Properties

Label 220.3.s.a.31.8
Level $220$
Weight $3$
Character 220.31
Analytic conductor $5.995$
Analytic rank $0$
Dimension $96$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [220,3,Mod(31,220)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(220, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([5, 0, 6]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("220.31");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 220 = 2^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 220.s (of order \(10\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.99456581593\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(24\) over \(\Q(\zeta_{10})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 31.8
Character \(\chi\) \(=\) 220.31
Dual form 220.3.s.a.71.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.874978 + 1.79845i) q^{2} +(0.667552 + 0.918806i) q^{3} +(-2.46883 - 3.14721i) q^{4} +(0.690983 + 2.12663i) q^{5} +(-2.23652 + 0.396621i) q^{6} +(4.67079 - 6.42880i) q^{7} +(7.82025 - 1.68632i) q^{8} +(2.38257 - 7.33281i) q^{9} +(-4.42922 - 0.618056i) q^{10} +(10.9722 - 0.781521i) q^{11} +(1.24360 - 4.36929i) q^{12} +(-1.80740 + 5.56259i) q^{13} +(7.47501 + 14.0252i) q^{14} +(-1.49269 + 2.05451i) q^{15} +(-3.80980 + 15.5398i) q^{16} +(-7.64225 - 23.5204i) q^{17} +(11.1030 + 10.7010i) q^{18} +(21.0474 + 28.9693i) q^{19} +(4.98702 - 7.42494i) q^{20} +9.02481 q^{21} +(-8.19492 + 20.4167i) q^{22} -0.700934i q^{23} +(6.76982 + 6.05959i) q^{24} +(-4.04508 + 2.93893i) q^{25} +(-8.42260 - 8.11765i) q^{26} +(18.0490 - 5.86448i) q^{27} +(-31.7641 + 1.17163i) q^{28} +(-4.33244 - 3.14770i) q^{29} +(-2.38886 - 4.48218i) q^{30} +(14.3708 + 4.66937i) q^{31} +(-24.6140 - 20.4487i) q^{32} +(8.04258 + 9.55962i) q^{33} +(48.9871 + 6.83568i) q^{34} +(16.8991 + 5.49085i) q^{35} +(-28.9600 + 10.6050i) q^{36} +(19.8276 + 14.4056i) q^{37} +(-70.5157 + 12.5052i) q^{38} +(-6.31747 + 2.05267i) q^{39} +(8.98983 + 15.4655i) q^{40} +(-4.56575 + 3.31721i) q^{41} +(-7.89652 + 16.2307i) q^{42} +32.1162i q^{43} +(-29.5481 - 32.6023i) q^{44} +17.2405 q^{45} +(1.26059 + 0.613302i) q^{46} +(-16.5912 - 22.8359i) q^{47} +(-16.8213 + 6.87315i) q^{48} +(-4.37127 - 13.4534i) q^{49} +(-1.74614 - 9.84637i) q^{50} +(16.5091 - 22.7229i) q^{51} +(21.9688 - 8.04482i) q^{52} +(-17.1581 + 52.8071i) q^{53} +(-5.24554 + 37.5915i) q^{54} +(9.24361 + 22.7938i) q^{55} +(25.6858 - 58.1512i) q^{56} +(-12.5669 + 38.6770i) q^{57} +(9.45176 - 5.03749i) q^{58} +(64.5303 - 88.8183i) q^{59} +(10.1512 - 0.374429i) q^{60} +(-17.6349 - 54.2745i) q^{61} +(-20.9718 + 21.7596i) q^{62} +(-36.0126 - 49.5671i) q^{63} +(58.3127 - 26.3748i) q^{64} -13.0784 q^{65} +(-24.2296 + 6.09969i) q^{66} -69.6011i q^{67} +(-55.1562 + 82.1196i) q^{68} +(0.644022 - 0.467910i) q^{69} +(-24.6613 + 25.5878i) q^{70} +(60.6265 - 19.6987i) q^{71} +(6.26689 - 61.3622i) q^{72} +(-62.6736 - 45.5351i) q^{73} +(-43.2565 + 23.0543i) q^{74} +(-5.40061 - 1.75476i) q^{75} +(39.2099 - 137.761i) q^{76} +(46.2247 - 74.1884i) q^{77} +(1.83603 - 13.1577i) q^{78} +(37.5999 + 12.2170i) q^{79} +(-35.6799 + 2.63571i) q^{80} +(-38.7020 - 28.1186i) q^{81} +(-1.97090 - 11.1138i) q^{82} +(-128.649 + 41.8007i) q^{83} +(-22.2807 - 28.4029i) q^{84} +(44.7385 - 32.5044i) q^{85} +(-57.7593 - 28.1010i) q^{86} -6.08192i q^{87} +(84.4875 - 24.6143i) q^{88} +22.8405 q^{89} +(-15.0850 + 31.0061i) q^{90} +(27.3188 + 37.6011i) q^{91} +(-2.20598 + 1.73048i) q^{92} +(5.30303 + 16.3211i) q^{93} +(55.5861 - 9.85756i) q^{94} +(-47.0634 + 64.7773i) q^{95} +(2.35727 - 36.2661i) q^{96} +(-35.1693 + 108.240i) q^{97} +(28.0200 + 3.90993i) q^{98} +(20.4113 - 82.3191i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q + 2 q^{2} - 4 q^{4} + 120 q^{5} + 20 q^{6} - 10 q^{8} + 64 q^{9} + 10 q^{10} + 70 q^{12} - 20 q^{13} - 37 q^{14} - 4 q^{16} + 24 q^{17} + 45 q^{18} + 5 q^{20} - 15 q^{22} - 62 q^{24} - 120 q^{25} + 12 q^{26}+ \cdots + 158 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/220\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(111\) \(177\)
\(\chi(n)\) \(e\left(\frac{3}{5}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.874978 + 1.79845i −0.437489 + 0.899224i
\(3\) 0.667552 + 0.918806i 0.222517 + 0.306269i 0.905650 0.424025i \(-0.139383\pi\)
−0.683133 + 0.730294i \(0.739383\pi\)
\(4\) −2.46883 3.14721i −0.617206 0.786801i
\(5\) 0.690983 + 2.12663i 0.138197 + 0.425325i
\(6\) −2.23652 + 0.396621i −0.372753 + 0.0661035i
\(7\) 4.67079 6.42880i 0.667256 0.918399i −0.332438 0.943125i \(-0.607871\pi\)
0.999694 + 0.0247257i \(0.00787122\pi\)
\(8\) 7.82025 1.68632i 0.977531 0.210790i
\(9\) 2.38257 7.33281i 0.264730 0.814756i
\(10\) −4.42922 0.618056i −0.442922 0.0618056i
\(11\) 10.9722 0.781521i 0.997473 0.0710474i
\(12\) 1.24360 4.36929i 0.103634 0.364108i
\(13\) −1.80740 + 5.56259i −0.139030 + 0.427892i −0.996195 0.0871507i \(-0.972224\pi\)
0.857165 + 0.515042i \(0.172224\pi\)
\(14\) 7.47501 + 14.0252i 0.533929 + 1.00180i
\(15\) −1.49269 + 2.05451i −0.0995127 + 0.136968i
\(16\) −3.80980 + 15.5398i −0.238113 + 0.971238i
\(17\) −7.64225 23.5204i −0.449544 1.38355i −0.877423 0.479718i \(-0.840739\pi\)
0.427878 0.903836i \(-0.359261\pi\)
\(18\) 11.1030 + 10.7010i 0.616832 + 0.594499i
\(19\) 21.0474 + 28.9693i 1.10776 + 1.52470i 0.824678 + 0.565602i \(0.191356\pi\)
0.283080 + 0.959096i \(0.408644\pi\)
\(20\) 4.98702 7.42494i 0.249351 0.371247i
\(21\) 9.02481 0.429753
\(22\) −8.19492 + 20.4167i −0.372496 + 0.928034i
\(23\) 0.700934i 0.0304754i −0.999884 0.0152377i \(-0.995150\pi\)
0.999884 0.0152377i \(-0.00485050\pi\)
\(24\) 6.76982 + 6.05959i 0.282076 + 0.252483i
\(25\) −4.04508 + 2.93893i −0.161803 + 0.117557i
\(26\) −8.42260 8.11765i −0.323946 0.312217i
\(27\) 18.0490 5.86448i 0.668482 0.217203i
\(28\) −31.7641 + 1.17163i −1.13443 + 0.0418439i
\(29\) −4.33244 3.14770i −0.149394 0.108541i 0.510577 0.859832i \(-0.329432\pi\)
−0.659972 + 0.751290i \(0.729432\pi\)
\(30\) −2.38886 4.48218i −0.0796287 0.149406i
\(31\) 14.3708 + 4.66937i 0.463575 + 0.150625i 0.531487 0.847067i \(-0.321634\pi\)
−0.0679115 + 0.997691i \(0.521634\pi\)
\(32\) −24.6140 20.4487i −0.769188 0.639022i
\(33\) 8.04258 + 9.55962i 0.243715 + 0.289685i
\(34\) 48.9871 + 6.83568i 1.44080 + 0.201049i
\(35\) 16.8991 + 5.49085i 0.482831 + 0.156881i
\(36\) −28.9600 + 10.6050i −0.804445 + 0.294583i
\(37\) 19.8276 + 14.4056i 0.535882 + 0.389341i 0.822553 0.568688i \(-0.192549\pi\)
−0.286671 + 0.958029i \(0.592549\pi\)
\(38\) −70.5157 + 12.5052i −1.85568 + 0.329083i
\(39\) −6.31747 + 2.05267i −0.161986 + 0.0526326i
\(40\) 8.98983 + 15.4655i 0.224746 + 0.386639i
\(41\) −4.56575 + 3.31721i −0.111360 + 0.0809076i −0.642071 0.766645i \(-0.721925\pi\)
0.530712 + 0.847552i \(0.321925\pi\)
\(42\) −7.89652 + 16.2307i −0.188012 + 0.386444i
\(43\) 32.1162i 0.746888i 0.927653 + 0.373444i \(0.121823\pi\)
−0.927653 + 0.373444i \(0.878177\pi\)
\(44\) −29.5481 32.6023i −0.671547 0.740962i
\(45\) 17.2405 0.383121
\(46\) 1.26059 + 0.613302i 0.0274042 + 0.0133327i
\(47\) −16.5912 22.8359i −0.353005 0.485869i 0.595178 0.803594i \(-0.297081\pi\)
−0.948183 + 0.317724i \(0.897081\pi\)
\(48\) −16.8213 + 6.87315i −0.350444 + 0.143191i
\(49\) −4.37127 13.4534i −0.0892096 0.274559i
\(50\) −1.74614 9.84637i −0.0349228 0.196927i
\(51\) 16.5091 22.7229i 0.323708 0.445546i
\(52\) 21.9688 8.04482i 0.422476 0.154708i
\(53\) −17.1581 + 52.8071i −0.323737 + 0.996361i 0.648270 + 0.761411i \(0.275493\pi\)
−0.972007 + 0.234951i \(0.924507\pi\)
\(54\) −5.24554 + 37.5915i −0.0971396 + 0.696139i
\(55\) 9.24361 + 22.7938i 0.168066 + 0.414432i
\(56\) 25.6858 58.1512i 0.458675 1.03841i
\(57\) −12.5669 + 38.6770i −0.220472 + 0.678543i
\(58\) 9.45176 5.03749i 0.162961 0.0868533i
\(59\) 64.5303 88.8183i 1.09373 1.50540i 0.250296 0.968169i \(-0.419472\pi\)
0.843438 0.537226i \(-0.180528\pi\)
\(60\) 10.1512 0.374429i 0.169186 0.00624048i
\(61\) −17.6349 54.2745i −0.289096 0.889747i −0.985141 0.171748i \(-0.945058\pi\)
0.696045 0.717999i \(-0.254942\pi\)
\(62\) −20.9718 + 21.7596i −0.338255 + 0.350961i
\(63\) −36.0126 49.5671i −0.571629 0.786780i
\(64\) 58.3127 26.3748i 0.911136 0.412107i
\(65\) −13.0784 −0.201207
\(66\) −24.2296 + 6.09969i −0.367115 + 0.0924196i
\(67\) 69.6011i 1.03882i −0.854524 0.519411i \(-0.826151\pi\)
0.854524 0.519411i \(-0.173849\pi\)
\(68\) −55.1562 + 82.1196i −0.811121 + 1.20764i
\(69\) 0.644022 0.467910i 0.00933366 0.00678130i
\(70\) −24.6613 + 25.5878i −0.352305 + 0.365539i
\(71\) 60.6265 19.6987i 0.853894 0.277447i 0.150818 0.988562i \(-0.451809\pi\)
0.703076 + 0.711115i \(0.251809\pi\)
\(72\) 6.26689 61.3622i 0.0870402 0.852252i
\(73\) −62.6736 45.5351i −0.858543 0.623768i 0.0689453 0.997620i \(-0.478037\pi\)
−0.927488 + 0.373853i \(0.878037\pi\)
\(74\) −43.2565 + 23.0543i −0.584547 + 0.311545i
\(75\) −5.40061 1.75476i −0.0720081 0.0233968i
\(76\) 39.2099 137.761i 0.515919 1.81264i
\(77\) 46.2247 74.1884i 0.600320 0.963485i
\(78\) 1.83603 13.1577i 0.0235389 0.168688i
\(79\) 37.5999 + 12.2170i 0.475948 + 0.154645i 0.537161 0.843480i \(-0.319497\pi\)
−0.0612126 + 0.998125i \(0.519497\pi\)
\(80\) −35.6799 + 2.63571i −0.445998 + 0.0329464i
\(81\) −38.7020 28.1186i −0.477802 0.347143i
\(82\) −1.97090 11.1138i −0.0240353 0.135534i
\(83\) −128.649 + 41.8007i −1.54999 + 0.503623i −0.954112 0.299450i \(-0.903197\pi\)
−0.595881 + 0.803073i \(0.703197\pi\)
\(84\) −22.2807 28.4029i −0.265246 0.338130i
\(85\) 44.7385 32.5044i 0.526335 0.382405i
\(86\) −57.7593 28.1010i −0.671620 0.326756i
\(87\) 6.08192i 0.0699072i
\(88\) 84.4875 24.6143i 0.960085 0.279708i
\(89\) 22.8405 0.256635 0.128317 0.991733i \(-0.459042\pi\)
0.128317 + 0.991733i \(0.459042\pi\)
\(90\) −15.0850 + 31.0061i −0.167611 + 0.344512i
\(91\) 27.3188 + 37.6011i 0.300207 + 0.413199i
\(92\) −2.20598 + 1.73048i −0.0239781 + 0.0188096i
\(93\) 5.30303 + 16.3211i 0.0570219 + 0.175495i
\(94\) 55.5861 9.85756i 0.591341 0.104868i
\(95\) −47.0634 + 64.7773i −0.495405 + 0.681866i
\(96\) 2.35727 36.2661i 0.0245549 0.377772i
\(97\) −35.1693 + 108.240i −0.362570 + 1.11587i 0.588919 + 0.808192i \(0.299554\pi\)
−0.951489 + 0.307683i \(0.900446\pi\)
\(98\) 28.0200 + 3.90993i 0.285918 + 0.0398972i
\(99\) 20.4113 82.3191i 0.206175 0.831506i
\(100\) 19.2360 + 5.47502i 0.192360 + 0.0547502i
\(101\) −46.7472 + 143.873i −0.462844 + 1.42449i 0.398830 + 0.917025i \(0.369416\pi\)
−0.861674 + 0.507462i \(0.830584\pi\)
\(102\) 26.4207 + 49.5728i 0.259027 + 0.486008i
\(103\) −65.1745 + 89.7050i −0.632762 + 0.870922i −0.998204 0.0599122i \(-0.980918\pi\)
0.365442 + 0.930834i \(0.380918\pi\)
\(104\) −4.75400 + 46.5487i −0.0457115 + 0.447584i
\(105\) 6.23599 + 19.1924i 0.0593904 + 0.182785i
\(106\) −79.9579 77.0630i −0.754320 0.727010i
\(107\) −46.4231 63.8960i −0.433861 0.597159i 0.534973 0.844869i \(-0.320322\pi\)
−0.968834 + 0.247711i \(0.920322\pi\)
\(108\) −63.0166 42.3256i −0.583487 0.391903i
\(109\) −144.081 −1.32184 −0.660921 0.750455i \(-0.729834\pi\)
−0.660921 + 0.750455i \(0.729834\pi\)
\(110\) −49.0813 3.31991i −0.446194 0.0301810i
\(111\) 27.8342i 0.250759i
\(112\) 82.1074 + 97.0756i 0.733102 + 0.866747i
\(113\) 136.692 99.3123i 1.20966 0.878870i 0.214461 0.976733i \(-0.431201\pi\)
0.995200 + 0.0978629i \(0.0312007\pi\)
\(114\) −58.5627 56.4424i −0.513708 0.495109i
\(115\) 1.49062 0.484333i 0.0129620 0.00421159i
\(116\) 0.789575 + 21.4062i 0.00680668 + 0.184536i
\(117\) 36.4832 + 26.5066i 0.311822 + 0.226552i
\(118\) 103.272 + 193.768i 0.875191 + 1.64211i
\(119\) −186.903 60.7286i −1.57062 0.510324i
\(120\) −8.20866 + 18.5840i −0.0684055 + 0.154866i
\(121\) 119.778 17.1500i 0.989905 0.141736i
\(122\) 113.040 + 15.7737i 0.926558 + 0.129292i
\(123\) −6.09575 1.98063i −0.0495589 0.0161027i
\(124\) −20.7836 56.7558i −0.167610 0.457708i
\(125\) −9.04508 6.57164i −0.0723607 0.0525731i
\(126\) 120.654 21.3966i 0.957572 0.169815i
\(127\) −8.35132 + 2.71351i −0.0657585 + 0.0213662i −0.341712 0.939805i \(-0.611007\pi\)
0.275953 + 0.961171i \(0.411007\pi\)
\(128\) −3.58859 + 127.950i −0.0280358 + 0.999607i
\(129\) −29.5086 + 21.4392i −0.228749 + 0.166196i
\(130\) 11.4433 23.5209i 0.0880258 0.180930i
\(131\) 114.044i 0.870562i 0.900295 + 0.435281i \(0.143351\pi\)
−0.900295 + 0.435281i \(0.856649\pi\)
\(132\) 10.2304 48.9127i 0.0775028 0.370551i
\(133\) 284.546 2.13944
\(134\) 125.174 + 60.8995i 0.934134 + 0.454474i
\(135\) 24.9431 + 34.3313i 0.184764 + 0.254306i
\(136\) −99.4272 171.048i −0.731082 1.25771i
\(137\) −39.6737 122.103i −0.289589 0.891264i −0.984985 0.172638i \(-0.944771\pi\)
0.695396 0.718627i \(-0.255229\pi\)
\(138\) 0.278005 + 1.56765i 0.00201453 + 0.0113598i
\(139\) −141.105 + 194.214i −1.01514 + 1.39723i −0.0995915 + 0.995028i \(0.531754\pi\)
−0.915553 + 0.402198i \(0.868246\pi\)
\(140\) −24.4401 66.7409i −0.174572 0.476720i
\(141\) 9.90623 30.4882i 0.0702569 0.216229i
\(142\) −17.6197 + 126.269i −0.124082 + 0.889222i
\(143\) −15.4838 + 62.4464i −0.108279 + 0.436688i
\(144\) 104.873 + 64.9613i 0.728286 + 0.451120i
\(145\) 3.70034 11.3885i 0.0255196 0.0785413i
\(146\) 136.730 72.8730i 0.936510 0.499130i
\(147\) 9.44301 12.9972i 0.0642382 0.0884163i
\(148\) −3.61353 97.9666i −0.0244157 0.661936i
\(149\) 10.6104 + 32.6553i 0.0712104 + 0.219163i 0.980328 0.197377i \(-0.0632424\pi\)
−0.909117 + 0.416540i \(0.863242\pi\)
\(150\) 7.88126 8.17733i 0.0525418 0.0545155i
\(151\) 97.5167 + 134.220i 0.645806 + 0.888876i 0.998909 0.0467089i \(-0.0148733\pi\)
−0.353102 + 0.935585i \(0.614873\pi\)
\(152\) 213.447 + 191.054i 1.40426 + 1.25694i
\(153\) −190.679 −1.24627
\(154\) 92.9783 + 148.046i 0.603755 + 0.961337i
\(155\) 33.7879i 0.217986i
\(156\) 22.0569 + 14.8147i 0.141390 + 0.0949660i
\(157\) −92.8633 + 67.4691i −0.591486 + 0.429740i −0.842847 0.538154i \(-0.819122\pi\)
0.251361 + 0.967893i \(0.419122\pi\)
\(158\) −54.8707 + 56.9319i −0.347283 + 0.360329i
\(159\) −59.9734 + 19.4865i −0.377191 + 0.122557i
\(160\) 26.4789 66.4746i 0.165493 0.415466i
\(161\) −4.50616 3.27392i −0.0279886 0.0203349i
\(162\) 84.4332 45.0002i 0.521193 0.277779i
\(163\) 125.257 + 40.6984i 0.768446 + 0.249683i 0.666900 0.745148i \(-0.267621\pi\)
0.101546 + 0.994831i \(0.467621\pi\)
\(164\) 21.7120 + 6.17974i 0.132390 + 0.0376813i
\(165\) −14.7725 + 23.7091i −0.0895301 + 0.143692i
\(166\) 37.3890 267.944i 0.225235 1.61412i
\(167\) −187.210 60.8283i −1.12102 0.364241i −0.310863 0.950455i \(-0.600618\pi\)
−0.810157 + 0.586214i \(0.800618\pi\)
\(168\) 70.5763 15.2187i 0.420097 0.0905874i
\(169\) 109.048 + 79.2281i 0.645255 + 0.468805i
\(170\) 19.3123 + 108.901i 0.113602 + 0.640591i
\(171\) 262.573 85.3152i 1.53552 0.498919i
\(172\) 101.076 79.2893i 0.587653 0.460984i
\(173\) −249.254 + 181.093i −1.44077 + 1.04678i −0.452892 + 0.891565i \(0.649608\pi\)
−0.987880 + 0.155217i \(0.950392\pi\)
\(174\) 10.9380 + 5.32155i 0.0628622 + 0.0305836i
\(175\) 39.7321i 0.227041i
\(176\) −29.6572 + 173.483i −0.168507 + 0.985700i
\(177\) 124.684 0.704430
\(178\) −19.9849 + 41.0774i −0.112275 + 0.230772i
\(179\) −110.369 151.910i −0.616586 0.848658i 0.380513 0.924776i \(-0.375747\pi\)
−0.997099 + 0.0761179i \(0.975747\pi\)
\(180\) −42.5637 54.2593i −0.236465 0.301440i
\(181\) −60.1926 185.254i −0.332556 1.02350i −0.967914 0.251283i \(-0.919147\pi\)
0.635358 0.772218i \(-0.280853\pi\)
\(182\) −91.5269 + 16.2313i −0.502895 + 0.0891828i
\(183\) 38.0956 52.4341i 0.208173 0.286525i
\(184\) −1.18200 5.48148i −0.00642389 0.0297906i
\(185\) −16.9348 + 52.1200i −0.0915396 + 0.281730i
\(186\) −33.9926 4.74335i −0.182756 0.0255019i
\(187\) −102.234 252.098i −0.546706 1.34812i
\(188\) −30.9083 + 108.594i −0.164406 + 0.577626i
\(189\) 46.6017 143.425i 0.246570 0.758863i
\(190\) −75.3190 141.320i −0.396416 0.743788i
\(191\) −210.659 + 289.947i −1.10293 + 1.51805i −0.271478 + 0.962445i \(0.587513\pi\)
−0.831448 + 0.555603i \(0.812487\pi\)
\(192\) 63.1601 + 35.9715i 0.328959 + 0.187351i
\(193\) −16.0488 49.3930i −0.0831542 0.255922i 0.900832 0.434168i \(-0.142958\pi\)
−0.983986 + 0.178246i \(0.942958\pi\)
\(194\) −163.891 157.958i −0.844801 0.814215i
\(195\) −8.73053 12.0165i −0.0447720 0.0616233i
\(196\) −31.5487 + 46.9714i −0.160963 + 0.239650i
\(197\) −307.031 −1.55853 −0.779266 0.626694i \(-0.784408\pi\)
−0.779266 + 0.626694i \(0.784408\pi\)
\(198\) 130.187 + 108.736i 0.657510 + 0.549172i
\(199\) 45.3984i 0.228133i −0.993473 0.114066i \(-0.963612\pi\)
0.993473 0.114066i \(-0.0363876\pi\)
\(200\) −26.6776 + 29.8044i −0.133388 + 0.149022i
\(201\) 63.9499 46.4623i 0.318159 0.231156i
\(202\) −217.846 209.958i −1.07844 1.03940i
\(203\) −40.4719 + 13.1501i −0.199369 + 0.0647788i
\(204\) −112.272 + 4.14117i −0.550351 + 0.0202999i
\(205\) −10.2093 7.41751i −0.0498016 0.0361830i
\(206\) −104.303 195.703i −0.506327 0.950013i
\(207\) −5.13981 1.67003i −0.0248300 0.00806776i
\(208\) −79.5557 49.2789i −0.382480 0.236918i
\(209\) 253.577 + 301.408i 1.21328 + 1.44214i
\(210\) −39.9729 5.57784i −0.190347 0.0265612i
\(211\) 126.043 + 40.9540i 0.597362 + 0.194095i 0.592063 0.805891i \(-0.298314\pi\)
0.00529825 + 0.999986i \(0.498314\pi\)
\(212\) 208.555 76.3716i 0.983751 0.360243i
\(213\) 58.5706 + 42.5540i 0.274979 + 0.199784i
\(214\) 155.533 27.5820i 0.726789 0.128888i
\(215\) −68.2992 + 22.1917i −0.317671 + 0.103217i
\(216\) 131.258 76.2980i 0.607678 0.353232i
\(217\) 97.1416 70.5775i 0.447657 0.325242i
\(218\) 126.068 259.122i 0.578292 1.18863i
\(219\) 87.9819i 0.401744i
\(220\) 48.9158 85.3654i 0.222345 0.388024i
\(221\) 144.647 0.654512
\(222\) −50.0584 24.3544i −0.225488 0.109704i
\(223\) 142.082 + 195.560i 0.637141 + 0.876950i 0.998459 0.0554930i \(-0.0176731\pi\)
−0.361318 + 0.932443i \(0.617673\pi\)
\(224\) −246.428 + 62.7268i −1.10012 + 0.280030i
\(225\) 11.9129 + 36.6640i 0.0529461 + 0.162951i
\(226\) 59.0057 + 332.729i 0.261087 + 1.47225i
\(227\) 208.039 286.342i 0.916473 1.26142i −0.0484342 0.998826i \(-0.515423\pi\)
0.964907 0.262591i \(-0.0845769\pi\)
\(228\) 152.750 55.9361i 0.669956 0.245334i
\(229\) 15.0277 46.2506i 0.0656233 0.201968i −0.912868 0.408254i \(-0.866138\pi\)
0.978492 + 0.206286i \(0.0661378\pi\)
\(230\) −0.433217 + 3.10459i −0.00188355 + 0.0134982i
\(231\) 99.0221 7.05308i 0.428667 0.0305328i
\(232\) −39.1888 17.3100i −0.168917 0.0746119i
\(233\) 17.3327 53.3447i 0.0743894 0.228947i −0.906947 0.421244i \(-0.861594\pi\)
0.981337 + 0.192297i \(0.0615936\pi\)
\(234\) −79.5926 + 42.4204i −0.340139 + 0.181284i
\(235\) 37.0991 51.0625i 0.157869 0.217287i
\(236\) −438.844 + 16.1869i −1.85951 + 0.0685885i
\(237\) 13.8749 + 42.7025i 0.0585438 + 0.180179i
\(238\) 272.754 283.000i 1.14602 1.18907i
\(239\) −59.0197 81.2336i −0.246944 0.339890i 0.667494 0.744615i \(-0.267367\pi\)
−0.914438 + 0.404726i \(0.867367\pi\)
\(240\) −26.2399 31.0234i −0.109333 0.129264i
\(241\) −48.2953 −0.200396 −0.100198 0.994968i \(-0.531948\pi\)
−0.100198 + 0.994968i \(0.531948\pi\)
\(242\) −73.9602 + 230.421i −0.305620 + 0.952153i
\(243\) 225.131i 0.926465i
\(244\) −127.276 + 189.495i −0.521622 + 0.776619i
\(245\) 25.5899 18.5921i 0.104448 0.0758863i
\(246\) 8.89571 9.22988i 0.0361614 0.0375198i
\(247\) −199.185 + 64.7192i −0.806418 + 0.262021i
\(248\) 120.258 + 12.2819i 0.484910 + 0.0495236i
\(249\) −124.287 90.2997i −0.499144 0.362649i
\(250\) 19.7330 10.5171i 0.0789320 0.0420683i
\(251\) 159.853 + 51.9394i 0.636864 + 0.206930i 0.609613 0.792699i \(-0.291325\pi\)
0.0272510 + 0.999629i \(0.491325\pi\)
\(252\) −67.0890 + 235.712i −0.266226 + 0.935364i
\(253\) −0.547795 7.69079i −0.00216520 0.0303984i
\(254\) 2.42712 17.3937i 0.00955561 0.0684791i
\(255\) 59.7306 + 19.4076i 0.234237 + 0.0761084i
\(256\) −226.971 118.407i −0.886605 0.462528i
\(257\) −104.736 76.0952i −0.407533 0.296090i 0.365069 0.930980i \(-0.381045\pi\)
−0.772602 + 0.634890i \(0.781045\pi\)
\(258\) −12.7380 71.8284i −0.0493719 0.278405i
\(259\) 185.222 60.1821i 0.715141 0.232363i
\(260\) 32.2884 + 41.1605i 0.124186 + 0.158310i
\(261\) −33.4038 + 24.2693i −0.127984 + 0.0929859i
\(262\) −205.101 99.7857i −0.782830 0.380862i
\(263\) 175.240i 0.666311i −0.942872 0.333156i \(-0.891887\pi\)
0.942872 0.333156i \(-0.108113\pi\)
\(264\) 79.0155 + 61.1963i 0.299301 + 0.231804i
\(265\) −124.157 −0.468517
\(266\) −248.971 + 511.740i −0.935982 + 1.92384i
\(267\) 15.2472 + 20.9860i 0.0571057 + 0.0785992i
\(268\) −219.049 + 171.833i −0.817347 + 0.641168i
\(269\) −92.0014 283.151i −0.342013 1.05261i −0.963164 0.268916i \(-0.913335\pi\)
0.621151 0.783691i \(-0.286665\pi\)
\(270\) −83.5677 + 14.8198i −0.309510 + 0.0548881i
\(271\) −176.110 + 242.395i −0.649854 + 0.894447i −0.999093 0.0425869i \(-0.986440\pi\)
0.349239 + 0.937034i \(0.386440\pi\)
\(272\) 394.618 29.1509i 1.45080 0.107172i
\(273\) −16.3114 + 50.2014i −0.0597487 + 0.183888i
\(274\) 254.310 + 35.4866i 0.928138 + 0.129513i
\(275\) −42.0867 + 35.4078i −0.153042 + 0.128756i
\(276\) −3.06259 0.871683i −0.0110963 0.00315827i
\(277\) 19.5246 60.0907i 0.0704861 0.216934i −0.909608 0.415468i \(-0.863618\pi\)
0.980094 + 0.198534i \(0.0636180\pi\)
\(278\) −225.821 423.703i −0.812304 1.52411i
\(279\) 68.4791 94.2534i 0.245445 0.337826i
\(280\) 141.414 + 14.4426i 0.505052 + 0.0515807i
\(281\) −14.3794 44.2552i −0.0511722 0.157492i 0.922205 0.386702i \(-0.126386\pi\)
−0.973377 + 0.229210i \(0.926386\pi\)
\(282\) 46.1637 + 44.4924i 0.163701 + 0.157774i
\(283\) −83.3873 114.773i −0.294655 0.405558i 0.635864 0.771801i \(-0.280644\pi\)
−0.930519 + 0.366243i \(0.880644\pi\)
\(284\) −211.672 142.171i −0.745324 0.500603i
\(285\) −90.9350 −0.319070
\(286\) −98.7585 82.4861i −0.345310 0.288413i
\(287\) 44.8463i 0.156259i
\(288\) −208.591 + 131.769i −0.724275 + 0.457532i
\(289\) −261.001 + 189.628i −0.903117 + 0.656153i
\(290\) 17.2439 + 16.6196i 0.0594616 + 0.0573088i
\(291\) −122.929 + 39.9420i −0.422436 + 0.137258i
\(292\) 11.4221 + 309.665i 0.0391167 + 1.06050i
\(293\) 299.818 + 217.830i 1.02327 + 0.743448i 0.966950 0.254965i \(-0.0820640\pi\)
0.0563179 + 0.998413i \(0.482064\pi\)
\(294\) 15.1123 + 28.3550i 0.0514025 + 0.0964456i
\(295\) 233.473 + 75.8599i 0.791433 + 0.257152i
\(296\) 179.350 + 79.2199i 0.605910 + 0.267635i
\(297\) 193.454 78.4519i 0.651361 0.264148i
\(298\) −68.0127 9.49053i −0.228230 0.0318474i
\(299\) 3.89901 + 1.26686i 0.0130402 + 0.00423701i
\(300\) 7.81056 + 21.3290i 0.0260352 + 0.0710967i
\(301\) 206.468 + 150.008i 0.685942 + 0.498366i
\(302\) −326.713 + 57.9389i −1.08183 + 0.191851i
\(303\) −163.398 + 53.0912i −0.539267 + 0.175218i
\(304\) −530.363 + 216.705i −1.74462 + 0.712847i
\(305\) 103.236 75.0056i 0.338480 0.245920i
\(306\) 166.840 342.926i 0.545229 1.12067i
\(307\) 58.3107i 0.189937i 0.995480 + 0.0949685i \(0.0302750\pi\)
−0.995480 + 0.0949685i \(0.969725\pi\)
\(308\) −347.607 + 37.6797i −1.12859 + 0.122337i
\(309\) −125.929 −0.407537
\(310\) −60.7657 29.5636i −0.196018 0.0953666i
\(311\) −8.17984 11.2586i −0.0263017 0.0362012i 0.795664 0.605739i \(-0.207122\pi\)
−0.821965 + 0.569538i \(0.807122\pi\)
\(312\) −45.9428 + 26.7057i −0.147252 + 0.0855951i
\(313\) −117.541 361.754i −0.375530 1.15576i −0.943120 0.332451i \(-0.892124\pi\)
0.567591 0.823311i \(-0.307876\pi\)
\(314\) −40.0863 226.044i −0.127663 0.719885i
\(315\) 80.5267 110.835i 0.255640 0.351859i
\(316\) −54.3784 148.496i −0.172083 0.469925i
\(317\) −126.672 + 389.857i −0.399597 + 1.22983i 0.525726 + 0.850654i \(0.323794\pi\)
−0.925323 + 0.379180i \(0.876206\pi\)
\(318\) 17.4299 124.909i 0.0548111 0.392797i
\(319\) −49.9964 31.1513i −0.156728 0.0976530i
\(320\) 96.3825 + 105.785i 0.301195 + 0.330577i
\(321\) 27.7182 85.3078i 0.0863494 0.265756i
\(322\) 9.83076 5.23949i 0.0305303 0.0162717i
\(323\) 520.520 716.435i 1.61152 2.21806i
\(324\) 7.05332 + 191.223i 0.0217695 + 0.590194i
\(325\) −9.03698 27.8130i −0.0278061 0.0855783i
\(326\) −182.791 + 189.657i −0.560708 + 0.581771i
\(327\) −96.1814 132.382i −0.294133 0.404839i
\(328\) −30.1115 + 33.6407i −0.0918032 + 0.102563i
\(329\) −224.301 −0.681767
\(330\) −29.7140 47.3125i −0.0900424 0.143371i
\(331\) 142.810i 0.431450i 0.976454 + 0.215725i \(0.0692114\pi\)
−0.976454 + 0.215725i \(0.930789\pi\)
\(332\) 449.168 + 301.687i 1.35292 + 0.908697i
\(333\) 152.874 111.070i 0.459082 0.333543i
\(334\) 273.201 283.464i 0.817968 0.848695i
\(335\) 148.016 48.0932i 0.441838 0.143562i
\(336\) −34.3827 + 140.244i −0.102330 + 0.417392i
\(337\) 44.7585 + 32.5189i 0.132814 + 0.0964954i 0.652209 0.758039i \(-0.273842\pi\)
−0.519395 + 0.854535i \(0.673842\pi\)
\(338\) −237.902 + 126.794i −0.703853 + 0.375131i
\(339\) 182.497 + 59.2970i 0.538341 + 0.174917i
\(340\) −212.750 60.5535i −0.625734 0.178099i
\(341\) 161.329 + 40.0021i 0.473105 + 0.117308i
\(342\) −76.3109 + 546.873i −0.223131 + 1.59904i
\(343\) 263.411 + 85.5875i 0.767963 + 0.249526i
\(344\) 54.1581 + 251.157i 0.157436 + 0.730107i
\(345\) 1.44008 + 1.04628i 0.00417414 + 0.00303269i
\(346\) −107.595 606.722i −0.310969 1.75353i
\(347\) 149.059 48.4321i 0.429564 0.139574i −0.0862518 0.996273i \(-0.527489\pi\)
0.515816 + 0.856700i \(0.327489\pi\)
\(348\) −19.1411 + 15.0152i −0.0550031 + 0.0431472i
\(349\) 414.734 301.322i 1.18835 0.863387i 0.195261 0.980751i \(-0.437445\pi\)
0.993089 + 0.117364i \(0.0374445\pi\)
\(350\) −71.4562 34.7648i −0.204160 0.0993279i
\(351\) 110.999i 0.316236i
\(352\) −286.051 205.131i −0.812645 0.582759i
\(353\) −143.806 −0.407384 −0.203692 0.979035i \(-0.565294\pi\)
−0.203692 + 0.979035i \(0.565294\pi\)
\(354\) −109.096 + 224.238i −0.308181 + 0.633440i
\(355\) 83.7837 + 115.318i 0.236010 + 0.324840i
\(356\) −56.3892 71.8837i −0.158397 0.201921i
\(357\) −68.9699 212.268i −0.193193 0.594587i
\(358\) 369.772 65.5749i 1.03288 0.183170i
\(359\) 136.807 188.298i 0.381077 0.524508i −0.574792 0.818299i \(-0.694917\pi\)
0.955870 + 0.293791i \(0.0949171\pi\)
\(360\) 134.825 29.0729i 0.374513 0.0807580i
\(361\) −284.670 + 876.125i −0.788560 + 2.42694i
\(362\) 385.836 + 53.8398i 1.06585 + 0.148729i
\(363\) 95.7159 + 98.6047i 0.263680 + 0.271638i
\(364\) 50.8930 178.808i 0.139816 0.491232i
\(365\) 53.5297 164.747i 0.146657 0.451363i
\(366\) 60.9671 + 114.392i 0.166577 + 0.312545i
\(367\) −326.330 + 449.154i −0.889182 + 1.22385i 0.0846107 + 0.996414i \(0.473035\pi\)
−0.973792 + 0.227439i \(0.926965\pi\)
\(368\) 10.8924 + 2.67042i 0.0295988 + 0.00725657i
\(369\) 13.4462 + 41.3833i 0.0364397 + 0.112150i
\(370\) −78.9175 76.0603i −0.213291 0.205568i
\(371\) 259.344 + 356.957i 0.699042 + 0.962148i
\(372\) 38.2734 56.9836i 0.102886 0.153182i
\(373\) −416.777 −1.11736 −0.558682 0.829382i \(-0.688693\pi\)
−0.558682 + 0.829382i \(0.688693\pi\)
\(374\) 542.838 + 36.7181i 1.45144 + 0.0981767i
\(375\) 12.6976i 0.0338602i
\(376\) −168.256 150.604i −0.447489 0.400543i
\(377\) 25.3398 18.4104i 0.0672143 0.0488341i
\(378\) 217.167 + 209.305i 0.574516 + 0.553716i
\(379\) 307.650 99.9616i 0.811742 0.263751i 0.126407 0.991979i \(-0.459656\pi\)
0.685335 + 0.728228i \(0.259656\pi\)
\(380\) 320.059 11.8055i 0.842260 0.0310670i
\(381\) −8.06813 5.86184i −0.0211762 0.0153854i
\(382\) −337.133 632.556i −0.882546 1.65591i
\(383\) 6.92719 + 2.25078i 0.0180866 + 0.00587671i 0.318046 0.948075i \(-0.396973\pi\)
−0.299960 + 0.953952i \(0.596973\pi\)
\(384\) −119.957 + 82.1158i −0.312387 + 0.213843i
\(385\) 189.711 + 47.0397i 0.492757 + 0.122181i
\(386\) 102.873 + 14.3550i 0.266510 + 0.0371890i
\(387\) 235.502 + 76.5192i 0.608532 + 0.197724i
\(388\) 427.480 156.540i 1.10175 0.403455i
\(389\) 580.800 + 421.976i 1.49306 + 1.08477i 0.973046 + 0.230611i \(0.0740726\pi\)
0.520012 + 0.854159i \(0.325927\pi\)
\(390\) 29.2502 5.18718i 0.0750004 0.0133005i
\(391\) −16.4863 + 5.35671i −0.0421644 + 0.0137000i
\(392\) −56.8711 97.8376i −0.145079 0.249586i
\(393\) −104.784 + 76.1300i −0.266626 + 0.193715i
\(394\) 268.645 552.179i 0.681841 1.40147i
\(395\) 88.4027i 0.223804i
\(396\) −309.467 + 138.993i −0.781482 + 0.350992i
\(397\) 122.158 0.307703 0.153851 0.988094i \(-0.450832\pi\)
0.153851 + 0.988094i \(0.450832\pi\)
\(398\) 81.6466 + 39.7226i 0.205142 + 0.0998055i
\(399\) 189.949 + 261.442i 0.476063 + 0.655244i
\(400\) −30.2594 74.0565i −0.0756484 0.185141i
\(401\) −205.692 633.054i −0.512947 1.57869i −0.786986 0.616971i \(-0.788360\pi\)
0.274039 0.961719i \(-0.411640\pi\)
\(402\) 27.6053 + 155.664i 0.0686698 + 0.387224i
\(403\) −51.9476 + 71.4997i −0.128902 + 0.177419i
\(404\) 568.209 208.075i 1.40646 0.515036i
\(405\) 33.0554 101.734i 0.0816183 0.251195i
\(406\) 11.7622 84.2926i 0.0289710 0.207617i
\(407\) 228.811 + 142.566i 0.562189 + 0.350284i
\(408\) 90.7876 205.538i 0.222519 0.503770i
\(409\) 43.6965 134.484i 0.106837 0.328812i −0.883320 0.468771i \(-0.844697\pi\)
0.990157 + 0.139959i \(0.0446971\pi\)
\(410\) 22.2730 11.8708i 0.0543243 0.0289531i
\(411\) 85.7049 117.963i 0.208528 0.287014i
\(412\) 443.224 16.3485i 1.07579 0.0396808i
\(413\) −269.587 829.704i −0.652754 2.00897i
\(414\) 7.50068 7.78245i 0.0181176 0.0187982i
\(415\) −177.789 244.706i −0.428407 0.589652i
\(416\) 158.235 99.9588i 0.380373 0.240286i
\(417\) −272.640 −0.653814
\(418\) −763.940 + 192.319i −1.82761 + 0.460093i
\(419\) 408.435i 0.974785i 0.873183 + 0.487392i \(0.162052\pi\)
−0.873183 + 0.487392i \(0.837948\pi\)
\(420\) 45.0069 67.0087i 0.107159 0.159544i
\(421\) −165.361 + 120.142i −0.392782 + 0.285373i −0.766595 0.642131i \(-0.778050\pi\)
0.373812 + 0.927504i \(0.378050\pi\)
\(422\) −183.939 + 190.848i −0.435874 + 0.452247i
\(423\) −206.981 + 67.2521i −0.489316 + 0.158988i
\(424\) −45.1310 + 441.899i −0.106441 + 1.04221i
\(425\) 100.038 + 72.6821i 0.235384 + 0.171017i
\(426\) −127.779 + 68.1023i −0.299951 + 0.159865i
\(427\) −431.289 140.134i −1.01004 0.328183i
\(428\) −86.4831 + 303.851i −0.202063 + 0.709933i
\(429\) −67.7124 + 27.4596i −0.157838 + 0.0640083i
\(430\) 19.8496 142.250i 0.0461619 0.330813i
\(431\) −687.780 223.473i −1.59578 0.518499i −0.629718 0.776824i \(-0.716830\pi\)
−0.966058 + 0.258324i \(0.916830\pi\)
\(432\) 22.3697 + 302.821i 0.0517817 + 0.700974i
\(433\) 350.457 + 254.622i 0.809369 + 0.588041i 0.913647 0.406507i \(-0.133253\pi\)
−0.104279 + 0.994548i \(0.533253\pi\)
\(434\) 41.9331 + 236.458i 0.0966201 + 0.544834i
\(435\) 12.9340 4.20251i 0.0297333 0.00966093i
\(436\) 355.710 + 453.452i 0.815850 + 1.04003i
\(437\) 20.3055 14.7528i 0.0464658 0.0337594i
\(438\) 158.231 + 76.9823i 0.361258 + 0.175759i
\(439\) 797.442i 1.81650i 0.418433 + 0.908248i \(0.362580\pi\)
−0.418433 + 0.908248i \(0.637420\pi\)
\(440\) 110.725 + 162.665i 0.251647 + 0.369694i
\(441\) −109.066 −0.247315
\(442\) −126.563 + 260.140i −0.286342 + 0.588552i
\(443\) −368.349 506.989i −0.831488 1.14445i −0.987644 0.156713i \(-0.949910\pi\)
0.156156 0.987732i \(-0.450090\pi\)
\(444\) 87.6001 68.7179i 0.197297 0.154770i
\(445\) 15.7824 + 48.5732i 0.0354660 + 0.109153i
\(446\) −476.023 + 84.4173i −1.06732 + 0.189276i
\(447\) −22.9209 + 31.5480i −0.0512773 + 0.0705771i
\(448\) 102.808 498.072i 0.229482 1.11177i
\(449\) 101.267 311.666i 0.225538 0.694134i −0.772699 0.634773i \(-0.781094\pi\)
0.998237 0.0593613i \(-0.0189064\pi\)
\(450\) −76.3618 10.6556i −0.169693 0.0236791i
\(451\) −47.5039 + 39.9654i −0.105330 + 0.0886150i
\(452\) −650.024 185.012i −1.43811 0.409318i
\(453\) −58.2249 + 179.198i −0.128532 + 0.395580i
\(454\) 332.940 + 624.691i 0.733349 + 1.37597i
\(455\) −61.0867 + 84.0786i −0.134256 + 0.184788i
\(456\) −33.0548 + 323.655i −0.0724886 + 0.709771i
\(457\) 224.985 + 692.434i 0.492309 + 1.51517i 0.821108 + 0.570772i \(0.193356\pi\)
−0.328799 + 0.944400i \(0.606644\pi\)
\(458\) 70.0304 + 67.4949i 0.152905 + 0.147369i
\(459\) −275.870 379.703i −0.601024 0.827239i
\(460\) −5.20439 3.49557i −0.0113139 0.00759906i
\(461\) 546.920 1.18638 0.593189 0.805064i \(-0.297869\pi\)
0.593189 + 0.805064i \(0.297869\pi\)
\(462\) −73.9576 + 184.257i −0.160081 + 0.398825i
\(463\) 122.337i 0.264228i −0.991235 0.132114i \(-0.957824\pi\)
0.991235 0.132114i \(-0.0421764\pi\)
\(464\) 65.4204 55.3331i 0.140992 0.119252i
\(465\) −31.0445 + 22.5551i −0.0667623 + 0.0485057i
\(466\) 80.7718 + 77.8474i 0.173330 + 0.167055i
\(467\) 118.380 38.4640i 0.253490 0.0823640i −0.179515 0.983755i \(-0.557453\pi\)
0.433006 + 0.901391i \(0.357453\pi\)
\(468\) −6.64895 180.260i −0.0142072 0.385171i
\(469\) −447.451 325.092i −0.954054 0.693161i
\(470\) 59.3724 + 111.399i 0.126324 + 0.237020i
\(471\) −123.982 40.2842i −0.263232 0.0855291i
\(472\) 354.867 803.400i 0.751838 1.70212i
\(473\) 25.0995 + 352.385i 0.0530645 + 0.745001i
\(474\) −88.9384 12.4105i −0.187634 0.0261825i
\(475\) −170.277 55.3264i −0.358478 0.116477i
\(476\) 270.307 + 738.152i 0.567871 + 1.55074i
\(477\) 346.344 + 251.634i 0.726088 + 0.527534i
\(478\) 197.735 35.0661i 0.413672 0.0733601i
\(479\) −277.196 + 90.0663i −0.578696 + 0.188030i −0.583717 0.811958i \(-0.698402\pi\)
0.00502006 + 0.999987i \(0.498402\pi\)
\(480\) 78.7533 20.0462i 0.164069 0.0417629i
\(481\) −115.969 + 84.2564i −0.241100 + 0.175169i
\(482\) 42.2574 86.8566i 0.0876709 0.180200i
\(483\) 6.32580i 0.0130969i
\(484\) −349.687 334.627i −0.722493 0.691378i
\(485\) −254.487 −0.524716
\(486\) 404.886 + 196.985i 0.833099 + 0.405318i
\(487\) −94.4089 129.943i −0.193858 0.266823i 0.701012 0.713149i \(-0.252732\pi\)
−0.894870 + 0.446327i \(0.852732\pi\)
\(488\) −229.433 394.703i −0.470150 0.808817i
\(489\) 46.2214 + 142.255i 0.0945223 + 0.290910i
\(490\) 11.0464 + 62.2898i 0.0225436 + 0.127122i
\(491\) −25.5004 + 35.0982i −0.0519355 + 0.0714831i −0.834195 0.551470i \(-0.814067\pi\)
0.782259 + 0.622953i \(0.214067\pi\)
\(492\) 8.81590 + 24.0744i 0.0179185 + 0.0489317i
\(493\) −40.9257 + 125.956i −0.0830136 + 0.255490i
\(494\) 57.8887 414.852i 0.117184 0.839781i
\(495\) 189.166 13.4738i 0.382153 0.0272198i
\(496\) −127.311 + 205.531i −0.256676 + 0.414376i
\(497\) 156.535 481.764i 0.314959 0.969344i
\(498\) 271.148 144.513i 0.544473 0.290187i
\(499\) −165.040 + 227.159i −0.330742 + 0.455228i −0.941709 0.336428i \(-0.890781\pi\)
0.610967 + 0.791656i \(0.290781\pi\)
\(500\) 1.64844 + 44.6910i 0.00329688 + 0.0893819i
\(501\) −69.0831 212.616i −0.137890 0.424383i
\(502\) −233.278 + 242.041i −0.464698 + 0.482154i
\(503\) 302.462 + 416.304i 0.601317 + 0.827642i 0.995828 0.0912495i \(-0.0290861\pi\)
−0.394511 + 0.918891i \(0.629086\pi\)
\(504\) −365.214 326.899i −0.724630 0.648608i
\(505\) −338.266 −0.669834
\(506\) 14.3108 + 5.74409i 0.0282822 + 0.0113520i
\(507\) 153.083i 0.301939i
\(508\) 29.1579 + 19.5841i 0.0573975 + 0.0385515i
\(509\) −609.125 + 442.555i −1.19671 + 0.869460i −0.993957 0.109770i \(-0.964989\pi\)
−0.202752 + 0.979230i \(0.564989\pi\)
\(510\) −87.1665 + 90.4410i −0.170915 + 0.177335i
\(511\) −585.471 + 190.231i −1.14574 + 0.372272i
\(512\) 411.544 304.591i 0.803796 0.594905i
\(513\) 549.775 + 399.435i 1.07169 + 0.778625i
\(514\) 228.495 121.781i 0.444543 0.236927i
\(515\) −235.803 76.6172i −0.457871 0.148771i
\(516\) 140.325 + 39.9398i 0.271948 + 0.0774027i
\(517\) −199.889 237.593i −0.386632 0.459561i
\(518\) −53.8305 + 385.769i −0.103920 + 0.744728i
\(519\) −332.779 108.127i −0.641194 0.208336i
\(520\) −102.277 + 22.0544i −0.196686 + 0.0424123i
\(521\) 219.026 + 159.131i 0.420395 + 0.305435i 0.777797 0.628516i \(-0.216337\pi\)
−0.357402 + 0.933951i \(0.616337\pi\)
\(522\) −14.4194 81.3102i −0.0276234 0.155767i
\(523\) −499.616 + 162.335i −0.955288 + 0.310392i −0.744863 0.667218i \(-0.767485\pi\)
−0.210426 + 0.977610i \(0.567485\pi\)
\(524\) 358.919 281.554i 0.684959 0.537316i
\(525\) −36.5061 + 26.5233i −0.0695355 + 0.0505205i
\(526\) 315.160 + 153.331i 0.599163 + 0.291504i
\(527\) 373.693i 0.709094i
\(528\) −179.195 + 88.5598i −0.339385 + 0.167727i
\(529\) 528.509 0.999071
\(530\) 108.635 223.290i 0.204971 0.421302i
\(531\) −497.540 684.804i −0.936986 1.28965i
\(532\) −702.494 895.524i −1.32048 1.68331i
\(533\) −10.2002 31.3929i −0.0191373 0.0588985i
\(534\) −51.0832 + 9.05902i −0.0956614 + 0.0169645i
\(535\) 103.805 142.876i 0.194029 0.267057i
\(536\) −117.369 544.298i −0.218973 1.01548i
\(537\) 65.8987 202.815i 0.122716 0.377682i
\(538\) 589.732 + 82.2915i 1.09616 + 0.152958i
\(539\) −58.4766 144.197i −0.108491 0.267527i
\(540\) 46.4673 163.259i 0.0860506 0.302332i
\(541\) 308.191 948.515i 0.569670 1.75326i −0.0839821 0.996467i \(-0.526764\pi\)
0.653652 0.756796i \(-0.273236\pi\)
\(542\) −281.842 528.816i −0.520004 0.975675i
\(543\) 130.031 178.972i 0.239467 0.329598i
\(544\) −292.856 + 735.207i −0.538338 + 1.35148i
\(545\) −99.5574 306.406i −0.182674 0.562213i
\(546\) −76.0124 73.2603i −0.139217 0.134176i
\(547\) 392.845 + 540.705i 0.718181 + 0.988492i 0.999582 + 0.0289017i \(0.00920097\pi\)
−0.281401 + 0.959590i \(0.590799\pi\)
\(548\) −286.336 + 426.313i −0.522512 + 0.777943i
\(549\) −440.001 −0.801459
\(550\) −26.8542 106.672i −0.0488258 0.193949i
\(551\) 191.759i 0.348019i
\(552\) 4.24737 4.74520i 0.00769452 0.00859637i
\(553\) 254.162 184.659i 0.459605 0.333923i
\(554\) 90.9863 + 87.6921i 0.164235 + 0.158289i
\(555\) −59.1931 + 19.2330i −0.106654 + 0.0346540i
\(556\) 959.596 35.3950i 1.72589 0.0636601i
\(557\) 133.827 + 97.2310i 0.240264 + 0.174562i 0.701401 0.712767i \(-0.252558\pi\)
−0.461137 + 0.887329i \(0.652558\pi\)
\(558\) 109.592 + 205.626i 0.196402 + 0.368505i
\(559\) −178.649 58.0467i −0.319587 0.103840i
\(560\) −149.709 + 241.689i −0.267337 + 0.431588i
\(561\) 163.383 262.222i 0.291235 0.467419i
\(562\) 92.1723 + 12.8618i 0.164008 + 0.0228857i
\(563\) 519.437 + 168.775i 0.922623 + 0.299779i 0.731543 0.681796i \(-0.238801\pi\)
0.191081 + 0.981574i \(0.438801\pi\)
\(564\) −120.409 + 44.0932i −0.213492 + 0.0781794i
\(565\) 305.652 + 222.069i 0.540977 + 0.393042i
\(566\) 279.375 49.5440i 0.493595 0.0875335i
\(567\) −361.538 + 117.471i −0.637633 + 0.207179i
\(568\) 440.896 256.284i 0.776225 0.451205i
\(569\) −329.627 + 239.488i −0.579309 + 0.420893i −0.838475 0.544940i \(-0.816552\pi\)
0.259166 + 0.965833i \(0.416552\pi\)
\(570\) 79.5662 163.542i 0.139590 0.286916i
\(571\) 402.301i 0.704554i −0.935896 0.352277i \(-0.885407\pi\)
0.935896 0.352277i \(-0.114593\pi\)
\(572\) 234.758 105.438i 0.410417 0.184333i
\(573\) −407.031 −0.710351
\(574\) −80.6537 39.2395i −0.140512 0.0683616i
\(575\) 2.05999 + 2.83534i 0.00358260 + 0.00493102i
\(576\) −54.4673 490.436i −0.0945613 0.851451i
\(577\) −54.0829 166.450i −0.0937312 0.288475i 0.893190 0.449680i \(-0.148462\pi\)
−0.986921 + 0.161205i \(0.948462\pi\)
\(578\) −112.666 635.317i −0.194924 1.09916i
\(579\) 34.6692 47.7181i 0.0598777 0.0824146i
\(580\) −44.9774 + 16.4704i −0.0775473 + 0.0283973i
\(581\) −332.166 + 1022.30i −0.571715 + 1.75956i
\(582\) 35.7265 256.029i 0.0613857 0.439913i
\(583\) −146.992 + 592.820i −0.252130 + 1.01684i
\(584\) −566.910 250.408i −0.970736 0.428781i
\(585\) −31.1603 + 95.9017i −0.0532655 + 0.163934i
\(586\) −654.090 + 348.609i −1.11619 + 0.594897i
\(587\) 61.3484 84.4388i 0.104512 0.143848i −0.753558 0.657382i \(-0.771664\pi\)
0.858069 + 0.513534i \(0.171664\pi\)
\(588\) −64.2180 + 2.36870i −0.109214 + 0.00402840i
\(589\) 167.201 + 514.591i 0.283872 + 0.873668i
\(590\) −340.714 + 353.513i −0.577481 + 0.599174i
\(591\) −204.959 282.102i −0.346800 0.477329i
\(592\) −299.400 + 253.235i −0.505743 + 0.427762i
\(593\) −276.352 −0.466023 −0.233012 0.972474i \(-0.574858\pi\)
−0.233012 + 0.972474i \(0.574858\pi\)
\(594\) −28.1766 + 416.561i −0.0474353 + 0.701281i
\(595\) 439.436i 0.738548i
\(596\) 76.5778 114.013i 0.128486 0.191297i
\(597\) 41.7123 30.3058i 0.0698699 0.0507634i
\(598\) −5.68994 + 5.90368i −0.00951495 + 0.00987238i
\(599\) −256.468 + 83.3315i −0.428160 + 0.139118i −0.515167 0.857090i \(-0.672270\pi\)
0.0870064 + 0.996208i \(0.472270\pi\)
\(600\) −45.1932 4.61556i −0.0753220 0.00769260i
\(601\) −526.839 382.771i −0.876604 0.636890i 0.0557467 0.998445i \(-0.482246\pi\)
−0.932351 + 0.361555i \(0.882246\pi\)
\(602\) −450.437 + 240.069i −0.748234 + 0.398785i
\(603\) −510.371 165.830i −0.846387 0.275008i
\(604\) 181.667 638.271i 0.300773 1.05674i
\(605\) 119.237 + 242.874i 0.197085 + 0.401444i
\(606\) 47.4879 340.316i 0.0783629 0.561578i
\(607\) −488.244 158.640i −0.804356 0.261351i −0.122151 0.992512i \(-0.538979\pi\)
−0.682206 + 0.731160i \(0.738979\pi\)
\(608\) 74.3231 1143.44i 0.122242 1.88066i
\(609\) −39.0995 28.4074i −0.0642027 0.0466460i
\(610\) 44.5640 + 251.293i 0.0730558 + 0.411956i
\(611\) 157.013 51.0168i 0.256978 0.0834972i
\(612\) 470.753 + 600.106i 0.769205 + 0.980565i
\(613\) −490.321 + 356.239i −0.799871 + 0.581140i −0.910876 0.412679i \(-0.864593\pi\)
0.111005 + 0.993820i \(0.464593\pi\)
\(614\) −104.869 51.0206i −0.170796 0.0830954i
\(615\) 14.3320i 0.0233040i
\(616\) 236.383 658.121i 0.383739 1.06838i
\(617\) 134.684 0.218288 0.109144 0.994026i \(-0.465189\pi\)
0.109144 + 0.994026i \(0.465189\pi\)
\(618\) 110.185 226.476i 0.178293 0.366467i
\(619\) 123.147 + 169.498i 0.198946 + 0.273825i 0.896821 0.442394i \(-0.145871\pi\)
−0.697875 + 0.716220i \(0.745871\pi\)
\(620\) 106.337 83.4163i 0.171512 0.134542i
\(621\) −4.11061 12.6512i −0.00661934 0.0203722i
\(622\) 27.4051 4.85999i 0.0440597 0.00781349i
\(623\) 106.683 146.837i 0.171241 0.235693i
\(624\) −7.82979 105.993i −0.0125477 0.169860i
\(625\) 7.72542 23.7764i 0.0123607 0.0380423i
\(626\) 753.440 + 105.136i 1.20358 + 0.167948i
\(627\) −107.660 + 434.193i −0.171706 + 0.692493i
\(628\) 441.602 + 125.690i 0.703189 + 0.200144i
\(629\) 187.299 576.446i 0.297772 0.916448i
\(630\) 128.873 + 241.802i 0.204560 + 0.383812i
\(631\) 461.826 635.649i 0.731895 1.00737i −0.267149 0.963655i \(-0.586082\pi\)
0.999044 0.0437123i \(-0.0139185\pi\)
\(632\) 314.643 + 32.1343i 0.497852 + 0.0508454i
\(633\) 46.5117 + 143.148i 0.0734782 + 0.226143i
\(634\) −590.302 568.930i −0.931076 0.897366i
\(635\) −11.5412 15.8852i −0.0181752 0.0250160i
\(636\) 209.392 + 140.640i 0.329233 + 0.221132i
\(637\) 82.7363 0.129884
\(638\) 99.7698 62.6591i 0.156379 0.0982118i
\(639\) 491.496i 0.769164i
\(640\) −274.581 + 80.7795i −0.429033 + 0.126218i
\(641\) −122.258 + 88.8254i −0.190730 + 0.138573i −0.679052 0.734090i \(-0.737609\pi\)
0.488323 + 0.872663i \(0.337609\pi\)
\(642\) 129.169 + 124.492i 0.201197 + 0.193913i
\(643\) −186.012 + 60.4390i −0.289288 + 0.0939954i −0.450066 0.892995i \(-0.648600\pi\)
0.160778 + 0.986991i \(0.448600\pi\)
\(644\) 0.821235 + 22.2645i 0.00127521 + 0.0345723i
\(645\) −65.9831 47.9396i −0.102299 0.0743249i
\(646\) 833.026 + 1562.99i 1.28951 + 2.41949i
\(647\) 1224.63 + 397.907i 1.89278 + 0.615003i 0.976960 + 0.213423i \(0.0684613\pi\)
0.915824 + 0.401580i \(0.131539\pi\)
\(648\) −350.076 154.631i −0.540241 0.238628i
\(649\) 638.626 1024.96i 0.984016 1.57930i
\(650\) 57.9273 + 8.08321i 0.0891189 + 0.0124357i
\(651\) 129.694 + 42.1402i 0.199223 + 0.0647314i
\(652\) −181.151 494.686i −0.277839 0.758720i
\(653\) 161.840 + 117.583i 0.247840 + 0.180066i 0.704769 0.709437i \(-0.251051\pi\)
−0.456929 + 0.889503i \(0.651051\pi\)
\(654\) 322.239 57.1455i 0.492721 0.0873784i
\(655\) −242.528 + 78.8022i −0.370272 + 0.120309i
\(656\) −34.1542 83.5888i −0.0520644 0.127422i
\(657\) −483.224 + 351.083i −0.735501 + 0.534373i
\(658\) 196.259 403.394i 0.298266 0.613061i
\(659\) 1094.71i 1.66116i −0.556897 0.830582i \(-0.688008\pi\)
0.556897 0.830582i \(-0.311992\pi\)
\(660\) 111.088 12.0417i 0.168315 0.0182449i
\(661\) −487.565 −0.737617 −0.368808 0.929505i \(-0.620234\pi\)
−0.368808 + 0.929505i \(0.620234\pi\)
\(662\) −256.836 124.956i −0.387970 0.188755i
\(663\) 96.5594 + 132.903i 0.145640 + 0.200456i
\(664\) −935.581 + 543.836i −1.40901 + 0.819030i
\(665\) 196.616 + 605.122i 0.295663 + 0.909959i
\(666\) 65.9913 + 372.120i 0.0990860 + 0.558739i
\(667\) −2.20633 + 3.03675i −0.00330784 + 0.00455285i
\(668\) 270.750 + 739.363i 0.405315 + 1.10683i
\(669\) −84.8341 + 261.093i −0.126807 + 0.390273i
\(670\) −43.0174 + 308.279i −0.0642051 + 0.460117i
\(671\) −235.910 581.729i −0.351580 0.866959i
\(672\) −222.137 184.546i −0.330561 0.274622i
\(673\) 260.349 801.273i 0.386849 1.19060i −0.548281 0.836294i \(-0.684718\pi\)
0.935130 0.354304i \(-0.115282\pi\)
\(674\) −97.6463 + 52.0424i −0.144876 + 0.0772142i
\(675\) −55.7745 + 76.7670i −0.0826289 + 0.113729i
\(676\) −19.8737 538.797i −0.0293990 0.797037i
\(677\) −42.3896 130.462i −0.0626139 0.192706i 0.914856 0.403780i \(-0.132304\pi\)
−0.977470 + 0.211074i \(0.932304\pi\)
\(678\) −266.324 + 276.328i −0.392808 + 0.407564i
\(679\) 531.584 + 731.662i 0.782892 + 1.07756i
\(680\) 295.054 329.636i 0.433903 0.484759i
\(681\) 401.970 0.590264
\(682\) −213.101 + 255.141i −0.312465 + 0.374106i
\(683\) 788.659i 1.15470i 0.816497 + 0.577349i \(0.195913\pi\)
−0.816497 + 0.577349i \(0.804087\pi\)
\(684\) −916.751 615.743i −1.34028 0.900209i
\(685\) 232.254 168.743i 0.339057 0.246339i
\(686\) −384.404 + 398.844i −0.560355 + 0.581405i
\(687\) 52.5272 17.0671i 0.0764588 0.0248430i
\(688\) −499.079 122.356i −0.725406 0.177843i
\(689\) −262.733 190.887i −0.381325 0.277049i
\(690\) −3.14171 + 1.67443i −0.00455321 + 0.00242672i
\(691\) 703.717 + 228.652i 1.01840 + 0.330899i 0.770196 0.637807i \(-0.220158\pi\)
0.248208 + 0.968707i \(0.420158\pi\)
\(692\) 1185.30 + 337.364i 1.71286 + 0.487521i
\(693\) −433.875 515.716i −0.626083 0.744179i
\(694\) −43.3205 + 310.451i −0.0624215 + 0.447336i
\(695\) −510.523 165.879i −0.734565 0.238675i
\(696\) −10.2560 47.5622i −0.0147357 0.0683365i
\(697\) 112.915 + 82.0375i 0.162001 + 0.117701i
\(698\) 179.028 + 1009.53i 0.256488 + 1.44632i
\(699\) 60.5839 19.6849i 0.0866723 0.0281615i
\(700\) 125.045 98.0917i 0.178636 0.140131i
\(701\) −112.491 + 81.7296i −0.160472 + 0.116590i −0.665124 0.746733i \(-0.731621\pi\)
0.504651 + 0.863323i \(0.331621\pi\)
\(702\) −199.625 97.1215i −0.284367 0.138350i
\(703\) 877.593i 1.24835i
\(704\) 619.206 334.963i 0.879554 0.475799i
\(705\) 71.6821 0.101677
\(706\) 125.828 258.628i 0.178226 0.366329i
\(707\) 706.585 + 972.531i 0.999413 + 1.37557i
\(708\) −307.823 392.407i −0.434779 0.554247i
\(709\) 411.565 + 1266.67i 0.580487 + 1.78656i 0.616684 + 0.787211i \(0.288476\pi\)
−0.0361971 + 0.999345i \(0.511524\pi\)
\(710\) −280.703 + 49.7795i −0.395356 + 0.0701120i
\(711\) 179.169 246.605i 0.251996 0.346843i
\(712\) 178.618 38.5163i 0.250869 0.0540959i
\(713\) 3.27292 10.0730i 0.00459035 0.0141276i
\(714\) 442.099 + 61.6908i 0.619186 + 0.0864016i
\(715\) −143.499 + 10.2211i −0.200698 + 0.0142952i
\(716\) −205.610 + 722.392i −0.287164 + 1.00893i
\(717\) 35.2393 108.455i 0.0491482 0.151263i
\(718\) 218.942 + 410.797i 0.304933 + 0.572140i
\(719\) 1.18250 1.62757i 0.00164465 0.00226366i −0.808194 0.588917i \(-0.799555\pi\)
0.809839 + 0.586653i \(0.199555\pi\)
\(720\) −65.6827 + 267.913i −0.0912260 + 0.372102i
\(721\) 272.278 + 837.987i 0.377640 + 1.16226i
\(722\) −1326.58 1278.55i −1.83737 1.77085i
\(723\) −32.2396 44.3740i −0.0445915 0.0613749i
\(724\) −434.426 + 646.797i −0.600036 + 0.893366i
\(725\) 26.7759 0.0369323
\(726\) −261.085 + 85.8630i −0.359621 + 0.118269i
\(727\) 31.7313i 0.0436469i −0.999762 0.0218235i \(-0.993053\pi\)
0.999762 0.0218235i \(-0.00694718\pi\)
\(728\) 277.047 + 247.982i 0.380559 + 0.340634i
\(729\) −141.466 + 102.781i −0.194055 + 0.140989i
\(730\) 249.452 + 240.421i 0.341715 + 0.329343i
\(731\) 755.387 245.440i 1.03336 0.335759i
\(732\) −259.072 + 9.55596i −0.353924 + 0.0130546i
\(733\) 740.641 + 538.107i 1.01042 + 0.734116i 0.964298 0.264820i \(-0.0853125\pi\)
0.0461259 + 0.998936i \(0.485312\pi\)
\(734\) −522.249 979.887i −0.711511 1.33500i
\(735\) 34.1651 + 11.1009i 0.0464832 + 0.0151033i
\(736\) −14.3332 + 17.2528i −0.0194745 + 0.0234413i
\(737\) −54.3947 763.677i −0.0738056 1.03620i
\(738\) −86.1908 12.0271i −0.116790 0.0162969i
\(739\) 1020.76 + 331.664i 1.38127 + 0.448801i 0.903085 0.429461i \(-0.141296\pi\)
0.478181 + 0.878261i \(0.341296\pi\)
\(740\) 205.841 75.3779i 0.278164 0.101862i
\(741\) −192.431 139.809i −0.259691 0.188676i
\(742\) −868.889 + 154.088i −1.17101 + 0.207665i
\(743\) 1068.27 347.102i 1.43778 0.467163i 0.516574 0.856242i \(-0.327207\pi\)
0.921204 + 0.389080i \(0.127207\pi\)
\(744\) 68.9935 + 118.692i 0.0927332 + 0.159532i
\(745\) −62.1141 + 45.1285i −0.0833746 + 0.0605752i
\(746\) 364.671 749.551i 0.488835 1.00476i
\(747\) 1042.95i 1.39619i
\(748\) −541.007 + 944.138i −0.723272 + 1.26222i
\(749\) −627.607 −0.837927
\(750\) 22.8359 + 11.1101i 0.0304479 + 0.0148135i
\(751\) −124.028 170.709i −0.165150 0.227309i 0.718419 0.695611i \(-0.244866\pi\)
−0.883569 + 0.468301i \(0.844866\pi\)
\(752\) 418.074 170.824i 0.555949 0.227160i
\(753\) 58.9879 + 181.546i 0.0783372 + 0.241097i
\(754\) 10.9384 + 61.6810i 0.0145072 + 0.0818051i
\(755\) −218.054 + 300.126i −0.288813 + 0.397517i
\(756\) −566.440 + 207.427i −0.749259 + 0.274374i
\(757\) 347.466 1069.39i 0.459004 1.41267i −0.407365 0.913265i \(-0.633552\pi\)
0.866369 0.499404i \(-0.166448\pi\)
\(758\) −89.4116 + 640.757i −0.117957 + 0.845326i
\(759\) 6.70066 5.63732i 0.00882828 0.00742729i
\(760\) −258.813 + 585.938i −0.340543 + 0.770971i
\(761\) −238.745 + 734.781i −0.313725 + 0.965547i 0.662551 + 0.749017i \(0.269474\pi\)
−0.976276 + 0.216530i \(0.930526\pi\)
\(762\) 17.6017 9.38112i 0.0230993 0.0123112i
\(763\) −672.972 + 926.266i −0.882008 + 1.21398i
\(764\) 1432.60 52.8420i 1.87513 0.0691649i
\(765\) −131.756 405.503i −0.172230 0.530069i
\(766\) −10.1090 + 10.4888i −0.0131972 + 0.0136929i
\(767\) 377.428 + 519.486i 0.492084 + 0.677295i
\(768\) −42.7216 287.585i −0.0556271 0.374460i
\(769\) 178.398 0.231987 0.115993 0.993250i \(-0.462995\pi\)
0.115993 + 0.993250i \(0.462995\pi\)
\(770\) −250.592 + 300.027i −0.325444 + 0.389646i
\(771\) 147.030i 0.190700i
\(772\) −115.828 + 172.451i −0.150037 + 0.223383i
\(773\) 1059.37 769.675i 1.37046 0.995699i 0.372761 0.927927i \(-0.378411\pi\)
0.997701 0.0677719i \(-0.0215890\pi\)
\(774\) −343.675 + 356.585i −0.444024 + 0.460704i
\(775\) −71.8542 + 23.3468i −0.0927151 + 0.0301249i
\(776\) −92.5059 + 905.770i −0.119209 + 1.16723i
\(777\) 178.941 + 130.008i 0.230297 + 0.167320i
\(778\) −1267.09 + 675.318i −1.62865 + 0.868018i
\(779\) −192.194 62.4478i −0.246719 0.0801640i
\(780\) −16.2644 + 57.1435i −0.0208518 + 0.0732609i
\(781\) 649.811 263.519i 0.832024 0.337413i
\(782\) 4.79136 34.3367i 0.00612706 0.0439088i
\(783\) −96.6559 31.4054i −0.123443 0.0401091i
\(784\) 225.717 16.6740i 0.287904 0.0212678i
\(785\) −207.649 150.866i −0.264521 0.192185i
\(786\) −45.2321 255.061i −0.0575472 0.324505i
\(787\) 1049.27 340.929i 1.33326 0.433201i 0.446229 0.894919i \(-0.352767\pi\)
0.887027 + 0.461718i \(0.152767\pi\)
\(788\) 758.005 + 966.289i 0.961936 + 1.22625i
\(789\) 161.011 116.982i 0.204070 0.148266i
\(790\) −158.988 77.3505i −0.201250 0.0979120i
\(791\) 1342.63i 1.69738i
\(792\) 20.8058 678.176i 0.0262699 0.856283i
\(793\) 333.780 0.420908
\(794\) −106.886 + 219.695i −0.134617 + 0.276693i
\(795\) −82.8812 114.076i −0.104253 0.143492i
\(796\) −142.878 + 112.081i −0.179495 + 0.140805i
\(797\) 108.630 + 334.330i 0.136299 + 0.419485i 0.995790 0.0916659i \(-0.0292192\pi\)
−0.859491 + 0.511151i \(0.829219\pi\)
\(798\) −636.391 + 112.857i −0.797483 + 0.141425i
\(799\) −410.315 + 564.750i −0.513536 + 0.706821i
\(800\) 159.663 + 10.3780i 0.199579 + 0.0129725i
\(801\) 54.4192 167.485i 0.0679390 0.209095i
\(802\) 1318.49 + 183.983i 1.64400 + 0.229405i
\(803\) −723.254 450.639i −0.900690 0.561194i
\(804\) −304.108 86.5561i −0.378243 0.107657i
\(805\) 3.84872 11.8451i 0.00478102 0.0147145i
\(806\) −83.1354 155.986i −0.103146 0.193531i
\(807\) 198.745 273.550i 0.246277 0.338971i
\(808\) −122.960 + 1203.96i −0.152178 + 1.49004i
\(809\) −266.478 820.134i −0.329391 1.01376i −0.969419 0.245411i \(-0.921077\pi\)
0.640028 0.768352i \(-0.278923\pi\)
\(810\) 154.041 + 148.464i 0.190174 + 0.183288i
\(811\) −513.011 706.099i −0.632566 0.870652i 0.365626 0.930762i \(-0.380855\pi\)
−0.998192 + 0.0601095i \(0.980855\pi\)
\(812\) 141.304 + 94.9079i 0.174020 + 0.116882i
\(813\) −340.277 −0.418545
\(814\) −456.602 + 286.763i −0.560936 + 0.352288i
\(815\) 294.496i 0.361345i
\(816\) 290.212 + 343.118i 0.355652 + 0.420488i
\(817\) −930.383 + 675.963i −1.13878 + 0.827372i
\(818\) 203.629 + 196.256i 0.248935 + 0.239922i
\(819\) 340.811 110.736i 0.416130 0.135209i
\(820\) 1.86062 + 50.4434i 0.00226905 + 0.0615163i
\(821\) −286.807 208.378i −0.349339 0.253810i 0.399253 0.916841i \(-0.369270\pi\)
−0.748592 + 0.663031i \(0.769270\pi\)
\(822\) 137.160 + 257.351i 0.166861 + 0.313079i
\(823\) 583.595 + 189.621i 0.709107 + 0.230403i 0.641294 0.767295i \(-0.278398\pi\)
0.0678128 + 0.997698i \(0.478398\pi\)
\(824\) −358.410 + 811.420i −0.434963 + 0.984733i
\(825\) −60.6279 15.0329i −0.0734884 0.0182217i
\(826\) 1728.06 + 241.135i 2.09209 + 0.291931i
\(827\) 322.996 + 104.948i 0.390563 + 0.126902i 0.497714 0.867341i \(-0.334173\pi\)
−0.107151 + 0.994243i \(0.534173\pi\)
\(828\) 7.43339 + 20.2990i 0.00897752 + 0.0245158i
\(829\) −402.377 292.344i −0.485376 0.352647i 0.318027 0.948082i \(-0.396980\pi\)
−0.803403 + 0.595435i \(0.796980\pi\)
\(830\) 595.652 105.632i 0.717653 0.127268i
\(831\) 68.2454 22.1743i 0.0821244 0.0266838i
\(832\) 41.3183 + 372.039i 0.0496615 + 0.447163i
\(833\) −283.023 + 205.628i −0.339764 + 0.246853i
\(834\) 238.554 490.329i 0.286036 0.587925i
\(835\) 440.158i 0.527135i
\(836\) 322.556 1542.18i 0.385832 1.84471i
\(837\) 286.763 0.342608
\(838\) −734.548 357.372i −0.876549 0.426458i
\(839\) 171.752 + 236.396i 0.204710 + 0.281759i 0.899011 0.437925i \(-0.144287\pi\)
−0.694301 + 0.719684i \(0.744287\pi\)
\(840\) 81.1315 + 139.574i 0.0965851 + 0.166159i
\(841\) −251.021 772.564i −0.298480 0.918626i
\(842\) −71.3815 402.515i −0.0847762 0.478047i
\(843\) 31.0630 42.7545i 0.0368481 0.0507171i
\(844\) −182.288 497.792i −0.215982 0.589801i
\(845\) −93.1382 + 286.650i −0.110223 + 0.339231i
\(846\) 60.1543 431.088i 0.0711044 0.509560i
\(847\) 449.206 850.135i 0.530350 1.00370i
\(848\) −755.244 467.818i −0.890617 0.551672i
\(849\) 49.7886 153.234i 0.0586438 0.180487i
\(850\) −218.246 + 116.318i −0.256760 + 0.136845i
\(851\) 10.0974 13.8979i 0.0118653 0.0163312i
\(852\) −10.6743 289.392i −0.0125286 0.339662i
\(853\) −143.038 440.226i −0.167688 0.516092i 0.831536 0.555471i \(-0.187462\pi\)
−0.999224 + 0.0393793i \(0.987462\pi\)
\(854\) 629.393 653.036i 0.736994 0.764679i
\(855\) 362.867 + 499.444i 0.424406 + 0.584145i
\(856\) −470.790 421.399i −0.549988 0.492288i
\(857\) 391.292 0.456583 0.228291 0.973593i \(-0.426686\pi\)
0.228291 + 0.973593i \(0.426686\pi\)
\(858\) 9.86229 145.804i 0.0114945 0.169934i
\(859\) 962.258i 1.12021i 0.828422 + 0.560104i \(0.189239\pi\)
−0.828422 + 0.560104i \(0.810761\pi\)
\(860\) 238.461 + 160.164i 0.277280 + 0.186237i
\(861\) −41.2051 + 29.9372i −0.0478572 + 0.0347703i
\(862\) 1003.70 1041.40i 1.16438 1.20812i
\(863\) 1268.64 412.206i 1.47003 0.477643i 0.538915 0.842360i \(-0.318834\pi\)
0.931118 + 0.364718i \(0.118834\pi\)
\(864\) −564.180 224.731i −0.652986 0.260105i
\(865\) −557.348 404.937i −0.644333 0.468135i
\(866\) −764.566 + 407.489i −0.882870 + 0.470542i
\(867\) −348.463 113.222i −0.401918 0.130591i
\(868\) −461.948 131.481i −0.532198 0.151476i
\(869\) 422.102 + 104.662i 0.485733 + 0.120439i
\(870\) −3.75897 + 26.9382i −0.00432066 + 0.0309634i
\(871\) 387.162 + 125.797i 0.444503 + 0.144428i
\(872\) −1126.75 + 242.966i −1.29214 + 0.278631i
\(873\) 709.909 + 515.779i 0.813183 + 0.590812i
\(874\) 8.76529 + 49.4269i 0.0100289 + 0.0565525i
\(875\) −84.4955 + 27.4542i −0.0965662 + 0.0313763i
\(876\) −276.897 + 217.212i −0.316093 + 0.247959i
\(877\) −1288.43 + 936.097i −1.46913 + 1.06738i −0.488264 + 0.872696i \(0.662370\pi\)
−0.980865 + 0.194689i \(0.937630\pi\)
\(878\) −1434.16 697.744i −1.63344 0.794697i
\(879\) 420.887i 0.478825i
\(880\) −389.427 + 56.8041i −0.442531 + 0.0645502i
\(881\) −1317.14 −1.49505 −0.747525 0.664234i \(-0.768758\pi\)
−0.747525 + 0.664234i \(0.768758\pi\)
\(882\) 95.4304 196.149i 0.108198 0.222392i
\(883\) −698.780 961.787i −0.791370 1.08923i −0.993936 0.109959i \(-0.964928\pi\)
0.202566 0.979269i \(-0.435072\pi\)
\(884\) −357.108 455.234i −0.403969 0.514971i
\(885\) 86.1546 + 265.157i 0.0973499 + 0.299612i
\(886\) 1234.09 218.852i 1.39288 0.247011i
\(887\) 62.6807 86.2726i 0.0706660 0.0972634i −0.772221 0.635354i \(-0.780854\pi\)
0.842887 + 0.538091i \(0.180854\pi\)
\(888\) 46.9373 + 217.671i 0.0528574 + 0.245125i
\(889\) −21.5627 + 66.3632i −0.0242550 + 0.0746493i
\(890\) −101.166 14.1167i −0.113669 0.0158615i
\(891\) −446.621 278.277i −0.501258 0.312320i
\(892\) 264.690 929.966i 0.296738 1.04256i
\(893\) 312.336 961.271i 0.349760 1.07645i
\(894\) −36.6820 68.8259i −0.0410313 0.0769864i
\(895\) 246.792 339.681i 0.275746 0.379531i
\(896\) 805.801 + 620.697i 0.899331 + 0.692742i
\(897\) 1.43879 + 4.42813i 0.00160400 + 0.00493660i
\(898\) 471.909 + 454.824i 0.525512 + 0.506485i
\(899\) −47.5630 65.4648i −0.0529065 0.0728196i
\(900\) 85.9785 128.009i 0.0955316 0.142233i
\(901\) 1373.17 1.52405
\(902\) −30.3107 120.402i −0.0336039 0.133483i
\(903\) 289.843i 0.320977i
\(904\) 901.491 1007.15i 0.997225 1.11411i
\(905\) 352.373 256.014i 0.389363 0.282889i
\(906\) −271.332 261.509i −0.299484 0.288641i
\(907\) −524.704 + 170.487i −0.578505 + 0.187968i −0.583631 0.812019i \(-0.698368\pi\)
0.00512563 + 0.999987i \(0.498368\pi\)
\(908\) −1414.79 + 52.1849i −1.55814 + 0.0574724i
\(909\) 943.616 + 685.577i 1.03808 + 0.754210i
\(910\) −97.7614 183.428i −0.107430 0.201569i
\(911\) −475.308 154.437i −0.521743 0.169525i 0.0362932 0.999341i \(-0.488445\pi\)
−0.558036 + 0.829817i \(0.688445\pi\)
\(912\) −553.155 342.639i −0.606530 0.375701i
\(913\) −1378.90 + 559.188i −1.51029 + 0.612473i
\(914\) −1442.16 201.240i −1.57786 0.220175i
\(915\) 137.831 + 44.7841i 0.150635 + 0.0489443i
\(916\) −182.661 + 66.8894i −0.199412 + 0.0730233i
\(917\) 733.163 + 532.674i 0.799524 + 0.580888i
\(918\) 924.256 163.906i 1.00681 0.178547i
\(919\) 1163.90 378.174i 1.26648 0.411506i 0.402683 0.915339i \(-0.368078\pi\)
0.863801 + 0.503834i \(0.168078\pi\)
\(920\) 10.8403 6.30127i 0.0117830 0.00684921i
\(921\) −53.5762 + 38.9254i −0.0581718 + 0.0422643i
\(922\) −478.543 + 983.607i −0.519027 + 1.06682i
\(923\) 372.844i 0.403948i
\(924\) −266.666 294.230i −0.288599 0.318431i
\(925\) −122.542 −0.132477
\(926\) 220.017 + 107.043i 0.237600 + 0.115597i
\(927\) 502.506 + 691.641i 0.542078 + 0.746106i
\(928\) 42.2723 + 166.070i 0.0455520 + 0.178955i
\(929\) 157.031 + 483.292i 0.169033 + 0.520229i 0.999311 0.0371204i \(-0.0118185\pi\)
−0.830278 + 0.557349i \(0.811819\pi\)
\(930\) −13.4010 75.5671i −0.0144097 0.0812550i
\(931\) 297.731 409.792i 0.319797 0.440163i
\(932\) −210.678 + 77.1490i −0.226049 + 0.0827779i
\(933\) 4.88399 15.0314i 0.00523471 0.0161108i
\(934\) −34.4045 + 246.555i −0.0368356 + 0.263978i
\(935\) 465.477 391.609i 0.497837 0.418834i
\(936\) 330.006 + 145.766i 0.352570 + 0.155733i
\(937\) −28.5669 + 87.9199i −0.0304876 + 0.0938312i −0.965142 0.261725i \(-0.915709\pi\)
0.934655 + 0.355556i \(0.115709\pi\)
\(938\) 976.172 520.269i 1.04069 0.554657i
\(939\) 253.917 349.486i 0.270412 0.372190i
\(940\) −252.295 + 9.30600i −0.268399 + 0.00990000i
\(941\) −510.919 1572.45i −0.542953 1.67104i −0.725808 0.687898i \(-0.758534\pi\)
0.182855 0.983140i \(-0.441466\pi\)
\(942\) 180.931 187.727i 0.192071 0.199286i
\(943\) 2.32515 + 3.20029i 0.00246569 + 0.00339373i
\(944\) 1134.37 + 1341.17i 1.20166 + 1.42073i
\(945\) 337.213 0.356839
\(946\) −655.708 263.189i −0.693137 0.278213i
\(947\) 741.454i 0.782950i −0.920189 0.391475i \(-0.871965\pi\)
0.920189 0.391475i \(-0.128035\pi\)
\(948\) 100.139 149.092i 0.105632 0.157270i
\(949\) 366.569 266.328i 0.386269 0.280641i
\(950\) 248.490 257.825i 0.261569 0.271395i
\(951\) −442.764 + 143.863i −0.465577 + 0.151275i
\(952\) −1564.04 159.735i −1.64290 0.167789i
\(953\) 152.590 + 110.863i 0.160116 + 0.116331i 0.664958 0.746881i \(-0.268449\pi\)
−0.504842 + 0.863212i \(0.668449\pi\)
\(954\) −755.594 + 402.708i −0.792027 + 0.422125i
\(955\) −762.171 247.644i −0.798085 0.259313i
\(956\) −109.950 + 386.299i −0.115010 + 0.404078i
\(957\) −4.75315 66.7321i −0.00496672 0.0697305i
\(958\) 80.5607 577.328i 0.0840925 0.602639i
\(959\) −970.285 315.265i −1.01177 0.328743i
\(960\) −32.8554 + 159.174i −0.0342244 + 0.165806i
\(961\) −592.747 430.656i −0.616803 0.448133i
\(962\) −50.0603 282.287i −0.0520378 0.293437i
\(963\) −579.143 + 188.175i −0.601395 + 0.195405i
\(964\) 119.233 + 151.995i 0.123685 + 0.157671i
\(965\) 93.9511 68.2594i 0.0973586 0.0707352i
\(966\) 11.3766 + 5.53494i 0.0117770 + 0.00572975i
\(967\) 1697.82i 1.75576i −0.478884 0.877878i \(-0.658958\pi\)
0.478884 0.877878i \(-0.341042\pi\)
\(968\) 907.777 336.102i 0.937786 0.347213i
\(969\) 1005.74 1.03791
\(970\) 222.671 457.682i 0.229558 0.471837i
\(971\) 734.998 + 1011.64i 0.756950 + 1.04185i 0.997462 + 0.0712061i \(0.0226848\pi\)
−0.240512 + 0.970646i \(0.577315\pi\)
\(972\) −708.533 + 555.809i −0.728944 + 0.571820i
\(973\) 589.492 + 1814.27i 0.605850 + 1.86462i
\(974\) 316.301 56.0924i 0.324744 0.0575897i
\(975\) 19.5221 26.8698i 0.0200226 0.0275588i
\(976\) 910.601 67.2671i 0.932993 0.0689213i
\(977\) −52.7111 + 162.228i −0.0539520 + 0.166047i −0.974402 0.224814i \(-0.927823\pi\)
0.920450 + 0.390861i \(0.127823\pi\)
\(978\) −296.281 41.3432i −0.302945 0.0422732i
\(979\) 250.610 17.8503i 0.255986 0.0182332i
\(980\) −121.690 34.6359i −0.124174 0.0353427i
\(981\) −343.283 + 1056.52i −0.349932 + 1.07698i
\(982\) −40.8100 76.5712i −0.0415581 0.0779748i
\(983\) −519.470 + 714.989i −0.528453 + 0.727354i −0.986894 0.161371i \(-0.948408\pi\)
0.458440 + 0.888725i \(0.348408\pi\)
\(984\) −51.0103 5.20966i −0.0518397 0.00529437i
\(985\) −212.153 652.940i −0.215384 0.662883i
\(986\) −190.717 183.812i −0.193425 0.186422i
\(987\) −149.733 206.089i −0.151705 0.208804i
\(988\) 695.438 + 467.096i 0.703885 + 0.472770i
\(989\) 22.5113 0.0227617
\(990\) −141.284 + 351.994i −0.142711 + 0.355550i
\(991\) 1304.58i 1.31643i −0.752831 0.658214i \(-0.771312\pi\)
0.752831 0.658214i \(-0.228688\pi\)
\(992\) −258.241 408.797i −0.260324 0.412094i
\(993\) −131.215 + 95.3329i −0.132140 + 0.0960050i
\(994\) 729.463 + 703.052i 0.733866 + 0.707296i
\(995\) 96.5454 31.3695i 0.0970306 0.0315271i
\(996\) 22.6509 + 614.091i 0.0227419 + 0.616557i
\(997\) −1223.26 888.752i −1.22694 0.891427i −0.230286 0.973123i \(-0.573966\pi\)
−0.996657 + 0.0816961i \(0.973966\pi\)
\(998\) −264.126 495.576i −0.264655 0.496569i
\(999\) 442.351 + 143.728i 0.442793 + 0.143872i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 220.3.s.a.31.8 96
4.3 odd 2 inner 220.3.s.a.31.11 yes 96
11.5 even 5 inner 220.3.s.a.71.11 yes 96
44.27 odd 10 inner 220.3.s.a.71.8 yes 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
220.3.s.a.31.8 96 1.1 even 1 trivial
220.3.s.a.31.11 yes 96 4.3 odd 2 inner
220.3.s.a.71.8 yes 96 44.27 odd 10 inner
220.3.s.a.71.11 yes 96 11.5 even 5 inner