448i \(0.340093\pi\)
\(264\) 0 0
\(265\) 241.498 + 45.5885i 0.911314 + 0.172032i
\(266\) 0 0
\(267\) 40.0909 + 13.0263i 0.150153 + 0.0487877i
\(268\) 0 0
\(269\) −83.0056 + 60.3071i −0.308571 + 0.224190i −0.731283 0.682074i \(-0.761078\pi\)
0.422712 + 0.906264i \(0.361078\pi\)
\(270\) 0 0
\(271\) 307.806 100.012i 1.13581 0.369049i 0.320032 0.947407i \(-0.396306\pi\)
0.815783 + 0.578358i \(0.196306\pi\)
\(272\) 0 0
\(273\) −36.2772 + 49.9313i −0.132884 + 0.182898i
\(274\) 0 0
\(275\) −123.127 245.896i −0.447734 0.894167i
\(276\) 0 0
\(277\) 207.659 + 150.873i 0.749670 + 0.544667i 0.895724 0.444610i \(-0.146658\pi\)
−0.146055 + 0.989277i \(0.546658\pi\)
\(278\) 0 0
\(279\) −40.6605 125.140i −0.145737 0.448531i
\(280\) 0 0
\(281\) −173.801 239.216i −0.618508 0.851304i 0.378735 0.925505i \(-0.376359\pi\)
−0.997243 + 0.0742014i \(0.976359\pi\)
\(282\) 0 0
\(283\) −93.0519 + 286.384i −0.328805 + 1.01196i 0.640888 + 0.767634i \(0.278566\pi\)
−0.969693 + 0.244325i \(0.921434\pi\)
\(284\) 0 0
\(285\) −0.898192 + 4.75804i −0.00315155 + 0.0166949i
\(286\) 0 0
\(287\) 247.668i 0.862956i
\(288\) 0 0
\(289\) −88.7890 + 273.265i −0.307228 + 0.945552i
\(290\) 0 0
\(291\) −106.119 + 77.1001i −0.364671 + 0.264949i
\(292\) 0 0
\(293\) 28.3875 + 87.3679i 0.0968858 + 0.298184i 0.987741 0.156104i \(-0.0498936\pi\)
−0.890855 + 0.454288i \(0.849894\pi\)
\(294\) 0 0
\(295\) −292.096 + 275.352i −0.990155 + 0.933396i
\(296\) 0 0
\(297\) 176.611 37.4712i 0.594651 0.126166i
\(298\) 0 0
\(299\) −362.857 + 499.430i −1.21357 + 1.67034i
\(300\) 0 0
\(301\) −57.4598 176.843i −0.190896 0.587518i
\(302\) 0 0
\(303\) −69.7976 + 50.7109i −0.230355 + 0.167363i
\(304\) 0 0
\(305\) 136.734 249.852i 0.448308 0.819187i
\(306\) 0 0
\(307\) −248.939 −0.810876 −0.405438 0.914123i \(-0.632881\pi\)
−0.405438 + 0.914123i \(0.632881\pi\)
\(308\) 0 0
\(309\) −62.6945 −0.202895
\(310\) 0 0
\(311\) 91.8030 282.541i 0.295186 0.908491i −0.687972 0.725737i \(-0.741499\pi\)
0.983159 0.182754i \(-0.0585011\pi\)
\(312\) 0 0
\(313\) −258.778 356.178i −0.826768 1.13795i −0.988516 0.151116i \(-0.951713\pi\)
0.161749 0.986832i \(-0.448287\pi\)
\(314\) 0 0
\(315\) 171.069 21.9444i 0.543078 0.0696649i
\(316\) 0 0
\(317\) −66.1411 + 91.0354i −0.208647 + 0.287178i −0.900496 0.434864i \(-0.856796\pi\)
0.691849 + 0.722042i \(0.256796\pi\)
\(318\) 0 0
\(319\) −50.2481 + 476.372i −0.157518 + 1.49333i
\(320\) 0 0
\(321\) 81.7032 112.455i 0.254527 0.350327i
\(322\) 0 0
\(323\) −1.23930 + 0.402673i −0.00383684 + 0.00124667i
\(324\) 0 0
\(325\) 363.683 94.8662i 1.11903 0.291896i
\(326\) 0 0
\(327\) 51.1952 157.562i 0.156560 0.481842i
\(328\) 0 0
\(329\) 49.1217i 0.149306i
\(330\) 0 0
\(331\) 581.742 1.75753 0.878765 0.477255i \(-0.158368\pi\)
0.878765 + 0.477255i \(0.158368\pi\)
\(332\) 0 0
\(333\) 86.9252 + 28.2437i 0.261037 + 0.0848159i
\(334\) 0 0
\(335\) 261.232 123.539i 0.779798 0.368773i
\(336\) 0 0
\(337\) −28.0866 86.4418i −0.0833431 0.256504i 0.900698 0.434446i \(-0.143056\pi\)
−0.984041 + 0.177942i \(0.943056\pi\)
\(338\) 0 0
\(339\) −110.280 80.1232i −0.325310 0.236352i
\(340\) 0 0
\(341\) −155.239 + 89.5504i −0.455247 + 0.262611i
\(342\) 0 0
\(343\) −275.595 200.231i −0.803483 0.583765i
\(344\) 0 0
\(345\) −195.732 + 25.1081i −0.567340 + 0.0727772i
\(346\) 0 0
\(347\) 333.877 242.576i 0.962181 0.699065i 0.00852470 0.999964i \(-0.497286\pi\)
0.953656 + 0.300898i \(0.0972865\pi\)
\(348\) 0 0
\(349\) −45.2387 14.6989i −0.129624 0.0421173i 0.243487 0.969904i \(-0.421709\pi\)
−0.373110 + 0.927787i \(0.621709\pi\)
\(350\) 0 0
\(351\) 246.754i 0.703003i
\(352\) 0 0
\(353\) 357.561i 1.01292i −0.862263 0.506460i \(-0.830954\pi\)
0.862263 0.506460i \(-0.169046\pi\)
\(354\) 0 0
\(355\) −101.483 55.5379i −0.285869 0.156445i
\(356\) 0 0
\(357\) −3.12077 4.29537i −0.00874165 0.0120318i
\(358\) 0 0
\(359\) −320.274 + 104.063i −0.892129 + 0.289870i −0.718985 0.695026i \(-0.755393\pi\)
−0.173145 + 0.984896i \(0.555393\pi\)
\(360\) 0 0
\(361\) −291.234 211.594i −0.806742 0.586132i
\(362\) 0 0
\(363\) −47.2246 106.281i −0.130095 0.292785i
\(364\) 0 0
\(365\) 348.406 328.434i 0.954536 0.899819i
\(366\) 0 0
\(367\) −130.509 + 42.4049i −0.355610 + 0.115545i −0.481374 0.876516i \(-0.659862\pi\)
0.125764 + 0.992060i \(0.459862\pi\)
\(368\) 0 0
\(369\) 275.267 + 378.872i 0.745980 + 1.02675i
\(370\) 0 0
\(371\) 199.662 + 64.8740i 0.538172 + 0.174863i
\(372\) 0 0
\(373\) 431.773 1.15757 0.578784 0.815481i \(-0.303527\pi\)
0.578784 + 0.815481i \(0.303527\pi\)
\(374\) 0 0
\(375\) 101.811 + 63.7924i 0.271495 + 0.170113i
\(376\) 0 0
\(377\) −622.645 202.309i −1.65158 0.536630i
\(378\) 0 0
\(379\) −116.541 + 84.6720i −0.307496 + 0.223409i −0.730821 0.682569i \(-0.760863\pi\)
0.423325 + 0.905978i \(0.360863\pi\)
\(380\) 0 0
\(381\) 61.1276 19.8616i 0.160440 0.0521301i
\(382\) 0 0
\(383\) −103.078 + 141.874i −0.269132 + 0.370428i −0.922096 0.386960i \(-0.873525\pi\)
0.652965 + 0.757388i \(0.273525\pi\)
\(384\) 0 0
\(385\) −77.5972 221.725i −0.201551 0.575909i
\(386\) 0 0
\(387\) −284.448 206.664i −0.735008 0.534015i
\(388\) 0 0
\(389\) −18.5717 57.1577i −0.0477421 0.146935i 0.924344 0.381561i \(-0.124613\pi\)
−0.972086 + 0.234626i \(0.924613\pi\)
\(390\) 0 0
\(391\) −31.2150 42.9638i −0.0798338 0.109882i
\(392\) 0 0
\(393\) 14.2527 43.8653i 0.0362664 0.111617i
\(394\) 0 0
\(395\) −339.078 64.0091i −0.858427 0.162048i
\(396\) 0 0
\(397\) 343.378i 0.864931i −0.901650 0.432466i \(-0.857644\pi\)
0.901650 0.432466i \(-0.142356\pi\)
\(398\) 0 0
\(399\) −1.27816 + 3.93377i −0.00320341 + 0.00985908i
\(400\) 0 0
\(401\) −195.989 + 142.394i −0.488751 + 0.355098i −0.804704 0.593677i \(-0.797676\pi\)
0.315953 + 0.948775i \(0.397676\pi\)
\(402\) 0 0
\(403\) −75.6911 232.953i −0.187819 0.578048i
\(404\) 0 0
\(405\) 207.054 195.185i 0.511245 0.481939i
\(406\) 0 0
\(407\) 13.0586 123.801i 0.0320850 0.304179i
\(408\) 0 0
\(409\) −401.623 + 552.787i −0.981964 + 1.35156i −0.0461996 + 0.998932i \(0.514711\pi\)
−0.935765 + 0.352625i \(0.885289\pi\)
\(410\) 0 0
\(411\) −70.7138 217.635i −0.172053 0.529525i
\(412\) 0 0
\(413\) −277.414 + 201.553i −0.671705 + 0.488022i
\(414\) 0 0
\(415\) −535.557 293.089i −1.29050 0.706239i
\(416\) 0 0
\(417\) 57.1360 0.137017
\(418\) 0 0
\(419\) −419.951 −1.00227 −0.501135 0.865369i \(-0.667084\pi\)
−0.501135 + 0.865369i \(0.667084\pi\)
\(420\) 0 0
\(421\) −50.0794 + 154.129i −0.118953 + 0.366101i −0.992751 0.120189i \(-0.961650\pi\)
0.873798 + 0.486290i \(0.161650\pi\)
\(422\) 0 0
\(423\) −54.5954 75.1441i −0.129067 0.177646i
\(424\) 0 0
\(425\) −1.90643 + 32.2767i −0.00448572 + 0.0759451i
\(426\) 0 0
\(427\) 143.008 196.833i 0.334913 0.460968i
\(428\) 0 0
\(429\) 155.491 32.9901i 0.362450 0.0769001i
\(430\) 0 0
\(431\) 23.4210 32.2363i 0.0543412 0.0747942i −0.780982 0.624554i \(-0.785281\pi\)
0.835323 + 0.549760i \(0.185281\pi\)
\(432\) 0 0
\(433\) −236.160 + 76.7332i −0.545405 + 0.177213i −0.568744 0.822515i \(-0.692570\pi\)
0.0233386 + 0.999728i \(0.492570\pi\)
\(434\) 0 0
\(435\) −89.4691 189.189i −0.205676 0.434917i
\(436\) 0 0
\(437\) −12.7846 + 39.3470i −0.0292554 + 0.0900388i
\(438\) 0 0
\(439\) 442.313i 1.00755i −0.863836 0.503773i \(-0.831945\pi\)
0.863836 0.503773i \(-0.168055\pi\)
\(440\) 0 0
\(441\) −248.403 −0.563273
\(442\) 0 0
\(443\) 301.307 + 97.9005i 0.680150 + 0.220994i 0.628661 0.777679i \(-0.283603\pi\)
0.0514892 + 0.998674i \(0.483603\pi\)
\(444\) 0 0
\(445\) −93.7482 198.237i −0.210670 0.445477i
\(446\) 0 0
\(447\) −14.1781 43.6358i −0.0317184 0.0976193i
\(448\) 0 0
\(449\) 400.851 + 291.235i 0.892765 + 0.648631i 0.936597 0.350407i \(-0.113957\pi\)
−0.0438328 + 0.999039i \(0.513957\pi\)
\(450\) 0 0
\(451\) 426.985 473.860i 0.946752 1.05069i
\(452\) 0 0
\(453\) 87.9609 + 63.9073i 0.194174 + 0.141076i
\(454\) 0 0
\(455\) 318.452 40.8504i 0.699895 0.0897812i
\(456\) 0 0
\(457\) −415.704 + 302.027i −0.909637 + 0.660890i −0.940923 0.338620i \(-0.890040\pi\)
0.0312859 + 0.999510i \(0.490040\pi\)
\(458\) 0 0
\(459\) −20.1882 6.55955i −0.0439831 0.0142910i
\(460\) 0 0
\(461\) 563.523i 1.22239i 0.791479 + 0.611196i \(0.209311\pi\)
−0.791479 + 0.611196i \(0.790689\pi\)
\(462\) 0 0
\(463\) 62.4020i 0.134778i −0.997727 0.0673888i \(-0.978533\pi\)
0.997727 0.0673888i \(-0.0214668\pi\)
\(464\) 0 0
\(465\) 37.5888 68.6855i 0.0808362 0.147711i
\(466\) 0 0
\(467\) 41.7495 + 57.4633i 0.0893994 + 0.123048i 0.851374 0.524559i \(-0.175770\pi\)
−0.761975 + 0.647607i \(0.775770\pi\)
\(468\) 0 0
\(469\) 234.764 76.2795i 0.500563 0.162643i
\(470\) 0 0
\(471\) −15.7855 11.4689i −0.0335149 0.0243500i
\(472\) 0 0
\(473\) −194.944 + 437.412i −0.412143 + 0.924762i
\(474\) 0 0
\(475\) 21.2156 13.5782i 0.0446644 0.0285857i
\(476\) 0 0
\(477\) 377.536 122.669i 0.791481 0.257168i
\(478\) 0 0
\(479\) 364.475 + 501.657i 0.760908 + 1.04730i 0.997138 + 0.0756030i \(0.0240882\pi\)
−0.236230 + 0.971697i \(0.575912\pi\)
\(480\) 0 0
\(481\) 161.815 + 52.5768i 0.336413 + 0.109307i
\(482\) 0 0
\(483\) −168.569 −0.349004
\(484\) 0 0
\(485\) 670.511 + 126.575i 1.38250 + 0.260979i
\(486\) 0 0
\(487\) 636.038 + 206.661i 1.30603 + 0.424356i 0.877676 0.479254i \(-0.159093\pi\)
0.428356 + 0.903610i \(0.359093\pi\)
\(488\) 0 0
\(489\) −183.750 + 133.502i −0.375767 + 0.273010i
\(490\) 0 0
\(491\) −70.3857 + 22.8697i −0.143352 + 0.0465778i −0.379814 0.925063i \(-0.624012\pi\)
0.236462 + 0.971641i \(0.424012\pi\)
\(492\) 0 0
\(493\) 33.1040 45.5637i 0.0671480 0.0924213i
\(494\) 0 0
\(495\) −365.137 252.941i −0.737650 0.510992i
\(496\) 0 0
\(497\) −79.9486 58.0861i −0.160862 0.116873i
\(498\) 0 0
\(499\) 112.583 + 346.494i 0.225617 + 0.694377i 0.998228 + 0.0594979i \(0.0189500\pi\)
−0.772612 + 0.634879i \(0.781050\pi\)
\(500\) 0 0
\(501\) −177.358 244.112i −0.354007 0.487249i
\(502\) 0 0
\(503\) −57.0752 + 175.659i −0.113470 + 0.349224i −0.991625 0.129152i \(-0.958774\pi\)
0.878155 + 0.478376i \(0.158774\pi\)
\(504\) 0 0
\(505\) 441.014 + 83.2519i 0.873296 + 0.164855i
\(506\) 0 0
\(507\) 54.8094i 0.108105i
\(508\) 0 0
\(509\) 191.374 588.989i 0.375981 1.15715i −0.566834 0.823832i \(-0.691832\pi\)
0.942815 0.333317i \(-0.108168\pi\)
\(510\) 0 0
\(511\) 330.894 240.408i 0.647542 0.470467i
\(512\) 0 0
\(513\) 5.11016 + 15.7275i 0.00996132 + 0.0306578i
\(514\) 0 0
\(515\) 223.713 + 237.317i 0.434394 + 0.460809i
\(516\) 0 0
\(517\) −84.6867 + 93.9837i −0.163804 + 0.181787i
\(518\) 0 0
\(519\) 90.9001 125.113i 0.175145 0.241066i
\(520\) 0 0
\(521\) −47.0758 144.884i −0.0903566 0.278089i 0.895659 0.444741i \(-0.146704\pi\)
−0.986016 + 0.166652i \(0.946704\pi\)
\(522\) 0 0
\(523\) 461.681 335.431i 0.882755 0.641359i −0.0512241 0.998687i \(-0.516312\pi\)
0.933979 + 0.357328i \(0.116312\pi\)
\(524\) 0 0
\(525\) 79.3287 + 65.1156i 0.151102 + 0.124030i
\(526\) 0 0
\(527\) 21.0712 0.0399834
\(528\) 0 0
\(529\) −1157.09 −2.18731
\(530\) 0 0
\(531\) −200.363 + 616.654i −0.377331 + 1.16131i
\(532\) 0 0
\(533\) 512.419 + 705.285i 0.961387 + 1.32324i
\(534\) 0 0
\(535\) −717.216 + 92.0030i −1.34059 + 0.171968i
\(536\) 0 0
\(537\) 111.094 152.908i 0.206879 0.284744i
\(538\) 0 0
\(539\) 70.2203 + 330.966i 0.130279 + 0.614037i
\(540\) 0 0
\(541\) 425.162 585.185i 0.785881 1.08167i −0.208728 0.977974i \(-0.566932\pi\)
0.994609 0.103698i \(-0.0330677\pi\)
\(542\) 0 0
\(543\) 68.1910 22.1566i 0.125582 0.0408040i
\(544\) 0 0
\(545\) −779.099 + 368.443i −1.42954 + 0.676041i
\(546\) 0 0
\(547\) −304.021 + 935.680i −0.555797 + 1.71057i 0.138033 + 0.990428i \(0.455922\pi\)
−0.693830 + 0.720139i \(0.744078\pi\)
\(548\) 0 0
\(549\) 460.050i 0.837979i
\(550\) 0 0
\(551\) −43.8755 −0.0796288
\(552\) 0 0
\(553\) −280.337 91.0872i −0.506939 0.164715i
\(554\) 0 0
\(555\) 23.2515 + 49.1670i 0.0418946 + 0.0885891i
\(556\) 0 0
\(557\) 179.275 + 551.752i 0.321858 + 0.990578i 0.972839 + 0.231483i \(0.0743579\pi\)
−0.650981 + 0.759094i \(0.725642\pi\)
\(558\) 0 0
\(559\) −529.511 384.713i −0.947247 0.688216i
\(560\) 0 0
\(561\) −1.43438 + 13.5985i −0.00255683 + 0.0242398i
\(562\) 0 0
\(563\) 758.285 + 550.926i 1.34687 + 0.978555i 0.999161 + 0.0409508i \(0.0130387\pi\)
0.347704 + 0.937604i \(0.386961\pi\)
\(564\) 0 0
\(565\) 90.2238 + 703.346i 0.159688 + 1.24486i
\(566\) 0 0
\(567\) 196.647 142.872i 0.346820 0.251980i
\(568\) 0 0
\(569\) 645.256 + 209.656i 1.13402 + 0.368465i 0.815101 0.579318i \(-0.196681\pi\)
0.318916 + 0.947783i \(0.396681\pi\)
\(570\) 0 0
\(571\) 278.056i 0.486964i −0.969905 0.243482i \(-0.921710\pi\)
0.969905 0.243482i \(-0.0782896\pi\)
\(572\) 0 0
\(573\) 104.068i 0.181619i
\(574\) 0 0
\(575\) 793.474 + 651.309i 1.37995 + 1.13271i
\(576\) 0 0
\(577\) 384.907 + 529.779i 0.667084 + 0.918162i 0.999690 0.0249041i \(-0.00792803\pi\)
−0.332606 + 0.943066i \(0.607928\pi\)
\(578\) 0 0
\(579\) 98.6573 32.0557i 0.170392 0.0553639i
\(580\) 0 0
\(581\) −421.912 306.537i −0.726183 0.527603i
\(582\) 0 0
\(583\) −270.165 468.343i −0.463405 0.803332i
\(584\) 0 0
\(585\) 441.751 416.429i 0.755131 0.711845i
\(586\) 0 0
\(587\) 329.847 107.174i 0.561920 0.182579i −0.0142650 0.999898i \(-0.504541\pi\)
0.576185 + 0.817319i \(0.304541\pi\)
\(588\) 0 0
\(589\) −9.64870 13.2803i −0.0163815 0.0225472i
\(590\) 0 0
\(591\) 271.290 + 88.1476i 0.459036 + 0.149150i
\(592\) 0 0
\(593\) −1009.02 −1.70156 −0.850778 0.525525i \(-0.823869\pi\)
−0.850778 + 0.525525i \(0.823869\pi\)
\(594\) 0 0
\(595\) −5.12335 + 27.1402i −0.00861067 + 0.0456137i
\(596\) 0 0
\(597\) −261.890 85.0932i −0.438677 0.142535i
\(598\) 0 0
\(599\) 442.754 321.680i 0.739156 0.537028i −0.153291 0.988181i \(-0.548987\pi\)
0.892447 + 0.451153i \(0.148987\pi\)
\(600\) 0 0
\(601\) −54.8311 + 17.8157i −0.0912331 + 0.0296434i −0.354278 0.935140i \(-0.615273\pi\)
0.263045 + 0.964784i \(0.415273\pi\)
\(602\) 0 0
\(603\) 274.352 377.613i 0.454979 0.626224i
\(604\) 0 0
\(605\) −233.793 + 558.002i −0.386434 + 0.922317i
\(606\) 0 0
\(607\) 134.438 + 97.6753i 0.221480 + 0.160915i 0.692993 0.720945i \(-0.256292\pi\)
−0.471513 + 0.881859i \(0.656292\pi\)
\(608\) 0 0
\(609\) −55.2429 170.020i −0.0907109 0.279179i
\(610\) 0 0
\(611\) −101.631 139.884i −0.166336 0.228942i
\(612\) 0 0
\(613\) 114.099 351.162i 0.186133 0.572858i −0.813833 0.581099i \(-0.802623\pi\)
0.999966 + 0.00824040i \(0.00262303\pi\)
\(614\) 0 0
\(615\) −51.6933 + 273.837i −0.0840541 + 0.445264i
\(616\) 0 0
\(617\) 616.728i 0.999560i 0.866152 + 0.499780i \(0.166586\pi\)
−0.866152 + 0.499780i \(0.833414\pi\)
\(618\) 0 0
\(619\) 174.888 538.249i 0.282533 0.869546i −0.704595 0.709610i \(-0.748871\pi\)
0.987127 0.159936i \(-0.0511289\pi\)
\(620\) 0 0
\(621\) −545.236 + 396.137i −0.877997 + 0.637902i
\(622\) 0 0
\(623\) −57.8851 178.152i −0.0929134 0.285958i
\(624\) 0 0
\(625\) −121.819 613.013i −0.194910 0.980821i
\(626\) 0 0
\(627\) 9.22738 5.32285i 0.0147167 0.00848939i
\(628\) 0 0
\(629\) −8.60315 + 11.8412i −0.0136775 + 0.0188255i
\(630\) 0 0
\(631\) 331.356 + 1019.81i 0.525129 + 1.61618i 0.764060 + 0.645145i \(0.223203\pi\)
−0.238931 + 0.971036i \(0.576797\pi\)
\(632\) 0 0
\(633\) 65.3498 47.4794i 0.103238 0.0750069i
\(634\) 0 0
\(635\) −293.304 160.513i −0.461896 0.252777i
\(636\) 0 0
\(637\) −462.412 −0.725922
\(638\) 0 0
\(639\) −186.861 −0.292427
\(640\) 0 0
\(641\) −122.164 + 375.981i −0.190583 + 0.586554i −1.00000 0.000680333i \(-0.999783\pi\)
0.809417 + 0.587235i \(0.199783\pi\)
\(642\) 0 0
\(643\) −35.8968 49.4077i −0.0558271 0.0768394i 0.780191 0.625542i \(-0.215122\pi\)
−0.836018 + 0.548702i \(0.815122\pi\)
\(644\) 0 0
\(645\) −26.6204 207.521i −0.0412720 0.321739i
\(646\) 0 0
\(647\) 321.833 442.965i 0.497423 0.684644i −0.484312 0.874895i \(-0.660930\pi\)
0.981735 + 0.190251i \(0.0609302\pi\)
\(648\) 0 0
\(649\) 878.253 + 92.6388i 1.35324 + 0.142741i
\(650\) 0 0
\(651\) 39.3135 54.1104i 0.0603894 0.0831189i
\(652\) 0 0
\(653\) −487.975 + 158.553i −0.747282 + 0.242807i −0.657811 0.753183i \(-0.728518\pi\)
−0.0894710 + 0.995989i \(0.528518\pi\)
\(654\) 0 0
\(655\) −216.901 + 102.574i −0.331146 + 0.156602i
\(656\) 0 0
\(657\) 238.989 735.532i 0.363758 1.11953i
\(658\) 0 0
\(659\) 1150.26i 1.74546i −0.488206 0.872729i \(-0.662348\pi\)
0.488206 0.872729i \(-0.337652\pi\)
\(660\) 0 0
\(661\) 611.853 0.925648 0.462824 0.886450i \(-0.346836\pi\)
0.462824 + 0.886450i \(0.346836\pi\)
\(662\) 0 0
\(663\) −17.7740 5.77512i −0.0268084 0.00871059i
\(664\) 0 0
\(665\) 19.4513 9.19869i 0.0292501 0.0138326i
\(666\) 0 0
\(667\) −552.559 1700.60i −0.828424 2.54963i
\(668\) 0 0
\(669\) −37.0170 26.8944i −0.0553319 0.0402010i
\(670\) 0 0
\(671\) −612.959 + 130.050i −0.913501 + 0.193815i
\(672\) 0 0
\(673\) 1030.45 + 748.663i 1.53112 + 1.11243i 0.955610 + 0.294635i \(0.0951982\pi\)
0.575514 + 0.817792i \(0.304802\pi\)
\(674\) 0 0
\(675\) 409.610 + 24.1937i 0.606830 + 0.0358426i
\(676\) 0 0
\(677\) −1080.77 + 785.228i −1.59642 + 1.15986i −0.702448 + 0.711735i \(0.747909\pi\)
−0.893969 + 0.448129i \(0.852091\pi\)
\(678\) 0 0
\(679\) 554.354 + 180.121i 0.816427 + 0.265273i
\(680\) 0 0
\(681\) 325.002i 0.477242i
\(682\) 0 0
\(683\) 387.608i 0.567508i 0.958897 + 0.283754i \(0.0915798\pi\)
−0.958897 + 0.283754i \(0.908420\pi\)
\(684\) 0 0
\(685\) −571.481 + 1044.26i −0.834279 + 1.52447i
\(686\) 0 0
\(687\) 88.7233 + 122.117i 0.129146 + 0.177754i
\(688\) 0 0
\(689\) 702.799 228.353i 1.02003 0.331427i
\(690\) 0 0
\(691\) 743.792 + 540.397i 1.07640 + 0.782050i 0.977052 0.213002i \(-0.0683242\pi\)
0.0993482 + 0.995053i \(0.468324\pi\)
\(692\) 0 0
\(693\) −281.882 253.998i −0.406756 0.366519i
\(694\) 0 0
\(695\) −203.879 216.276i −0.293351 0.311189i
\(696\) 0 0
\(697\) −71.3248 + 23.1748i −0.102331 + 0.0332494i
\(698\) 0 0
\(699\) −88.4273 121.710i −0.126505 0.174120i
\(700\) 0 0
\(701\) −914.052 296.994i −1.30393 0.423671i −0.426980 0.904261i \(-0.640423\pi\)
−0.876946 + 0.480590i \(0.840423\pi\)
\(702\) 0 0
\(703\) 11.4025 0.0162197
\(704\) 0 0
\(705\) 10.2527 54.3119i 0.0145428 0.0770382i
\(706\) 0 0
\(707\) 364.614 + 118.470i 0.515720 + 0.167568i
\(708\) 0 0
\(709\) 177.278 128.800i 0.250039 0.181664i −0.455705 0.890131i \(-0.650613\pi\)
0.705744 + 0.708467i \(0.250613\pi\)
\(710\) 0 0
\(711\) −530.085 + 172.235i −0.745548 + 0.242243i
\(712\) 0 0
\(713\) 393.227 541.231i 0.551511 0.759090i
\(714\) 0 0
\(715\) −679.716 470.859i −0.950652 0.658544i
\(716\) 0 0
\(717\) 126.068 + 91.5937i 0.175827 + 0.127746i
\(718\) 0 0
\(719\) −380.993 1172.58i −0.529893 1.63084i −0.754431 0.656379i \(-0.772087\pi\)
0.224538 0.974465i \(-0.427913\pi\)
\(720\) 0 0
\(721\) 163.754 + 225.389i 0.227121 + 0.312605i
\(722\) 0 0
\(723\) 17.3383 53.3618i 0.0239811 0.0738061i
\(724\) 0 0
\(725\) −396.882 + 1013.75i −0.547423 + 1.39828i
\(726\) 0 0
\(727\) 890.664i 1.22512i −0.790423 0.612561i \(-0.790139\pi\)
0.790423 0.612561i \(-0.209861\pi\)
\(728\) 0 0
\(729\) 98.1546 302.089i 0.134643 0.414388i
\(730\) 0 0
\(731\) 45.5515 33.0951i 0.0623140 0.0452738i
\(732\) 0 0
\(733\) −306.920 944.601i −0.418717 1.28868i −0.908884 0.417050i \(-0.863064\pi\)
0.490167 0.871629i \(-0.336936\pi\)
\(734\) 0 0
\(735\) −101.393 107.558i −0.137949 0.146338i
\(736\) 0 0
\(737\) −580.678 258.793i −0.787894 0.351144i
\(738\) 0 0
\(739\) −306.583 + 421.976i −0.414862 + 0.571009i −0.964396 0.264463i \(-0.914805\pi\)
0.549534 + 0.835472i \(0.314805\pi\)
\(740\) 0 0
\(741\) 4.49906 + 13.8467i 0.00607160 + 0.0186865i
\(742\) 0 0
\(743\) 354.813 257.787i 0.477541 0.346954i −0.322832 0.946456i \(-0.604635\pi\)
0.800373 + 0.599502i \(0.204635\pi\)
\(744\) 0 0
\(745\) −114.582 + 209.374i −0.153802 + 0.281039i
\(746\) 0 0
\(747\) −986.117 −1.32010
\(748\) 0 0
\(749\) −617.682 −0.824676
\(750\) 0 0
\(751\) 278.184 856.163i 0.370418 1.14003i −0.576099 0.817380i \(-0.695426\pi\)
0.946518 0.322651i \(-0.104574\pi\)
\(752\) 0 0
\(753\) 151.234 + 208.156i 0.200842 + 0.276436i
\(754\) 0 0
\(755\) −71.9637 560.998i −0.0953162 0.743044i
\(756\) 0 0
\(757\) 833.954 1147.84i 1.10166 1.51630i 0.268487 0.963283i \(-0.413476\pi\)
0.833170 0.553017i \(-0.186524\pi\)
\(758\) 0 0
\(759\) 322.520 + 290.616i 0.424928 + 0.382893i
\(760\) 0 0
\(761\) −172.382 + 237.263i −0.226520 + 0.311778i −0.907116 0.420881i \(-0.861721\pi\)
0.680596 + 0.732659i \(0.261721\pi\)
\(762\) 0 0
\(763\) −700.160 + 227.496i −0.917641 + 0.298160i
\(764\) 0 0
\(765\) 22.3270 + 47.2121i 0.0291856 + 0.0617151i
\(766\) 0 0
\(767\) −372.983 + 1147.92i −0.486289 + 1.49664i
\(768\) 0 0
\(769\) 538.221i 0.699897i −0.936769 0.349949i \(-0.886199\pi\)
0.936769 0.349949i \(-0.113801\pi\)
\(770\) 0 0
\(771\) −31.6796 −0.0410890
\(772\) 0 0
\(773\) −428.301 139.163i −0.554076 0.180030i 0.0185777 0.999827i \(-0.494086\pi\)
−0.572654 + 0.819797i \(0.694086\pi\)
\(774\) 0 0
\(775\) −394.122 + 102.806i −0.508545 + 0.132653i
\(776\) 0 0
\(777\) 14.3567 + 44.1853i 0.0184771 + 0.0568666i
\(778\) 0 0
\(779\) 47.2664 + 34.3410i 0.0606757 + 0.0440835i
\(780\) 0 0
\(781\) 52.8229 + 248.968i 0.0676350 + 0.318781i
\(782\) 0 0
\(783\) −578.231 420.109i −0.738481 0.536538i
\(784\) 0 0
\(785\) 12.9147 + 100.677i 0.0164518 + 0.128251i
\(786\) 0 0
\(787\) 412.227 299.500i 0.523795 0.380560i −0.294236 0.955733i \(-0.595065\pi\)
0.818032 + 0.575173i \(0.195065\pi\)
\(788\) 0 0
\(789\) 231.516 + 75.2242i 0.293430 + 0.0953412i
\(790\) 0 0
\(791\) 605.737i 0.765787i
\(792\) 0 0
\(793\) 856.401i 1.07995i
\(794\) 0 0
\(795\) 207.218 + 113.402i 0.260651 + 0.142644i
\(796\) 0 0
\(797\) 121.019 + 166.568i 0.151843 + 0.208994i 0.878161 0.478364i \(-0.158770\pi\)
−0.726318 + 0.687358i \(0.758770\pi\)
\(798\) 0 0
\(799\) 14.1463 4.59642i 0.0177050 0.00575271i
\(800\) 0 0
\(801\) −286.554 208.193i −0.357745 0.259917i
\(802\) 0 0
\(803\) −1047.56 110.498i −1.30456 0.137606i
\(804\) 0 0
\(805\) 601.505 + 638.082i 0.747212 + 0.792648i
\(806\) 0 0
\(807\) −93.7892 + 30.4740i −0.116220 + 0.0377620i
\(808\) 0 0
\(809\) 223.593 + 307.749i 0.276382 + 0.380407i 0.924531 0.381106i \(-0.124457\pi\)
−0.648149 + 0.761513i \(0.724457\pi\)
\(810\) 0 0
\(811\) −797.193 259.024i −0.982976 0.319388i −0.226933 0.973910i \(-0.572870\pi\)
−0.756043 + 0.654522i \(0.772870\pi\)
\(812\) 0 0
\(813\) 311.076 0.382628
\(814\) 0 0
\(815\) 1161.02 + 219.170i 1.42456 + 0.268920i
\(816\) 0 0
\(817\) −41.7169 13.5546i −0.0510610 0.0165907i
\(818\) 0 0
\(819\) 419.548 304.819i 0.512268 0.372185i
\(820\) 0 0
\(821\) −598.485 + 194.460i −0.728971 + 0.236857i −0.649908 0.760013i \(-0.725193\pi\)
−0.0790628 + 0.996870i \(0.525193\pi\)
\(822\) 0 0
\(823\) 307.672 423.474i 0.373842 0.514549i −0.580098 0.814547i \(-0.696986\pi\)
0.953940 + 0.299997i \(0.0969858\pi\)
\(824\) 0 0
\(825\) −39.5178 261.349i −0.0479004 0.316786i
\(826\) 0 0
\(827\) 846.428 + 614.966i 1.02349 + 0.743610i 0.966996 0.254793i \(-0.0820072\pi\)
0.0564959 + 0.998403i \(0.482007\pi\)
\(828\) 0 0
\(829\) −502.733 1547.25i −0.606433 1.86641i −0.486621 0.873613i \(-0.661771\pi\)
−0.119812 0.992797i \(-0.538229\pi\)
\(830\) 0 0
\(831\) 145.013 + 199.593i 0.174504 + 0.240185i
\(832\) 0 0
\(833\) 12.2925 37.8324i 0.0147569 0.0454170i
\(834\) 0 0
\(835\) −291.167 + 1542.42i −0.348703 + 1.84720i
\(836\) 0 0
\(837\) 267.407i 0.319482i
\(838\) 0 0
\(839\) 425.628 1309.95i 0.507303 1.56132i −0.289560 0.957160i \(-0.593509\pi\)
0.796863 0.604159i \(-0.206491\pi\)
\(840\) 0 0
\(841\) 853.777 620.305i 1.01519 0.737581i
\(842\) 0 0
\(843\) −87.8238 270.294i −0.104180 0.320633i
\(844\) 0 0
\(845\) 207.469 195.576i 0.245526 0.231451i
\(846\) 0 0
\(847\) −258.736 + 447.374i −0.305473 + 0.528186i
\(848\) 0 0
\(849\) −170.121 + 234.152i −0.200378 + 0.275797i
\(850\) 0 0
\(851\) 143.601 + 441.957i 0.168743 + 0.519339i
\(852\) 0 0
\(853\) −1116.69 + 811.322i −1.30913 + 0.951139i −0.309131 + 0.951020i \(0.600038\pi\)
−1.00000 0.000119552i \(0.999962\pi\)
\(854\) 0 0
\(855\) 19.5320 35.6906i 0.0228445 0.0417433i
\(856\) 0 0
\(857\) 505.150 0.589439 0.294720 0.955584i \(-0.404774\pi\)
0.294720 + 0.955584i \(0.404774\pi\)
\(858\) 0 0
\(859\) −862.922 −1.00457 −0.502283 0.864703i \(-0.667506\pi\)
−0.502283 + 0.864703i \(0.667506\pi\)
\(860\) 0 0
\(861\) −73.5613 + 226.399i −0.0854371 + 0.262948i
\(862\) 0 0
\(863\) 546.796 + 752.600i 0.633599 + 0.872074i 0.998254 0.0590686i \(-0.0188131\pi\)
−0.364655 + 0.931143i \(0.618813\pi\)
\(864\) 0 0
\(865\) −797.949 + 102.359i −0.922484 + 0.118334i
\(866\) 0 0
\(867\) −162.328 + 223.425i −0.187229 + 0.257699i
\(868\) 0 0
\(869\) 379.329 + 657.583i 0.436512 + 0.756712i
\(870\) 0 0
\(871\) 510.717 702.942i 0.586357 0.807051i
\(872\) 0 0
\(873\) 1048.22 340.586i 1.20071 0.390133i
\(874\) 0 0
\(875\) −36.5878 532.634i −0.0418147 0.608725i
\(876\) 0 0
\(877\) 68.0553 209.453i 0.0776002 0.238829i −0.904730 0.425986i \(-0.859927\pi\)
0.982330 + 0.187157i \(0.0599273\pi\)
\(878\) 0 0
\(879\) 88.2962i 0.100451i
\(880\) 0 0
\(881\) 960.629 1.09038 0.545192 0.838311i \(-0.316457\pi\)
0.545192 + 0.838311i \(0.316457\pi\)
\(882\) 0 0
\(883\) 1493.76 + 485.353i 1.69169 + 0.549664i 0.987122 0.159970i \(-0.0511397\pi\)
0.704571 + 0.709634i \(0.251140\pi\)
\(884\) 0 0
\(885\) −348.794 + 164.948i −0.394118 + 0.186382i
\(886\) 0 0
\(887\) −166.789 513.323i −0.188037 0.578718i 0.811951 0.583726i \(-0.198406\pi\)
−0.999987 + 0.00500809i \(0.998406\pi\)
\(888\) 0 0
\(889\) −231.065 167.878i −0.259915 0.188839i
\(890\) 0 0
\(891\) −622.556 65.6677i −0.698716 0.0737011i
\(892\) 0 0
\(893\) −9.37465 6.81108i −0.0104979 0.00762719i
\(894\) 0 0
\(895\) −975.217 + 125.099i −1.08963 + 0.139775i
\(896\) 0 0
\(897\) −480.033 + 348.765i −0.535154 + 0.388812i
\(898\) 0 0
\(899\) 674.758 + 219.242i 0.750565 + 0.243873i
\(900\) 0 0
\(901\) 63.5700i 0.0705549i
\(902\) 0 0
\(903\) 178.722i 0.197920i
\(904\) 0 0
\(905\) −327.195 179.061i −0.361542 0.197857i
\(906\) 0 0
\(907\) −20.1600 27.7479i −0.0222272 0.0305931i 0.797759 0.602977i \(-0.206019\pi\)
−0.819986 + 0.572384i \(0.806019\pi\)
\(908\) 0 0
\(909\) 689.442 224.013i 0.758462 0.246439i
\(910\) 0 0
\(911\) −544.545 395.635i −0.597744 0.434286i 0.247333 0.968930i \(-0.420446\pi\)
−0.845077 + 0.534644i \(0.820446\pi\)
\(912\) 0 0
\(913\) 278.762 + 1313.88i 0.305325 + 1.43908i
\(914\) 0 0
\(915\) 199.201 187.782i 0.217706 0.205227i
\(916\) 0 0
\(917\) −194.924 + 63.3347i −0.212567 + 0.0690673i
\(918\) 0 0
\(919\) 811.651 + 1117.14i 0.883189 + 1.21561i 0.975527 + 0.219878i \(0.0705660\pi\)
−0.0923378 + 0.995728i \(0.529434\pi\)
\(920\) 0 0
\(921\) −227.560 73.9387i −0.247079 0.0802809i
\(922\) 0 0
\(923\) −347.848 −0.376867
\(924\) 0 0
\(925\) 103.143 263.456i 0.111506 0.284817i
\(926\) 0 0
\(927\) 501.008 + 162.787i 0.540462 + 0.175607i
\(928\) 0 0
\(929\) −273.826 + 198.946i −0.294754 + 0.214151i −0.725327 0.688404i \(-0.758311\pi\)
0.430573 + 0.902556i \(0.358311\pi\)
\(930\) 0 0
\(931\) −29.4729 + 9.57634i −0.0316573 + 0.0102861i
\(932\) 0 0
\(933\) 167.838 231.009i 0.179890 0.247598i
\(934\) 0 0
\(935\) 56.5926 43.0941i 0.0605268 0.0460900i
\(936\) 0 0
\(937\) 943.696 + 685.635i 1.00715 + 0.731734i 0.963609 0.267317i \(-0.0861372\pi\)
0.0435375 + 0.999052i \(0.486137\pi\)
\(938\) 0 0
\(939\) −130.764 402.450i −0.139259 0.428594i
\(940\) 0 0
\(941\) 552.765 + 760.816i 0.587423 + 0.808519i 0.994485 0.104882i \(-0.0334465\pi\)
−0.407061 + 0.913401i \(0.633446\pi\)
\(942\) 0 0
\(943\) −735.786 + 2264.52i −0.780261 + 2.40140i
\(944\) 0 0
\(945\) 344.425 + 65.0184i 0.364471 + 0.0688025i
\(946\) 0 0
\(947\) 1015.36i 1.07219i 0.844158 + 0.536094i \(0.180101\pi\)
−0.844158 + 0.536094i \(0.819899\pi\)
\(948\) 0 0
\(949\) 444.887 1369.22i 0.468795 1.44280i
\(950\) 0 0
\(951\) −87.4997 + 63.5723i −0.0920081 + 0.0668478i
\(952\) 0 0
\(953\) 309.621 + 952.916i 0.324891 + 0.999911i 0.971490 + 0.237081i \(0.0761908\pi\)
−0.646599 + 0.762830i \(0.723809\pi\)
\(954\) 0 0
\(955\) 393.926 371.345i 0.412488 0.388843i
\(956\) 0 0
\(957\) −187.423 + 420.537i −0.195844 + 0.439432i
\(958\) 0 0
\(959\) −597.703 + 822.667i −0.623256 + 0.857838i
\(960\) 0 0
\(961\) −214.939 661.514i −0.223662 0.688361i
\(962\) 0 0
\(963\) −944.902 + 686.512i −0.981207 + 0.712889i
\(964\) 0 0
\(965\) −473.379 259.061i −0.490548 0.268458i
\(966\) 0 0
\(967\) 232.078 0.239998 0.119999 0.992774i \(-0.461711\pi\)
0.119999 + 0.992774i \(0.461711\pi\)
\(968\) 0 0
\(969\) −1.25247 −0.00129254
\(970\) 0 0
\(971\) −419.736 + 1291.82i −0.432272 + 1.33040i 0.463584 + 0.886053i \(0.346563\pi\)
−0.895856 + 0.444344i \(0.853437\pi\)
\(972\) 0 0
\(973\) −149.236 205.406i −0.153377 0.211105i
\(974\) 0 0
\(975\) 360.627 + 21.3005i 0.369873 + 0.0218467i
\(976\) 0 0
\(977\) 664.629 914.784i 0.680276 0.936319i −0.319661 0.947532i \(-0.603569\pi\)
0.999937 + 0.0112126i \(0.00356914\pi\)
\(978\) 0 0
\(979\) −196.387 + 440.650i −0.200599 + 0.450102i
\(980\) 0 0
\(981\) −818.227 + 1126.19i −0.834075 + 1.14801i
\(982\) 0 0
\(983\) 1218.75 395.995i 1.23982 0.402843i 0.385560 0.922683i \(-0.374008\pi\)
0.854264 + 0.519839i \(0.174008\pi\)
\(984\) 0 0
\(985\) −634.383 1341.45i −0.644044 1.36188i
\(986\) 0 0
\(987\) 14.5899 44.9031i 0.0147821 0.0454945i
\(988\) 0 0
\(989\) 1787.64i 1.80752i
\(990\) 0 0
\(991\) 631.835 0.637573 0.318786 0.947827i \(-0.396725\pi\)
0.318786 + 0.947827i \(0.396725\pi\)
\(992\) 0 0
\(993\) 531.782 + 172.786i 0.535531 + 0.174004i
\(994\) 0 0
\(995\) 612.401 + 1294.97i 0.615478 + 1.30147i
\(996\) 0 0
\(997\) −135.041 415.614i −0.135448 0.416865i 0.860212 0.509937i \(-0.170331\pi\)
−0.995659 + 0.0930720i \(0.970331\pi\)
\(998\) 0 0
\(999\) 150.272 + 109.179i 0.150423 + 0.109288i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 220.3.q.a.29.8 yes 48
5.4 even 2 inner 220.3.q.a.29.5 48
11.8 odd 10 inner 220.3.q.a.129.5 yes 48
55.19 odd 10 inner 220.3.q.a.129.8 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
220.3.q.a.29.5 48 5.4 even 2 inner
220.3.q.a.29.8 yes 48 1.1 even 1 trivial
220.3.q.a.129.5 yes 48 11.8 odd 10 inner
220.3.q.a.129.8 yes 48 55.19 odd 10 inner