Properties

Label 220.3.x.a.113.4
Level $220$
Weight $3$
Character 220.113
Analytic conductor $5.995$
Analytic rank $0$
Dimension $96$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [220,3,Mod(37,220)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(220, base_ring=CyclotomicField(20))
 
chi = DirichletCharacter(H, H._module([0, 5, 4]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("220.37");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 220 = 2^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 220.x (of order \(20\), degree \(8\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.99456581593\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(12\) over \(\Q(\zeta_{20})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 113.4
Character \(\chi\) \(=\) 220.113
Dual form 220.3.x.a.37.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.72462 + 3.38475i) q^{3} +(-0.450384 - 4.97967i) q^{5} +(5.09251 + 9.99462i) q^{7} +(-3.19218 - 4.39365i) q^{9} +(-8.75765 + 6.65610i) q^{11} +(-12.3296 - 1.95282i) q^{13} +(17.6317 + 7.06359i) q^{15} +(11.2549 - 1.78260i) q^{17} +(-29.7589 + 9.66926i) q^{19} -42.6120 q^{21} +(5.52005 + 5.52005i) q^{23} +(-24.5943 + 4.48553i) q^{25} +(-13.3915 + 2.12101i) q^{27} +(-18.0017 - 5.84912i) q^{29} +(-2.07398 + 1.50684i) q^{31} +(-7.42565 - 41.1217i) q^{33} +(47.4764 - 29.8605i) q^{35} +(10.7814 + 21.1596i) q^{37} +(27.8737 - 38.3648i) q^{39} +(11.2612 + 34.6584i) q^{41} +(-23.6032 - 23.6032i) q^{43} +(-20.4413 + 17.8748i) q^{45} +(62.7083 + 31.9515i) q^{47} +(-45.1573 + 62.1537i) q^{49} +(-13.3767 + 41.1693i) q^{51} +(42.0409 + 6.65862i) q^{53} +(37.0895 + 40.6124i) q^{55} +(18.5947 - 117.402i) q^{57} +(73.5650 + 23.9027i) q^{59} +(87.2179 + 63.3675i) q^{61} +(27.6567 - 54.2793i) q^{63} +(-4.17134 + 62.2770i) q^{65} +(51.9683 - 51.9683i) q^{67} +(-28.2040 + 9.16403i) q^{69} +(-108.853 - 79.0863i) q^{71} +(6.10437 - 3.11033i) q^{73} +(27.2334 - 90.9815i) q^{75} +(-111.124 - 53.6331i) q^{77} +(0.395302 + 0.544087i) q^{79} +(31.0202 - 95.4704i) q^{81} +(8.41245 + 53.1141i) q^{83} +(-13.9458 - 55.2428i) q^{85} +(50.8439 - 50.8439i) q^{87} -22.4520i q^{89} +(-43.2710 - 133.175i) q^{91} +(-1.52344 - 9.61863i) q^{93} +(61.5527 + 143.835i) q^{95} +(11.9707 - 75.5798i) q^{97} +(57.2005 + 17.2306i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q - 2 q^{3} + 4 q^{5} - 2 q^{7} - 20 q^{11} - 8 q^{13} + 88 q^{15} + 42 q^{17} + 56 q^{21} - 104 q^{23} - 126 q^{25} - 14 q^{27} - 32 q^{31} + 52 q^{33} + 56 q^{35} - 134 q^{37} + 24 q^{41} + 332 q^{43}+ \cdots - 310 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/220\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(111\) \(177\)
\(\chi(n)\) \(e\left(\frac{4}{5}\right)\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.72462 + 3.38475i −0.574872 + 1.12825i 0.402241 + 0.915534i \(0.368231\pi\)
−0.977114 + 0.212717i \(0.931769\pi\)
\(4\) 0 0
\(5\) −0.450384 4.97967i −0.0900768 0.995935i
\(6\) 0 0
\(7\) 5.09251 + 9.99462i 0.727502 + 1.42780i 0.896890 + 0.442254i \(0.145821\pi\)
−0.169388 + 0.985549i \(0.554179\pi\)
\(8\) 0 0
\(9\) −3.19218 4.39365i −0.354686 0.488184i
\(10\) 0 0
\(11\) −8.75765 + 6.65610i −0.796150 + 0.605100i
\(12\) 0 0
\(13\) −12.3296 1.95282i −0.948432 0.150217i −0.336992 0.941508i \(-0.609409\pi\)
−0.611440 + 0.791291i \(0.709409\pi\)
\(14\) 0 0
\(15\) 17.6317 + 7.06359i 1.17545 + 0.470906i
\(16\) 0 0
\(17\) 11.2549 1.78260i 0.662052 0.104859i 0.183639 0.982994i \(-0.441212\pi\)
0.478413 + 0.878135i \(0.341212\pi\)
\(18\) 0 0
\(19\) −29.7589 + 9.66926i −1.56626 + 0.508908i −0.958471 0.285191i \(-0.907943\pi\)
−0.607788 + 0.794099i \(0.707943\pi\)
\(20\) 0 0
\(21\) −42.6120 −2.02914
\(22\) 0 0
\(23\) 5.52005 + 5.52005i 0.240002 + 0.240002i 0.816851 0.576849i \(-0.195718\pi\)
−0.576849 + 0.816851i \(0.695718\pi\)
\(24\) 0 0
\(25\) −24.5943 + 4.48553i −0.983772 + 0.179421i
\(26\) 0 0
\(27\) −13.3915 + 2.12101i −0.495983 + 0.0785559i
\(28\) 0 0
\(29\) −18.0017 5.84912i −0.620750 0.201694i −0.0182765 0.999833i \(-0.505818\pi\)
−0.602473 + 0.798139i \(0.705818\pi\)
\(30\) 0 0
\(31\) −2.07398 + 1.50684i −0.0669026 + 0.0486076i −0.620734 0.784021i \(-0.713165\pi\)
0.553831 + 0.832629i \(0.313165\pi\)
\(32\) 0 0
\(33\) −7.42565 41.1217i −0.225020 1.24611i
\(34\) 0 0
\(35\) 47.4764 29.8605i 1.35647 0.853157i
\(36\) 0 0
\(37\) 10.7814 + 21.1596i 0.291388 + 0.571882i 0.989572 0.144037i \(-0.0460083\pi\)
−0.698184 + 0.715918i \(0.746008\pi\)
\(38\) 0 0
\(39\) 27.8737 38.3648i 0.714710 0.983714i
\(40\) 0 0
\(41\) 11.2612 + 34.6584i 0.274664 + 0.845328i 0.989308 + 0.145840i \(0.0465885\pi\)
−0.714644 + 0.699488i \(0.753411\pi\)
\(42\) 0 0
\(43\) −23.6032 23.6032i −0.548912 0.548912i 0.377214 0.926126i \(-0.376882\pi\)
−0.926126 + 0.377214i \(0.876882\pi\)
\(44\) 0 0
\(45\) −20.4413 + 17.8748i −0.454250 + 0.397218i
\(46\) 0 0
\(47\) 62.7083 + 31.9515i 1.33422 + 0.679818i 0.968056 0.250733i \(-0.0806715\pi\)
0.366162 + 0.930551i \(0.380672\pi\)
\(48\) 0 0
\(49\) −45.1573 + 62.1537i −0.921577 + 1.26844i
\(50\) 0 0
\(51\) −13.3767 + 41.1693i −0.262288 + 0.807241i
\(52\) 0 0
\(53\) 42.0409 + 6.65862i 0.793224 + 0.125634i 0.539880 0.841742i \(-0.318470\pi\)
0.253344 + 0.967376i \(0.418470\pi\)
\(54\) 0 0
\(55\) 37.0895 + 40.6124i 0.674355 + 0.738408i
\(56\) 0 0
\(57\) 18.5947 117.402i 0.326223 2.05969i
\(58\) 0 0
\(59\) 73.5650 + 23.9027i 1.24686 + 0.405131i 0.856796 0.515655i \(-0.172451\pi\)
0.390069 + 0.920786i \(0.372451\pi\)
\(60\) 0 0
\(61\) 87.2179 + 63.3675i 1.42980 + 1.03881i 0.990054 + 0.140690i \(0.0449321\pi\)
0.439748 + 0.898121i \(0.355068\pi\)
\(62\) 0 0
\(63\) 27.6567 54.2793i 0.438995 0.861577i
\(64\) 0 0
\(65\) −4.17134 + 62.2770i −0.0641745 + 0.958107i
\(66\) 0 0
\(67\) 51.9683 51.9683i 0.775646 0.775646i −0.203441 0.979087i \(-0.565213\pi\)
0.979087 + 0.203441i \(0.0652126\pi\)
\(68\) 0 0
\(69\) −28.2040 + 9.16403i −0.408753 + 0.132812i
\(70\) 0 0
\(71\) −108.853 79.0863i −1.53314 1.11389i −0.954461 0.298337i \(-0.903568\pi\)
−0.578680 0.815555i \(-0.696432\pi\)
\(72\) 0 0
\(73\) 6.10437 3.11033i 0.0836214 0.0426073i −0.411680 0.911329i \(-0.635058\pi\)
0.495301 + 0.868721i \(0.335058\pi\)
\(74\) 0 0
\(75\) 27.2334 90.9815i 0.363111 1.21309i
\(76\) 0 0
\(77\) −111.124 53.6331i −1.44316 0.696534i
\(78\) 0 0
\(79\) 0.395302 + 0.544087i 0.00500383 + 0.00688718i 0.811512 0.584336i \(-0.198645\pi\)
−0.806508 + 0.591224i \(0.798645\pi\)
\(80\) 0 0
\(81\) 31.0202 95.4704i 0.382966 1.17865i
\(82\) 0 0
\(83\) 8.41245 + 53.1141i 0.101355 + 0.639929i 0.985103 + 0.171966i \(0.0550120\pi\)
−0.883748 + 0.467963i \(0.844988\pi\)
\(84\) 0 0
\(85\) −13.9458 55.2428i −0.164068 0.649915i
\(86\) 0 0
\(87\) 50.8439 50.8439i 0.584413 0.584413i
\(88\) 0 0
\(89\) 22.4520i 0.252269i −0.992013 0.126135i \(-0.959743\pi\)
0.992013 0.126135i \(-0.0402572\pi\)
\(90\) 0 0
\(91\) −43.2710 133.175i −0.475506 1.46346i
\(92\) 0 0
\(93\) −1.52344 9.61863i −0.0163811 0.103426i
\(94\) 0 0
\(95\) 61.5527 + 143.835i 0.647923 + 1.51405i
\(96\) 0 0
\(97\) 11.9707 75.5798i 0.123409 0.779174i −0.845902 0.533338i \(-0.820938\pi\)
0.969311 0.245836i \(-0.0790625\pi\)
\(98\) 0 0
\(99\) 57.2005 + 17.2306i 0.577783 + 0.174047i
\(100\) 0 0
\(101\) −4.48031 + 3.25514i −0.0443595 + 0.0322291i −0.609744 0.792598i \(-0.708728\pi\)
0.565385 + 0.824827i \(0.308728\pi\)
\(102\) 0 0
\(103\) −127.934 + 65.1855i −1.24208 + 0.632869i −0.946578 0.322474i \(-0.895485\pi\)
−0.295498 + 0.955343i \(0.595485\pi\)
\(104\) 0 0
\(105\) 19.1917 + 212.194i 0.182779 + 2.02089i
\(106\) 0 0
\(107\) 49.6589 + 25.3025i 0.464102 + 0.236472i 0.670375 0.742023i \(-0.266133\pi\)
−0.206273 + 0.978495i \(0.566133\pi\)
\(108\) 0 0
\(109\) 130.679i 1.19889i 0.800415 + 0.599447i \(0.204613\pi\)
−0.800415 + 0.599447i \(0.795387\pi\)
\(110\) 0 0
\(111\) −90.2138 −0.812737
\(112\) 0 0
\(113\) −37.8895 + 74.3623i −0.335305 + 0.658074i −0.995679 0.0928635i \(-0.970398\pi\)
0.660373 + 0.750937i \(0.270398\pi\)
\(114\) 0 0
\(115\) 25.0019 29.9742i 0.217408 0.260645i
\(116\) 0 0
\(117\) 30.7783 + 60.4058i 0.263062 + 0.516289i
\(118\) 0 0
\(119\) 75.1320 + 103.410i 0.631362 + 0.868995i
\(120\) 0 0
\(121\) 32.3927 116.583i 0.267709 0.963500i
\(122\) 0 0
\(123\) −136.732 21.6562i −1.11164 0.176066i
\(124\) 0 0
\(125\) 33.4134 + 120.451i 0.267307 + 0.963611i
\(126\) 0 0
\(127\) 198.096 31.3753i 1.55981 0.247049i 0.683918 0.729559i \(-0.260275\pi\)
0.875891 + 0.482510i \(0.160275\pi\)
\(128\) 0 0
\(129\) 120.598 39.1845i 0.934865 0.303756i
\(130\) 0 0
\(131\) −110.511 −0.843595 −0.421797 0.906690i \(-0.638601\pi\)
−0.421797 + 0.906690i \(0.638601\pi\)
\(132\) 0 0
\(133\) −248.188 248.188i −1.86608 1.86608i
\(134\) 0 0
\(135\) 16.5933 + 65.7302i 0.122913 + 0.486890i
\(136\) 0 0
\(137\) 170.244 26.9641i 1.24266 0.196818i 0.499726 0.866184i \(-0.333434\pi\)
0.742933 + 0.669366i \(0.233434\pi\)
\(138\) 0 0
\(139\) −111.384 36.1908i −0.801321 0.260365i −0.120404 0.992725i \(-0.538419\pi\)
−0.680918 + 0.732360i \(0.738419\pi\)
\(140\) 0 0
\(141\) −216.296 + 157.148i −1.53401 + 1.11452i
\(142\) 0 0
\(143\) 120.977 64.9650i 0.845990 0.454301i
\(144\) 0 0
\(145\) −21.0190 + 92.2771i −0.144959 + 0.636394i
\(146\) 0 0
\(147\) −132.496 260.038i −0.901332 1.76896i
\(148\) 0 0
\(149\) 5.49306 7.56054i 0.0368661 0.0507419i −0.790186 0.612867i \(-0.790016\pi\)
0.827052 + 0.562125i \(0.190016\pi\)
\(150\) 0 0
\(151\) 43.8034 + 134.813i 0.290089 + 0.892802i 0.984827 + 0.173539i \(0.0555203\pi\)
−0.694738 + 0.719263i \(0.744480\pi\)
\(152\) 0 0
\(153\) −43.7597 43.7597i −0.286011 0.286011i
\(154\) 0 0
\(155\) 8.43764 + 9.64910i 0.0544364 + 0.0622522i
\(156\) 0 0
\(157\) −192.492 98.0794i −1.22606 0.624710i −0.283574 0.958950i \(-0.591520\pi\)
−0.942488 + 0.334241i \(0.891520\pi\)
\(158\) 0 0
\(159\) −95.0422 + 130.814i −0.597750 + 0.822732i
\(160\) 0 0
\(161\) −27.0599 + 83.2818i −0.168074 + 0.517278i
\(162\) 0 0
\(163\) 272.746 + 43.1988i 1.67329 + 0.265023i 0.919786 0.392420i \(-0.128362\pi\)
0.753504 + 0.657443i \(0.228362\pi\)
\(164\) 0 0
\(165\) −201.428 + 55.4979i −1.22078 + 0.336351i
\(166\) 0 0
\(167\) −36.8986 + 232.969i −0.220950 + 1.39502i 0.588815 + 0.808268i \(0.299595\pi\)
−0.809765 + 0.586754i \(0.800405\pi\)
\(168\) 0 0
\(169\) −12.5226 4.06885i −0.0740985 0.0240761i
\(170\) 0 0
\(171\) 137.479 + 99.8844i 0.803971 + 0.584119i
\(172\) 0 0
\(173\) −8.40995 + 16.5055i −0.0486124 + 0.0954072i −0.914035 0.405636i \(-0.867050\pi\)
0.865422 + 0.501043i \(0.167050\pi\)
\(174\) 0 0
\(175\) −170.078 222.968i −0.971875 1.27410i
\(176\) 0 0
\(177\) −207.776 + 207.776i −1.17388 + 1.17388i
\(178\) 0 0
\(179\) 227.245 73.8362i 1.26952 0.412493i 0.404644 0.914474i \(-0.367395\pi\)
0.864878 + 0.501981i \(0.167395\pi\)
\(180\) 0 0
\(181\) −23.5411 17.1036i −0.130062 0.0944953i 0.520852 0.853647i \(-0.325614\pi\)
−0.650914 + 0.759151i \(0.725614\pi\)
\(182\) 0 0
\(183\) −364.901 + 185.926i −1.99399 + 1.01599i
\(184\) 0 0
\(185\) 100.512 63.2176i 0.543309 0.341717i
\(186\) 0 0
\(187\) −86.7011 + 90.5249i −0.463642 + 0.484091i
\(188\) 0 0
\(189\) −89.3953 123.042i −0.472991 0.651016i
\(190\) 0 0
\(191\) 105.710 325.341i 0.553454 1.70336i −0.146538 0.989205i \(-0.546813\pi\)
0.699992 0.714151i \(-0.253187\pi\)
\(192\) 0 0
\(193\) −4.04216 25.5212i −0.0209439 0.132234i 0.975001 0.222201i \(-0.0713240\pi\)
−0.995945 + 0.0899664i \(0.971324\pi\)
\(194\) 0 0
\(195\) −203.598 121.523i −1.04409 0.623195i
\(196\) 0 0
\(197\) 186.939 186.939i 0.948927 0.948927i −0.0498310 0.998758i \(-0.515868\pi\)
0.998758 + 0.0498310i \(0.0158683\pi\)
\(198\) 0 0
\(199\) 196.593i 0.987904i 0.869489 + 0.493952i \(0.164448\pi\)
−0.869489 + 0.493952i \(0.835552\pi\)
\(200\) 0 0
\(201\) 86.2743 + 265.525i 0.429226 + 1.32102i
\(202\) 0 0
\(203\) −33.2144 209.707i −0.163618 1.03304i
\(204\) 0 0
\(205\) 167.516 71.6868i 0.817151 0.349692i
\(206\) 0 0
\(207\) 6.63222 41.8742i 0.0320397 0.202291i
\(208\) 0 0
\(209\) 196.259 282.758i 0.939036 1.35291i
\(210\) 0 0
\(211\) −300.828 + 218.565i −1.42573 + 1.03585i −0.434934 + 0.900462i \(0.643228\pi\)
−0.990793 + 0.135389i \(0.956772\pi\)
\(212\) 0 0
\(213\) 455.417 232.047i 2.13811 1.08942i
\(214\) 0 0
\(215\) −106.906 + 128.167i −0.497236 + 0.596125i
\(216\) 0 0
\(217\) −25.6220 13.0551i −0.118074 0.0601616i
\(218\) 0 0
\(219\) 26.0259i 0.118840i
\(220\) 0 0
\(221\) −142.249 −0.643663
\(222\) 0 0
\(223\) −153.651 + 301.558i −0.689019 + 1.35228i 0.235774 + 0.971808i \(0.424237\pi\)
−0.924794 + 0.380469i \(0.875763\pi\)
\(224\) 0 0
\(225\) 98.2172 + 93.7403i 0.436521 + 0.416623i
\(226\) 0 0
\(227\) 96.1797 + 188.763i 0.423699 + 0.831556i 0.999899 + 0.0142469i \(0.00453509\pi\)
−0.576200 + 0.817309i \(0.695465\pi\)
\(228\) 0 0
\(229\) −185.614 255.476i −0.810542 1.11561i −0.991240 0.132076i \(-0.957836\pi\)
0.180698 0.983539i \(-0.442164\pi\)
\(230\) 0 0
\(231\) 373.180 283.629i 1.61550 1.22783i
\(232\) 0 0
\(233\) 329.962 + 52.2609i 1.41615 + 0.224296i 0.817136 0.576445i \(-0.195561\pi\)
0.599011 + 0.800741i \(0.295561\pi\)
\(234\) 0 0
\(235\) 130.865 326.657i 0.556873 1.39003i
\(236\) 0 0
\(237\) −2.52334 + 0.399659i −0.0106470 + 0.00168632i
\(238\) 0 0
\(239\) −246.388 + 80.0563i −1.03091 + 0.334964i −0.775151 0.631776i \(-0.782326\pi\)
−0.255761 + 0.966740i \(0.582326\pi\)
\(240\) 0 0
\(241\) 54.2324 0.225031 0.112515 0.993650i \(-0.464109\pi\)
0.112515 + 0.993650i \(0.464109\pi\)
\(242\) 0 0
\(243\) 183.360 + 183.360i 0.754568 + 0.754568i
\(244\) 0 0
\(245\) 329.843 + 196.876i 1.34630 + 0.803574i
\(246\) 0 0
\(247\) 385.798 61.1044i 1.56194 0.247386i
\(248\) 0 0
\(249\) −194.286 63.1275i −0.780267 0.253524i
\(250\) 0 0
\(251\) 38.7266 28.1365i 0.154289 0.112098i −0.507962 0.861379i \(-0.669601\pi\)
0.662252 + 0.749282i \(0.269601\pi\)
\(252\) 0 0
\(253\) −85.0847 11.6007i −0.336303 0.0458524i
\(254\) 0 0
\(255\) 211.034 + 48.0697i 0.827585 + 0.188509i
\(256\) 0 0
\(257\) −26.9993 52.9891i −0.105056 0.206183i 0.832495 0.554033i \(-0.186912\pi\)
−0.937550 + 0.347850i \(0.886912\pi\)
\(258\) 0 0
\(259\) −156.578 + 215.511i −0.604549 + 0.832090i
\(260\) 0 0
\(261\) 31.7657 + 97.7648i 0.121708 + 0.374578i
\(262\) 0 0
\(263\) −140.379 140.379i −0.533761 0.533761i 0.387929 0.921689i \(-0.373191\pi\)
−0.921689 + 0.387929i \(0.873191\pi\)
\(264\) 0 0
\(265\) 14.2232 212.349i 0.0536725 0.801316i
\(266\) 0 0
\(267\) 75.9944 + 38.7211i 0.284623 + 0.145023i
\(268\) 0 0
\(269\) −25.5983 + 35.2330i −0.0951608 + 0.130978i −0.853942 0.520367i \(-0.825795\pi\)
0.758782 + 0.651345i \(0.225795\pi\)
\(270\) 0 0
\(271\) 90.8577 279.631i 0.335268 1.03185i −0.631321 0.775521i \(-0.717487\pi\)
0.966590 0.256328i \(-0.0825129\pi\)
\(272\) 0 0
\(273\) 525.389 + 83.2134i 1.92450 + 0.304811i
\(274\) 0 0
\(275\) 185.532 202.985i 0.674662 0.738127i
\(276\) 0 0
\(277\) −47.9161 + 302.531i −0.172982 + 1.09217i 0.736504 + 0.676434i \(0.236475\pi\)
−0.909486 + 0.415735i \(0.863525\pi\)
\(278\) 0 0
\(279\) 13.2410 + 4.30227i 0.0474589 + 0.0154203i
\(280\) 0 0
\(281\) 240.589 + 174.798i 0.856187 + 0.622056i 0.926845 0.375444i \(-0.122510\pi\)
−0.0706580 + 0.997501i \(0.522510\pi\)
\(282\) 0 0
\(283\) −61.6138 + 120.924i −0.217717 + 0.427293i −0.973872 0.227100i \(-0.927076\pi\)
0.756155 + 0.654393i \(0.227076\pi\)
\(284\) 0 0
\(285\) −593.000 39.7194i −2.08070 0.139366i
\(286\) 0 0
\(287\) −289.050 + 289.050i −1.00714 + 1.00714i
\(288\) 0 0
\(289\) −151.361 + 49.1801i −0.523739 + 0.170173i
\(290\) 0 0
\(291\) 235.174 + 170.864i 0.808159 + 0.587162i
\(292\) 0 0
\(293\) 205.670 104.794i 0.701944 0.357659i −0.0663136 0.997799i \(-0.521124\pi\)
0.768258 + 0.640140i \(0.221124\pi\)
\(294\) 0 0
\(295\) 85.8953 377.095i 0.291170 1.27829i
\(296\) 0 0
\(297\) 103.161 107.710i 0.347342 0.362661i
\(298\) 0 0
\(299\) −57.2805 78.8398i −0.191573 0.263678i
\(300\) 0 0
\(301\) 115.706 356.105i 0.384404 1.18307i
\(302\) 0 0
\(303\) −3.29101 20.7786i −0.0108614 0.0685763i
\(304\) 0 0
\(305\) 276.268 462.856i 0.905797 1.51756i
\(306\) 0 0
\(307\) −179.666 + 179.666i −0.585232 + 0.585232i −0.936336 0.351104i \(-0.885806\pi\)
0.351104 + 0.936336i \(0.385806\pi\)
\(308\) 0 0
\(309\) 545.444i 1.76519i
\(310\) 0 0
\(311\) −63.2034 194.520i −0.203226 0.625467i −0.999782 0.0209007i \(-0.993347\pi\)
0.796555 0.604566i \(-0.206653\pi\)
\(312\) 0 0
\(313\) 60.8925 + 384.460i 0.194545 + 1.22831i 0.870799 + 0.491639i \(0.163602\pi\)
−0.676254 + 0.736668i \(0.736398\pi\)
\(314\) 0 0
\(315\) −282.750 113.275i −0.897618 0.359603i
\(316\) 0 0
\(317\) −46.9058 + 296.152i −0.147968 + 0.934233i 0.796263 + 0.604950i \(0.206807\pi\)
−0.944231 + 0.329283i \(0.893193\pi\)
\(318\) 0 0
\(319\) 196.585 68.5968i 0.616254 0.215037i
\(320\) 0 0
\(321\) −171.285 + 124.446i −0.533598 + 0.387682i
\(322\) 0 0
\(323\) −317.697 + 161.875i −0.983581 + 0.501160i
\(324\) 0 0
\(325\) 311.998 7.27665i 0.959993 0.0223897i
\(326\) 0 0
\(327\) −442.317 225.372i −1.35265 0.689211i
\(328\) 0 0
\(329\) 789.459i 2.39957i
\(330\) 0 0
\(331\) −191.292 −0.577922 −0.288961 0.957341i \(-0.593310\pi\)
−0.288961 + 0.957341i \(0.593310\pi\)
\(332\) 0 0
\(333\) 58.5520 114.915i 0.175832 0.345090i
\(334\) 0 0
\(335\) −282.191 235.379i −0.842360 0.702625i
\(336\) 0 0
\(337\) 23.5723 + 46.2632i 0.0699474 + 0.137280i 0.923332 0.384002i \(-0.125454\pi\)
−0.853385 + 0.521281i \(0.825454\pi\)
\(338\) 0 0
\(339\) −186.353 256.493i −0.549715 0.756617i
\(340\) 0 0
\(341\) 8.13355 27.0010i 0.0238521 0.0791817i
\(342\) 0 0
\(343\) −308.289 48.8282i −0.898803 0.142356i
\(344\) 0 0
\(345\) 58.3365 + 136.319i 0.169091 + 0.395129i
\(346\) 0 0
\(347\) −229.148 + 36.2935i −0.660369 + 0.104592i −0.477619 0.878567i \(-0.658500\pi\)
−0.182750 + 0.983159i \(0.558500\pi\)
\(348\) 0 0
\(349\) 107.761 35.0137i 0.308771 0.100326i −0.150533 0.988605i \(-0.548099\pi\)
0.459304 + 0.888279i \(0.348099\pi\)
\(350\) 0 0
\(351\) 169.254 0.482206
\(352\) 0 0
\(353\) −21.9444 21.9444i −0.0621654 0.0621654i 0.675341 0.737506i \(-0.263997\pi\)
−0.737506 + 0.675341i \(0.763997\pi\)
\(354\) 0 0
\(355\) −344.798 + 577.672i −0.971263 + 1.62724i
\(356\) 0 0
\(357\) −479.592 + 75.9600i −1.34340 + 0.212773i
\(358\) 0 0
\(359\) −259.373 84.2752i −0.722486 0.234750i −0.0753854 0.997154i \(-0.524019\pi\)
−0.647101 + 0.762405i \(0.724019\pi\)
\(360\) 0 0
\(361\) 500.043 363.303i 1.38516 1.00638i
\(362\) 0 0
\(363\) 338.741 + 310.703i 0.933171 + 0.855932i
\(364\) 0 0
\(365\) −18.2377 28.9969i −0.0499664 0.0794436i
\(366\) 0 0
\(367\) −94.3098 185.093i −0.256975 0.504342i 0.726090 0.687600i \(-0.241336\pi\)
−0.983065 + 0.183258i \(0.941336\pi\)
\(368\) 0 0
\(369\) 116.329 160.114i 0.315256 0.433913i
\(370\) 0 0
\(371\) 147.543 + 454.092i 0.397691 + 1.22397i
\(372\) 0 0
\(373\) −246.912 246.912i −0.661963 0.661963i 0.293879 0.955843i \(-0.405054\pi\)
−0.955843 + 0.293879i \(0.905054\pi\)
\(374\) 0 0
\(375\) −465.324 94.6366i −1.24086 0.252364i
\(376\) 0 0
\(377\) 210.532 + 107.272i 0.558441 + 0.284540i
\(378\) 0 0
\(379\) 307.277 422.931i 0.810758 1.11591i −0.180448 0.983585i \(-0.557755\pi\)
0.991206 0.132328i \(-0.0422452\pi\)
\(380\) 0 0
\(381\) −235.442 + 724.615i −0.617957 + 1.90188i
\(382\) 0 0
\(383\) −126.077 19.9687i −0.329184 0.0521376i −0.0103447 0.999946i \(-0.503293\pi\)
−0.318839 + 0.947809i \(0.603293\pi\)
\(384\) 0 0
\(385\) −217.027 + 577.515i −0.563707 + 1.50004i
\(386\) 0 0
\(387\) −28.3587 + 179.050i −0.0732784 + 0.462662i
\(388\) 0 0
\(389\) 162.553 + 52.8166i 0.417874 + 0.135775i 0.510405 0.859934i \(-0.329496\pi\)
−0.0925308 + 0.995710i \(0.529496\pi\)
\(390\) 0 0
\(391\) 71.9676 + 52.2875i 0.184060 + 0.133728i
\(392\) 0 0
\(393\) 190.589 374.052i 0.484959 0.951786i
\(394\) 0 0
\(395\) 2.53134 2.21352i 0.00640845 0.00560386i
\(396\) 0 0
\(397\) −115.211 + 115.211i −0.290203 + 0.290203i −0.837161 0.546957i \(-0.815786\pi\)
0.546957 + 0.837161i \(0.315786\pi\)
\(398\) 0 0
\(399\) 1268.09 412.026i 3.17816 1.03265i
\(400\) 0 0
\(401\) −190.704 138.555i −0.475572 0.345523i 0.324037 0.946045i \(-0.394960\pi\)
−0.799609 + 0.600521i \(0.794960\pi\)
\(402\) 0 0
\(403\) 28.5140 14.5286i 0.0707543 0.0360511i
\(404\) 0 0
\(405\) −489.382 111.472i −1.20835 0.275240i
\(406\) 0 0
\(407\) −235.260 113.547i −0.578034 0.278984i
\(408\) 0 0
\(409\) −42.7016 58.7737i −0.104405 0.143701i 0.753618 0.657313i \(-0.228307\pi\)
−0.858023 + 0.513612i \(0.828307\pi\)
\(410\) 0 0
\(411\) −202.340 + 622.738i −0.492311 + 1.51518i
\(412\) 0 0
\(413\) 135.732 + 856.980i 0.328649 + 2.07501i
\(414\) 0 0
\(415\) 260.702 65.8130i 0.628198 0.158586i
\(416\) 0 0
\(417\) 314.591 314.591i 0.754415 0.754415i
\(418\) 0 0
\(419\) 197.381i 0.471077i −0.971865 0.235538i \(-0.924315\pi\)
0.971865 0.235538i \(-0.0756853\pi\)
\(420\) 0 0
\(421\) −85.4299 262.926i −0.202921 0.624527i −0.999792 0.0203781i \(-0.993513\pi\)
0.796871 0.604149i \(-0.206487\pi\)
\(422\) 0 0
\(423\) −59.7922 377.513i −0.141353 0.892466i
\(424\) 0 0
\(425\) −268.810 + 94.3259i −0.632494 + 0.221943i
\(426\) 0 0
\(427\) −189.176 + 1194.41i −0.443035 + 2.79721i
\(428\) 0 0
\(429\) 11.2522 + 521.516i 0.0262289 + 1.21565i
\(430\) 0 0
\(431\) −72.8571 + 52.9338i −0.169042 + 0.122816i −0.669090 0.743182i \(-0.733316\pi\)
0.500048 + 0.865998i \(0.333316\pi\)
\(432\) 0 0
\(433\) −208.924 + 106.452i −0.482503 + 0.245847i −0.678283 0.734800i \(-0.737276\pi\)
0.195781 + 0.980648i \(0.437276\pi\)
\(434\) 0 0
\(435\) −276.086 230.287i −0.634679 0.529395i
\(436\) 0 0
\(437\) −217.646 110.896i −0.498045 0.253767i
\(438\) 0 0
\(439\) 419.018i 0.954484i 0.878772 + 0.477242i \(0.158363\pi\)
−0.878772 + 0.477242i \(0.841637\pi\)
\(440\) 0 0
\(441\) 417.232 0.946104
\(442\) 0 0
\(443\) 5.04160 9.89469i 0.0113806 0.0223357i −0.885246 0.465123i \(-0.846010\pi\)
0.896627 + 0.442787i \(0.146010\pi\)
\(444\) 0 0
\(445\) −111.804 + 10.1120i −0.251244 + 0.0227236i
\(446\) 0 0
\(447\) 16.1171 + 31.6317i 0.0360563 + 0.0707644i
\(448\) 0 0
\(449\) −405.246 557.773i −0.902552 1.24226i −0.969647 0.244509i \(-0.921373\pi\)
0.0670952 0.997747i \(-0.478627\pi\)
\(450\) 0 0
\(451\) −329.312 228.571i −0.730181 0.506809i
\(452\) 0 0
\(453\) −531.853 84.2373i −1.17407 0.185954i
\(454\) 0 0
\(455\) −643.677 + 275.455i −1.41468 + 0.605397i
\(456\) 0 0
\(457\) 278.139 44.0528i 0.608618 0.0963957i 0.155485 0.987838i \(-0.450306\pi\)
0.453134 + 0.891443i \(0.350306\pi\)
\(458\) 0 0
\(459\) −146.939 + 47.7434i −0.320129 + 0.104016i
\(460\) 0 0
\(461\) 432.726 0.938669 0.469334 0.883020i \(-0.344494\pi\)
0.469334 + 0.883020i \(0.344494\pi\)
\(462\) 0 0
\(463\) 317.108 + 317.108i 0.684899 + 0.684899i 0.961100 0.276201i \(-0.0890756\pi\)
−0.276201 + 0.961100i \(0.589076\pi\)
\(464\) 0 0
\(465\) −47.2115 + 11.9183i −0.101530 + 0.0256308i
\(466\) 0 0
\(467\) 467.837 74.0981i 1.00179 0.158668i 0.366071 0.930587i \(-0.380703\pi\)
0.635721 + 0.771919i \(0.280703\pi\)
\(468\) 0 0
\(469\) 784.052 + 254.754i 1.67175 + 0.543186i
\(470\) 0 0
\(471\) 663.949 482.387i 1.40966 1.02418i
\(472\) 0 0
\(473\) 363.814 + 49.6033i 0.769163 + 0.104870i
\(474\) 0 0
\(475\) 688.528 371.293i 1.44953 0.781670i
\(476\) 0 0
\(477\) −104.946 205.968i −0.220013 0.431800i
\(478\) 0 0
\(479\) −43.2790 + 59.5685i −0.0903529 + 0.124360i −0.851800 0.523867i \(-0.824489\pi\)
0.761447 + 0.648227i \(0.224489\pi\)
\(480\) 0 0
\(481\) −91.6092 281.944i −0.190456 0.586162i
\(482\) 0 0
\(483\) −235.220 235.220i −0.486998 0.486998i
\(484\) 0 0
\(485\) −381.754 25.5701i −0.787122 0.0527218i
\(486\) 0 0
\(487\) −682.710 347.858i −1.40187 0.714288i −0.420657 0.907220i \(-0.638200\pi\)
−0.981212 + 0.192932i \(0.938200\pi\)
\(488\) 0 0
\(489\) −616.600 + 848.678i −1.26094 + 1.73554i
\(490\) 0 0
\(491\) 155.108 477.373i 0.315902 0.972247i −0.659479 0.751723i \(-0.729223\pi\)
0.975381 0.220524i \(-0.0707769\pi\)
\(492\) 0 0
\(493\) −213.034 33.7413i −0.432118 0.0684407i
\(494\) 0 0
\(495\) 60.0407 292.600i 0.121294 0.591112i
\(496\) 0 0
\(497\) 236.102 1490.69i 0.475055 2.99938i
\(498\) 0 0
\(499\) 571.374 + 185.651i 1.14504 + 0.372045i 0.819272 0.573405i \(-0.194378\pi\)
0.325766 + 0.945451i \(0.394378\pi\)
\(500\) 0 0
\(501\) −724.905 526.675i −1.44692 1.05125i
\(502\) 0 0
\(503\) −326.263 + 640.328i −0.648635 + 1.27302i 0.299180 + 0.954197i \(0.403287\pi\)
−0.947815 + 0.318821i \(0.896713\pi\)
\(504\) 0 0
\(505\) 18.2274 + 20.8444i 0.0360938 + 0.0412761i
\(506\) 0 0
\(507\) 35.3688 35.3688i 0.0697610 0.0697610i
\(508\) 0 0
\(509\) −912.793 + 296.584i −1.79331 + 0.582680i −0.999669 0.0257117i \(-0.991815\pi\)
−0.793637 + 0.608392i \(0.791815\pi\)
\(510\) 0 0
\(511\) 62.1731 + 45.1714i 0.121670 + 0.0883981i
\(512\) 0 0
\(513\) 378.009 192.605i 0.736859 0.375449i
\(514\) 0 0
\(515\) 382.222 + 607.710i 0.742179 + 1.18002i
\(516\) 0 0
\(517\) −761.849 + 137.573i −1.47360 + 0.266098i
\(518\) 0 0
\(519\) −41.3629 56.9312i −0.0796973 0.109694i
\(520\) 0 0
\(521\) −43.2186 + 133.013i −0.0829533 + 0.255304i −0.983927 0.178569i \(-0.942853\pi\)
0.900974 + 0.433873i \(0.142853\pi\)
\(522\) 0 0
\(523\) −38.7235 244.491i −0.0740412 0.467477i −0.996653 0.0817479i \(-0.973950\pi\)
0.922612 0.385730i \(-0.126050\pi\)
\(524\) 0 0
\(525\) 1048.01 191.137i 1.99621 0.364071i
\(526\) 0 0
\(527\) −20.6563 + 20.6563i −0.0391961 + 0.0391961i
\(528\) 0 0
\(529\) 468.058i 0.884798i
\(530\) 0 0
\(531\) −129.812 399.521i −0.244467 0.752394i
\(532\) 0 0
\(533\) −71.1647 449.316i −0.133517 0.842995i
\(534\) 0 0
\(535\) 103.632 258.681i 0.193705 0.483516i
\(536\) 0 0
\(537\) −141.993 + 896.506i −0.264418 + 1.66947i
\(538\) 0 0
\(539\) −18.2293 844.891i −0.0338207 1.56752i
\(540\) 0 0
\(541\) 75.5642 54.9006i 0.139675 0.101480i −0.515754 0.856737i \(-0.672488\pi\)
0.655429 + 0.755257i \(0.272488\pi\)
\(542\) 0 0
\(543\) 98.4911 50.1837i 0.181383 0.0924193i
\(544\) 0 0
\(545\) 650.741 58.8559i 1.19402 0.107992i
\(546\) 0 0
\(547\) 415.137 + 211.523i 0.758934 + 0.386696i 0.790227 0.612814i \(-0.209962\pi\)
−0.0312928 + 0.999510i \(0.509962\pi\)
\(548\) 0 0
\(549\) 585.485i 1.06646i
\(550\) 0 0
\(551\) 592.269 1.07490
\(552\) 0 0
\(553\) −3.42486 + 6.72167i −0.00619324 + 0.0121549i
\(554\) 0 0
\(555\) 40.6309 + 449.235i 0.0732088 + 0.809433i
\(556\) 0 0
\(557\) 124.995 + 245.316i 0.224407 + 0.440424i 0.975569 0.219695i \(-0.0705061\pi\)
−0.751162 + 0.660118i \(0.770506\pi\)
\(558\) 0 0
\(559\) 244.926 + 337.111i 0.438150 + 0.603062i
\(560\) 0 0
\(561\) −156.878 449.583i −0.279640 0.801395i
\(562\) 0 0
\(563\) 1003.30 + 158.907i 1.78206 + 0.282251i 0.958524 0.285012i \(-0.0919976\pi\)
0.823537 + 0.567263i \(0.191998\pi\)
\(564\) 0 0
\(565\) 387.365 + 155.186i 0.685602 + 0.274665i
\(566\) 0 0
\(567\) 1112.16 176.149i 1.96148 0.310669i
\(568\) 0 0
\(569\) −838.644 + 272.492i −1.47389 + 0.478896i −0.932281 0.361734i \(-0.882185\pi\)
−0.541609 + 0.840630i \(0.682185\pi\)
\(570\) 0 0
\(571\) 1065.50 1.86603 0.933013 0.359844i \(-0.117170\pi\)
0.933013 + 0.359844i \(0.117170\pi\)
\(572\) 0 0
\(573\) 918.890 + 918.890i 1.60365 + 1.60365i
\(574\) 0 0
\(575\) −160.522 111.001i −0.279169 0.193046i
\(576\) 0 0
\(577\) −63.0330 + 9.98345i −0.109243 + 0.0173023i −0.210816 0.977526i \(-0.567612\pi\)
0.101574 + 0.994828i \(0.467612\pi\)
\(578\) 0 0
\(579\) 93.3542 + 30.3326i 0.161233 + 0.0523879i
\(580\) 0 0
\(581\) −488.015 + 354.564i −0.839957 + 0.610265i
\(582\) 0 0
\(583\) −412.499 + 221.514i −0.707546 + 0.379956i
\(584\) 0 0
\(585\) 286.939 180.472i 0.490494 0.308499i
\(586\) 0 0
\(587\) −109.448 214.803i −0.186453 0.365934i 0.778792 0.627282i \(-0.215833\pi\)
−0.965244 + 0.261349i \(0.915833\pi\)
\(588\) 0 0
\(589\) 47.1495 64.8957i 0.0800500 0.110179i
\(590\) 0 0
\(591\) 310.343 + 955.138i 0.525115 + 1.61614i
\(592\) 0 0
\(593\) 173.130 + 173.130i 0.291956 + 0.291956i 0.837853 0.545897i \(-0.183811\pi\)
−0.545897 + 0.837853i \(0.683811\pi\)
\(594\) 0 0
\(595\) 481.112 420.707i 0.808591 0.707071i
\(596\) 0 0
\(597\) −665.418 339.047i −1.11460 0.567919i
\(598\) 0 0
\(599\) −49.0843 + 67.5587i −0.0819437 + 0.112786i −0.848021 0.529963i \(-0.822206\pi\)
0.766077 + 0.642748i \(0.222206\pi\)
\(600\) 0 0
\(601\) −280.867 + 864.418i −0.467332 + 1.43830i 0.388694 + 0.921367i \(0.372926\pi\)
−0.856026 + 0.516933i \(0.827074\pi\)
\(602\) 0 0
\(603\) −394.222 62.4387i −0.653768 0.103547i
\(604\) 0 0
\(605\) −595.137 108.798i −0.983697 0.179831i
\(606\) 0 0
\(607\) −85.4608 + 539.578i −0.140792 + 0.888926i 0.811636 + 0.584163i \(0.198577\pi\)
−0.952428 + 0.304763i \(0.901423\pi\)
\(608\) 0 0
\(609\) 767.089 + 249.242i 1.25959 + 0.409265i
\(610\) 0 0
\(611\) −710.773 516.407i −1.16330 0.845184i
\(612\) 0 0
\(613\) −243.555 + 478.004i −0.397317 + 0.779778i −0.999832 0.0183296i \(-0.994165\pi\)
0.602515 + 0.798107i \(0.294165\pi\)
\(614\) 0 0
\(615\) −46.2589 + 690.632i −0.0752176 + 1.12298i
\(616\) 0 0
\(617\) 596.755 596.755i 0.967187 0.967187i −0.0322910 0.999479i \(-0.510280\pi\)
0.999479 + 0.0322910i \(0.0102803\pi\)
\(618\) 0 0
\(619\) −105.382 + 34.2406i −0.170245 + 0.0553160i −0.392899 0.919581i \(-0.628528\pi\)
0.222654 + 0.974897i \(0.428528\pi\)
\(620\) 0 0
\(621\) −85.6300 62.2139i −0.137891 0.100183i
\(622\) 0 0
\(623\) 224.399 114.337i 0.360191 0.183527i
\(624\) 0 0
\(625\) 584.760 220.637i 0.935616 0.353019i
\(626\) 0 0
\(627\) 618.596 + 1151.94i 0.986596 + 1.83722i
\(628\) 0 0
\(629\) 159.062 + 218.930i 0.252881 + 0.348061i
\(630\) 0 0
\(631\) −107.724 + 331.542i −0.170720 + 0.525423i −0.999412 0.0342821i \(-0.989086\pi\)
0.828692 + 0.559705i \(0.189086\pi\)
\(632\) 0 0
\(633\) −220.973 1395.17i −0.349089 2.20406i
\(634\) 0 0
\(635\) −245.458 972.321i −0.386548 1.53121i
\(636\) 0 0
\(637\) 678.147 678.147i 1.06459 1.06459i
\(638\) 0 0
\(639\) 730.720i 1.14354i
\(640\) 0 0
\(641\) −5.42437 16.6945i −0.00846236 0.0260445i 0.946736 0.322010i \(-0.104359\pi\)
−0.955199 + 0.295966i \(0.904359\pi\)
\(642\) 0 0
\(643\) −149.670 944.977i −0.232768 1.46964i −0.776360 0.630289i \(-0.782936\pi\)
0.543593 0.839349i \(-0.317064\pi\)
\(644\) 0 0
\(645\) −249.441 582.889i −0.386731 0.903703i
\(646\) 0 0
\(647\) 122.051 770.600i 0.188641 1.19104i −0.693643 0.720319i \(-0.743995\pi\)
0.882285 0.470716i \(-0.156005\pi\)
\(648\) 0 0
\(649\) −803.355 + 280.324i −1.23784 + 0.431933i
\(650\) 0 0
\(651\) 88.3764 64.2092i 0.135755 0.0986317i
\(652\) 0 0
\(653\) −27.3299 + 13.9253i −0.0418528 + 0.0213251i −0.474792 0.880098i \(-0.657477\pi\)
0.432939 + 0.901423i \(0.357477\pi\)
\(654\) 0 0
\(655\) 49.7723 + 550.308i 0.0759883 + 0.840165i
\(656\) 0 0
\(657\) −33.1519 16.8917i −0.0504595 0.0257104i
\(658\) 0 0
\(659\) 460.688i 0.699071i −0.936923 0.349535i \(-0.886339\pi\)
0.936923 0.349535i \(-0.113661\pi\)
\(660\) 0 0
\(661\) 293.536 0.444079 0.222040 0.975038i \(-0.428729\pi\)
0.222040 + 0.975038i \(0.428729\pi\)
\(662\) 0 0
\(663\) 245.326 481.479i 0.370024 0.726213i
\(664\) 0 0
\(665\) −1124.12 + 1347.68i −1.69040 + 2.02658i
\(666\) 0 0
\(667\) −67.0831 131.658i −0.100574 0.197388i
\(668\) 0 0
\(669\) −755.708 1040.14i −1.12961 1.55477i
\(670\) 0 0
\(671\) −1185.60 + 25.5805i −1.76692 + 0.0381230i
\(672\) 0 0
\(673\) −338.707 53.6460i −0.503280 0.0797117i −0.100368 0.994950i \(-0.532002\pi\)
−0.402912 + 0.915239i \(0.632002\pi\)
\(674\) 0 0
\(675\) 319.842 112.233i 0.473839 0.166271i
\(676\) 0 0
\(677\) −177.698 + 28.1446i −0.262478 + 0.0415725i −0.286287 0.958144i \(-0.592421\pi\)
0.0238082 + 0.999717i \(0.492421\pi\)
\(678\) 0 0
\(679\) 816.353 265.249i 1.20229 0.390647i
\(680\) 0 0
\(681\) −804.790 −1.18178
\(682\) 0 0
\(683\) −599.854 599.854i −0.878263 0.878263i 0.115092 0.993355i \(-0.463284\pi\)
−0.993355 + 0.115092i \(0.963284\pi\)
\(684\) 0 0
\(685\) −210.948 835.617i −0.307953 1.21988i
\(686\) 0 0
\(687\) 1184.84 187.660i 1.72465 0.273158i
\(688\) 0 0
\(689\) −505.345 164.196i −0.733447 0.238311i
\(690\) 0 0
\(691\) −279.266 + 202.899i −0.404148 + 0.293630i −0.771228 0.636559i \(-0.780357\pi\)
0.367081 + 0.930189i \(0.380357\pi\)
\(692\) 0 0
\(693\) 119.081 + 659.445i 0.171834 + 0.951580i
\(694\) 0 0
\(695\) −130.053 + 570.954i −0.187126 + 0.821517i
\(696\) 0 0
\(697\) 188.526 + 370.002i 0.270482 + 0.530850i
\(698\) 0 0
\(699\) −745.949 + 1026.71i −1.06717 + 1.46883i
\(700\) 0 0
\(701\) 304.714 + 937.812i 0.434684 + 1.33782i 0.893410 + 0.449242i \(0.148306\pi\)
−0.458726 + 0.888578i \(0.651694\pi\)
\(702\) 0 0
\(703\) −525.440 525.440i −0.747425 0.747425i
\(704\) 0 0
\(705\) 879.962 + 1006.30i 1.24817 + 1.42738i
\(706\) 0 0
\(707\) −55.3499 28.2022i −0.0782885 0.0398900i
\(708\) 0 0
\(709\) 22.9278 31.5574i 0.0323382 0.0445097i −0.792542 0.609818i \(-0.791243\pi\)
0.824880 + 0.565308i \(0.191243\pi\)
\(710\) 0 0
\(711\) 1.12865 3.47364i 0.00158742 0.00488557i
\(712\) 0 0
\(713\) −19.7663 3.13067i −0.0277227 0.00439085i
\(714\) 0 0
\(715\) −377.991 573.165i −0.528658 0.801629i
\(716\) 0 0
\(717\) 153.954 972.029i 0.214720 1.35569i
\(718\) 0 0
\(719\) −105.220 34.1881i −0.146342 0.0475495i 0.234930 0.972012i \(-0.424514\pi\)
−0.381272 + 0.924463i \(0.624514\pi\)
\(720\) 0 0
\(721\) −1303.01 946.692i −1.80723 1.31303i
\(722\) 0 0
\(723\) −93.5302 + 183.563i −0.129364 + 0.253891i
\(724\) 0 0
\(725\) 468.977 + 63.1077i 0.646864 + 0.0870451i
\(726\) 0 0
\(727\) −313.209 + 313.209i −0.430824 + 0.430824i −0.888908 0.458085i \(-0.848536\pi\)
0.458085 + 0.888908i \(0.348536\pi\)
\(728\) 0 0
\(729\) −77.6213 + 25.2207i −0.106476 + 0.0345963i
\(730\) 0 0
\(731\) −307.727 223.576i −0.420966 0.305850i
\(732\) 0 0
\(733\) 647.057 329.692i 0.882751 0.449784i 0.0470016 0.998895i \(-0.485033\pi\)
0.835750 + 0.549111i \(0.185033\pi\)
\(734\) 0 0
\(735\) −1235.23 + 776.902i −1.68058 + 1.05701i
\(736\) 0 0
\(737\) −109.214 + 801.025i −0.148187 + 1.08687i
\(738\) 0 0
\(739\) 107.500 + 147.961i 0.145467 + 0.200218i 0.875533 0.483159i \(-0.160511\pi\)
−0.730066 + 0.683377i \(0.760511\pi\)
\(740\) 0 0
\(741\) −458.531 + 1411.21i −0.618800 + 1.90447i
\(742\) 0 0
\(743\) −124.101 783.543i −0.167027 1.05457i −0.918678 0.395006i \(-0.870742\pi\)
0.751652 0.659560i \(-0.229258\pi\)
\(744\) 0 0
\(745\) −40.1230 23.9485i −0.0538564 0.0321456i
\(746\) 0 0
\(747\) 206.511 206.511i 0.276454 0.276454i
\(748\) 0 0
\(749\) 625.175i 0.834679i
\(750\) 0 0
\(751\) 446.836 + 1375.22i 0.594988 + 1.83119i 0.554784 + 0.831995i \(0.312801\pi\)
0.0402046 + 0.999191i \(0.487199\pi\)
\(752\) 0 0
\(753\) 28.4466 + 179.605i 0.0377777 + 0.238519i
\(754\) 0 0
\(755\) 651.597 278.844i 0.863042 0.369330i
\(756\) 0 0
\(757\) −220.631 + 1393.01i −0.291454 + 1.84017i 0.213401 + 0.976965i \(0.431546\pi\)
−0.504855 + 0.863204i \(0.668454\pi\)
\(758\) 0 0
\(759\) 186.004 267.984i 0.245064 0.353075i
\(760\) 0 0
\(761\) −387.904 + 281.829i −0.509729 + 0.370340i −0.812721 0.582653i \(-0.802015\pi\)
0.302992 + 0.952993i \(0.402015\pi\)
\(762\) 0 0
\(763\) −1306.09 + 665.487i −1.71178 + 0.872197i
\(764\) 0 0
\(765\) −198.200 + 237.618i −0.259085 + 0.310611i
\(766\) 0 0
\(767\) −860.351 438.371i −1.12171 0.571539i
\(768\) 0 0
\(769\) 810.946i 1.05455i 0.849696 + 0.527273i \(0.176785\pi\)
−0.849696 + 0.527273i \(0.823215\pi\)
\(770\) 0 0
\(771\) 225.919 0.293020
\(772\) 0 0
\(773\) 92.6498 181.835i 0.119857 0.235233i −0.823281 0.567634i \(-0.807859\pi\)
0.943138 + 0.332401i \(0.107859\pi\)
\(774\) 0 0
\(775\) 44.2492 46.3625i 0.0570957 0.0598226i
\(776\) 0 0
\(777\) −459.415 901.653i −0.591268 1.16043i
\(778\) 0 0
\(779\) −670.243 922.510i −0.860389 1.18422i
\(780\) 0 0
\(781\) 1479.70 31.9260i 1.89462 0.0408783i
\(782\) 0 0
\(783\) 253.477 + 40.1468i 0.323725 + 0.0512730i
\(784\) 0 0
\(785\) −401.708 + 1002.72i −0.511730 + 1.27735i
\(786\) 0 0
\(787\) −62.5107 + 9.90073i −0.0794291 + 0.0125803i −0.196023 0.980599i \(-0.562803\pi\)
0.116593 + 0.993180i \(0.462803\pi\)
\(788\) 0 0
\(789\) 717.249 233.048i 0.909060 0.295372i
\(790\) 0 0
\(791\) −936.176 −1.18354
\(792\) 0 0
\(793\) −951.618 951.618i −1.20002 1.20002i
\(794\) 0 0
\(795\) 694.218 + 414.362i 0.873231 + 0.521211i
\(796\) 0 0
\(797\) 770.168 121.983i 0.966334 0.153052i 0.346729 0.937966i \(-0.387293\pi\)
0.619606 + 0.784913i \(0.287293\pi\)
\(798\) 0 0
\(799\) 762.731 + 247.826i 0.954607 + 0.310171i
\(800\) 0 0
\(801\) −98.6462 + 71.6707i −0.123154 + 0.0894765i
\(802\) 0 0
\(803\) −32.7572 + 67.8704i −0.0407935 + 0.0845211i
\(804\) 0 0
\(805\) 426.903 + 97.2406i 0.530315 + 0.120796i
\(806\) 0 0
\(807\) −75.1077 147.407i −0.0930703 0.182661i
\(808\) 0 0
\(809\) 594.760 818.617i 0.735179 1.01189i −0.263702 0.964604i \(-0.584944\pi\)
0.998882 0.0472832i \(-0.0150563\pi\)
\(810\) 0 0
\(811\) −282.131 868.311i −0.347881 1.07067i −0.960024 0.279919i \(-0.909692\pi\)
0.612143 0.790747i \(-0.290308\pi\)
\(812\) 0 0
\(813\) 789.788 + 789.788i 0.971449 + 0.971449i
\(814\) 0 0
\(815\) 92.2752 1377.64i 0.113221 1.69036i
\(816\) 0 0
\(817\) 930.632 + 474.181i 1.13908 + 0.580393i
\(818\) 0 0
\(819\) −446.994 + 615.235i −0.545780 + 0.751202i
\(820\) 0 0
\(821\) 246.366 758.237i 0.300080 0.923553i −0.681387 0.731923i \(-0.738623\pi\)
0.981467 0.191629i \(-0.0613772\pi\)
\(822\) 0 0
\(823\) 167.901 + 26.5929i 0.204011 + 0.0323121i 0.257603 0.966251i \(-0.417067\pi\)
−0.0535927 + 0.998563i \(0.517067\pi\)
\(824\) 0 0
\(825\) 367.081 + 978.051i 0.444947 + 1.18552i
\(826\) 0 0
\(827\) 139.547 881.067i 0.168739 1.06538i −0.747358 0.664421i \(-0.768678\pi\)
0.916097 0.400956i \(-0.131322\pi\)
\(828\) 0 0
\(829\) −344.025 111.781i −0.414988 0.134838i 0.0940787 0.995565i \(-0.470009\pi\)
−0.509067 + 0.860727i \(0.670009\pi\)
\(830\) 0 0
\(831\) −941.354 683.934i −1.13280 0.823025i
\(832\) 0 0
\(833\) −397.445 + 780.029i −0.477125 + 0.936410i
\(834\) 0 0
\(835\) 1176.73 + 78.8177i 1.40925 + 0.0943924i
\(836\) 0 0
\(837\) 24.5778 24.5778i 0.0293641 0.0293641i
\(838\) 0 0
\(839\) 710.763 230.941i 0.847155 0.275257i 0.146901 0.989151i \(-0.453070\pi\)
0.700254 + 0.713894i \(0.253070\pi\)
\(840\) 0 0
\(841\) −390.533 283.739i −0.464367 0.337383i
\(842\) 0 0
\(843\) −1006.57 + 512.873i −1.19403 + 0.608391i
\(844\) 0 0
\(845\) −14.6216 + 64.1912i −0.0173036 + 0.0759659i
\(846\) 0 0
\(847\) 1330.17 269.950i 1.57045 0.318713i
\(848\) 0 0
\(849\) −303.037 417.095i −0.356934 0.491278i
\(850\) 0 0
\(851\) −57.2885 + 176.316i −0.0673190 + 0.207187i
\(852\) 0 0
\(853\) −101.123 638.463i −0.118549 0.748491i −0.973314 0.229476i \(-0.926299\pi\)
0.854765 0.519015i \(-0.173701\pi\)
\(854\) 0 0
\(855\) 435.473 729.587i 0.509326 0.853319i
\(856\) 0 0
\(857\) −577.286 + 577.286i −0.673613 + 0.673613i −0.958547 0.284934i \(-0.908028\pi\)
0.284934 + 0.958547i \(0.408028\pi\)
\(858\) 0 0
\(859\) 811.925i 0.945198i 0.881277 + 0.472599i \(0.156684\pi\)
−0.881277 + 0.472599i \(0.843316\pi\)
\(860\) 0 0
\(861\) −479.862 1476.86i −0.557331 1.71529i
\(862\) 0 0
\(863\) −49.3286 311.448i −0.0571594 0.360890i −0.999645 0.0266435i \(-0.991518\pi\)
0.942486 0.334247i \(-0.108482\pi\)
\(864\) 0 0
\(865\) 85.9795 + 34.4450i 0.0993982 + 0.0398208i
\(866\) 0 0
\(867\) 94.5769 597.135i 0.109085 0.688737i
\(868\) 0 0
\(869\) −7.08341 2.13375i −0.00815122 0.00245541i
\(870\) 0 0
\(871\) −742.233 + 539.264i −0.852162 + 0.619132i
\(872\) 0 0
\(873\) −370.284 + 188.669i −0.424151 + 0.216116i
\(874\) 0 0
\(875\) −1033.71 + 947.355i −1.18138 + 1.08269i
\(876\) 0 0
\(877\) −470.161 239.559i −0.536102 0.273157i 0.164908 0.986309i \(-0.447267\pi\)
−0.701010 + 0.713152i \(0.747267\pi\)
\(878\) 0 0
\(879\) 876.871i 0.997577i
\(880\) 0 0
\(881\) 770.366 0.874423 0.437211 0.899359i \(-0.355966\pi\)
0.437211 + 0.899359i \(0.355966\pi\)
\(882\) 0 0
\(883\) 48.0796 94.3615i 0.0544503 0.106865i −0.862178 0.506606i \(-0.830900\pi\)
0.916628 + 0.399741i \(0.130900\pi\)
\(884\) 0 0
\(885\) 1128.24 + 941.079i 1.27484 + 1.06337i
\(886\) 0 0
\(887\) −293.945 576.899i −0.331392 0.650394i 0.663846 0.747870i \(-0.268923\pi\)
−0.995238 + 0.0974756i \(0.968923\pi\)
\(888\) 0 0
\(889\) 1322.39 + 1820.11i 1.48750 + 2.04737i
\(890\) 0 0
\(891\) 363.796 + 1042.57i 0.408301 + 1.17011i
\(892\) 0 0
\(893\) −2175.08 344.498i −2.43570 0.385776i
\(894\) 0 0
\(895\) −470.028 1098.35i −0.525171 1.22721i
\(896\) 0 0
\(897\) 365.640 57.9117i 0.407625 0.0645615i
\(898\) 0 0
\(899\) 46.1489 14.9947i 0.0513336 0.0166793i
\(900\) 0 0
\(901\) 485.035 0.538329
\(902\) 0 0
\(903\) 1005.78 + 1005.78i 1.11382 + 1.11382i
\(904\) 0 0
\(905\) −74.5680 + 124.930i −0.0823956 + 0.138045i
\(906\) 0 0
\(907\) 581.628 92.1208i 0.641265 0.101566i 0.172670 0.984980i \(-0.444760\pi\)
0.468595 + 0.883413i \(0.344760\pi\)
\(908\) 0 0
\(909\) 28.6039 + 9.29397i 0.0314674 + 0.0102244i
\(910\) 0 0
\(911\) 1139.71 828.050i 1.25106 0.908946i 0.252774 0.967525i \(-0.418657\pi\)
0.998283 + 0.0585795i \(0.0186571\pi\)
\(912\) 0 0
\(913\) −427.206 409.161i −0.467915 0.448150i
\(914\) 0 0
\(915\) 1090.20 + 1733.35i 1.19147 + 1.89437i
\(916\) 0 0
\(917\) −562.778 1104.51i −0.613717 1.20449i
\(918\) 0 0
\(919\) −846.476 + 1165.07i −0.921084 + 1.26776i 0.0421531 + 0.999111i \(0.486578\pi\)
−0.963237 + 0.268652i \(0.913422\pi\)
\(920\) 0 0
\(921\) −298.270 917.981i −0.323855 0.996722i
\(922\) 0 0
\(923\) 1187.67 + 1187.67i 1.28675 + 1.28675i
\(924\) 0 0
\(925\) −360.072 472.046i −0.389267 0.510320i
\(926\) 0 0
\(927\) 694.790 + 354.013i 0.749504 + 0.381891i
\(928\) 0 0
\(929\) 840.445 1156.77i 0.904677 1.24518i −0.0642755 0.997932i \(-0.520474\pi\)
0.968952 0.247248i \(-0.0795264\pi\)
\(930\) 0 0
\(931\) 742.852 2286.26i 0.797908 2.45571i
\(932\) 0 0
\(933\) 767.404 + 121.545i 0.822513 + 0.130273i
\(934\) 0 0
\(935\) 489.833 + 390.972i 0.523886 + 0.418152i
\(936\) 0 0
\(937\) 133.418 842.365i 0.142388 0.899002i −0.808281 0.588796i \(-0.799602\pi\)
0.950669 0.310206i \(-0.100398\pi\)
\(938\) 0 0
\(939\) −1406.32 456.941i −1.49768 0.486625i
\(940\) 0 0
\(941\) 199.499 + 144.944i 0.212007 + 0.154032i 0.688721 0.725026i \(-0.258172\pi\)
−0.476714 + 0.879058i \(0.658172\pi\)
\(942\) 0 0
\(943\) −129.154 + 253.479i −0.136961 + 0.268801i
\(944\) 0 0
\(945\) −572.447 + 500.575i −0.605764 + 0.529709i
\(946\) 0 0
\(947\) −135.167 + 135.167i −0.142731 + 0.142731i −0.774862 0.632131i \(-0.782181\pi\)
0.632131 + 0.774862i \(0.282181\pi\)
\(948\) 0 0
\(949\) −81.3384 + 26.4284i −0.0857096 + 0.0278487i
\(950\) 0 0
\(951\) −921.506 669.513i −0.968986 0.704010i
\(952\) 0 0
\(953\) 1360.19 693.049i 1.42727 0.727229i 0.441803 0.897112i \(-0.354339\pi\)
0.985464 + 0.169883i \(0.0543390\pi\)
\(954\) 0 0
\(955\) −1667.70 379.871i −1.74629 0.397771i
\(956\) 0 0
\(957\) −106.851 + 783.695i −0.111652 + 0.818908i
\(958\) 0 0
\(959\) 1136.47 + 1564.21i 1.18505 + 1.63109i
\(960\) 0 0
\(961\) −294.934 + 907.715i −0.306904 + 0.944553i
\(962\) 0 0
\(963\) −47.3496 298.954i −0.0491689 0.310440i
\(964\) 0 0
\(965\) −125.267 + 31.6230i −0.129810 + 0.0327700i
\(966\) 0 0
\(967\) 1095.92 1095.92i 1.13332 1.13332i 0.143703 0.989621i \(-0.454099\pi\)
0.989621 0.143703i \(-0.0459011\pi\)
\(968\) 0 0
\(969\) 1354.50i 1.39783i
\(970\) 0 0
\(971\) −200.879 618.243i −0.206879 0.636707i −0.999631 0.0271634i \(-0.991353\pi\)
0.792752 0.609544i \(-0.208647\pi\)
\(972\) 0 0
\(973\) −205.510 1297.54i −0.211213 1.33355i
\(974\) 0 0
\(975\) −513.447 + 1068.58i −0.526613 + 1.09598i
\(976\) 0 0
\(977\) 129.461 817.386i 0.132509 0.836629i −0.828475 0.560026i \(-0.810791\pi\)
0.960984 0.276603i \(-0.0892087\pi\)
\(978\) 0 0
\(979\) 149.443 + 196.626i 0.152648 + 0.200844i
\(980\) 0 0
\(981\) 574.160 417.152i 0.585280 0.425231i
\(982\) 0 0
\(983\) 160.228 81.6401i 0.162999 0.0830520i −0.370588 0.928797i \(-0.620844\pi\)
0.533587 + 0.845745i \(0.320844\pi\)
\(984\) 0 0
\(985\) −1015.09 846.699i −1.03055 0.859593i
\(986\) 0 0
\(987\) −2672.12 1361.51i −2.70732 1.37945i
\(988\) 0 0
\(989\) 260.582i 0.263480i
\(990\) 0 0
\(991\) 140.460 0.141735 0.0708676 0.997486i \(-0.477423\pi\)
0.0708676 + 0.997486i \(0.477423\pi\)
\(992\) 0 0
\(993\) 329.906 647.476i 0.332231 0.652041i
\(994\) 0 0
\(995\) 978.968 88.5423i 0.983888 0.0889872i
\(996\) 0 0
\(997\) 9.30658 + 18.2652i 0.00933459 + 0.0183202i 0.895627 0.444806i \(-0.146728\pi\)
−0.886292 + 0.463127i \(0.846728\pi\)
\(998\) 0 0
\(999\) −189.259 260.492i −0.189448 0.260753i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 220.3.x.a.113.4 yes 96
5.2 odd 4 inner 220.3.x.a.157.9 yes 96
11.4 even 5 inner 220.3.x.a.213.9 yes 96
55.37 odd 20 inner 220.3.x.a.37.4 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
220.3.x.a.37.4 96 55.37 odd 20 inner
220.3.x.a.113.4 yes 96 1.1 even 1 trivial
220.3.x.a.157.9 yes 96 5.2 odd 4 inner
220.3.x.a.213.9 yes 96 11.4 even 5 inner