Properties

Label 220.3.x.a.37.4
Level $220$
Weight $3$
Character 220.37
Analytic conductor $5.995$
Analytic rank $0$
Dimension $96$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [220,3,Mod(37,220)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(220, base_ring=CyclotomicField(20))
 
chi = DirichletCharacter(H, H._module([0, 5, 4]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("220.37");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 220 = 2^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 220.x (of order \(20\), degree \(8\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.99456581593\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(12\) over \(\Q(\zeta_{20})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 37.4
Character \(\chi\) \(=\) 220.37
Dual form 220.3.x.a.113.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.72462 - 3.38475i) q^{3} +(-0.450384 + 4.97967i) q^{5} +(5.09251 - 9.99462i) q^{7} +(-3.19218 + 4.39365i) q^{9} +(-8.75765 - 6.65610i) q^{11} +(-12.3296 + 1.95282i) q^{13} +(17.6317 - 7.06359i) q^{15} +(11.2549 + 1.78260i) q^{17} +(-29.7589 - 9.66926i) q^{19} -42.6120 q^{21} +(5.52005 - 5.52005i) q^{23} +(-24.5943 - 4.48553i) q^{25} +(-13.3915 - 2.12101i) q^{27} +(-18.0017 + 5.84912i) q^{29} +(-2.07398 - 1.50684i) q^{31} +(-7.42565 + 41.1217i) q^{33} +(47.4764 + 29.8605i) q^{35} +(10.7814 - 21.1596i) q^{37} +(27.8737 + 38.3648i) q^{39} +(11.2612 - 34.6584i) q^{41} +(-23.6032 + 23.6032i) q^{43} +(-20.4413 - 17.8748i) q^{45} +(62.7083 - 31.9515i) q^{47} +(-45.1573 - 62.1537i) q^{49} +(-13.3767 - 41.1693i) q^{51} +(42.0409 - 6.65862i) q^{53} +(37.0895 - 40.6124i) q^{55} +(18.5947 + 117.402i) q^{57} +(73.5650 - 23.9027i) q^{59} +(87.2179 - 63.3675i) q^{61} +(27.6567 + 54.2793i) q^{63} +(-4.17134 - 62.2770i) q^{65} +(51.9683 + 51.9683i) q^{67} +(-28.2040 - 9.16403i) q^{69} +(-108.853 + 79.0863i) q^{71} +(6.10437 + 3.11033i) q^{73} +(27.2334 + 90.9815i) q^{75} +(-111.124 + 53.6331i) q^{77} +(0.395302 - 0.544087i) q^{79} +(31.0202 + 95.4704i) q^{81} +(8.41245 - 53.1141i) q^{83} +(-13.9458 + 55.2428i) q^{85} +(50.8439 + 50.8439i) q^{87} +22.4520i q^{89} +(-43.2710 + 133.175i) q^{91} +(-1.52344 + 9.61863i) q^{93} +(61.5527 - 143.835i) q^{95} +(11.9707 + 75.5798i) q^{97} +(57.2005 - 17.2306i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q - 2 q^{3} + 4 q^{5} - 2 q^{7} - 20 q^{11} - 8 q^{13} + 88 q^{15} + 42 q^{17} + 56 q^{21} - 104 q^{23} - 126 q^{25} - 14 q^{27} - 32 q^{31} + 52 q^{33} + 56 q^{35} - 134 q^{37} + 24 q^{41} + 332 q^{43}+ \cdots - 310 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/220\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(111\) \(177\)
\(\chi(n)\) \(e\left(\frac{1}{5}\right)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.72462 3.38475i −0.574872 1.12825i −0.977114 0.212717i \(-0.931769\pi\)
0.402241 0.915534i \(-0.368231\pi\)
\(4\) 0 0
\(5\) −0.450384 + 4.97967i −0.0900768 + 0.995935i
\(6\) 0 0
\(7\) 5.09251 9.99462i 0.727502 1.42780i −0.169388 0.985549i \(-0.554179\pi\)
0.896890 0.442254i \(-0.145821\pi\)
\(8\) 0 0
\(9\) −3.19218 + 4.39365i −0.354686 + 0.488184i
\(10\) 0 0
\(11\) −8.75765 6.65610i −0.796150 0.605100i
\(12\) 0 0
\(13\) −12.3296 + 1.95282i −0.948432 + 0.150217i −0.611440 0.791291i \(-0.709409\pi\)
−0.336992 + 0.941508i \(0.609409\pi\)
\(14\) 0 0
\(15\) 17.6317 7.06359i 1.17545 0.470906i
\(16\) 0 0
\(17\) 11.2549 + 1.78260i 0.662052 + 0.104859i 0.478413 0.878135i \(-0.341212\pi\)
0.183639 + 0.982994i \(0.441212\pi\)
\(18\) 0 0
\(19\) −29.7589 9.66926i −1.56626 0.508908i −0.607788 0.794099i \(-0.707943\pi\)
−0.958471 + 0.285191i \(0.907943\pi\)
\(20\) 0 0
\(21\) −42.6120 −2.02914
\(22\) 0 0
\(23\) 5.52005 5.52005i 0.240002 0.240002i −0.576849 0.816851i \(-0.695718\pi\)
0.816851 + 0.576849i \(0.195718\pi\)
\(24\) 0 0
\(25\) −24.5943 4.48553i −0.983772 0.179421i
\(26\) 0 0
\(27\) −13.3915 2.12101i −0.495983 0.0785559i
\(28\) 0 0
\(29\) −18.0017 + 5.84912i −0.620750 + 0.201694i −0.602473 0.798139i \(-0.705818\pi\)
−0.0182765 + 0.999833i \(0.505818\pi\)
\(30\) 0 0
\(31\) −2.07398 1.50684i −0.0669026 0.0486076i 0.553831 0.832629i \(-0.313165\pi\)
−0.620734 + 0.784021i \(0.713165\pi\)
\(32\) 0 0
\(33\) −7.42565 + 41.1217i −0.225020 + 1.24611i
\(34\) 0 0
\(35\) 47.4764 + 29.8605i 1.35647 + 0.853157i
\(36\) 0 0
\(37\) 10.7814 21.1596i 0.291388 0.571882i −0.698184 0.715918i \(-0.746008\pi\)
0.989572 + 0.144037i \(0.0460083\pi\)
\(38\) 0 0
\(39\) 27.8737 + 38.3648i 0.714710 + 0.983714i
\(40\) 0 0
\(41\) 11.2612 34.6584i 0.274664 0.845328i −0.714644 0.699488i \(-0.753411\pi\)
0.989308 0.145840i \(-0.0465885\pi\)
\(42\) 0 0
\(43\) −23.6032 + 23.6032i −0.548912 + 0.548912i −0.926126 0.377214i \(-0.876882\pi\)
0.377214 + 0.926126i \(0.376882\pi\)
\(44\) 0 0
\(45\) −20.4413 17.8748i −0.454250 0.397218i
\(46\) 0 0
\(47\) 62.7083 31.9515i 1.33422 0.679818i 0.366162 0.930551i \(-0.380672\pi\)
0.968056 + 0.250733i \(0.0806715\pi\)
\(48\) 0 0
\(49\) −45.1573 62.1537i −0.921577 1.26844i
\(50\) 0 0
\(51\) −13.3767 41.1693i −0.262288 0.807241i
\(52\) 0 0
\(53\) 42.0409 6.65862i 0.793224 0.125634i 0.253344 0.967376i \(-0.418470\pi\)
0.539880 + 0.841742i \(0.318470\pi\)
\(54\) 0 0
\(55\) 37.0895 40.6124i 0.674355 0.738408i
\(56\) 0 0
\(57\) 18.5947 + 117.402i 0.326223 + 2.05969i
\(58\) 0 0
\(59\) 73.5650 23.9027i 1.24686 0.405131i 0.390069 0.920786i \(-0.372451\pi\)
0.856796 + 0.515655i \(0.172451\pi\)
\(60\) 0 0
\(61\) 87.2179 63.3675i 1.42980 1.03881i 0.439748 0.898121i \(-0.355068\pi\)
0.990054 0.140690i \(-0.0449321\pi\)
\(62\) 0 0
\(63\) 27.6567 + 54.2793i 0.438995 + 0.861577i
\(64\) 0 0
\(65\) −4.17134 62.2770i −0.0641745 0.958107i
\(66\) 0 0
\(67\) 51.9683 + 51.9683i 0.775646 + 0.775646i 0.979087 0.203441i \(-0.0652126\pi\)
−0.203441 + 0.979087i \(0.565213\pi\)
\(68\) 0 0
\(69\) −28.2040 9.16403i −0.408753 0.132812i
\(70\) 0 0
\(71\) −108.853 + 79.0863i −1.53314 + 1.11389i −0.578680 + 0.815555i \(0.696432\pi\)
−0.954461 + 0.298337i \(0.903568\pi\)
\(72\) 0 0
\(73\) 6.10437 + 3.11033i 0.0836214 + 0.0426073i 0.495301 0.868721i \(-0.335058\pi\)
−0.411680 + 0.911329i \(0.635058\pi\)
\(74\) 0 0
\(75\) 27.2334 + 90.9815i 0.363111 + 1.21309i
\(76\) 0 0
\(77\) −111.124 + 53.6331i −1.44316 + 0.696534i
\(78\) 0 0
\(79\) 0.395302 0.544087i 0.00500383 0.00688718i −0.806508 0.591224i \(-0.798645\pi\)
0.811512 + 0.584336i \(0.198645\pi\)
\(80\) 0 0
\(81\) 31.0202 + 95.4704i 0.382966 + 1.17865i
\(82\) 0 0
\(83\) 8.41245 53.1141i 0.101355 0.639929i −0.883748 0.467963i \(-0.844988\pi\)
0.985103 0.171966i \(-0.0550120\pi\)
\(84\) 0 0
\(85\) −13.9458 + 55.2428i −0.164068 + 0.649915i
\(86\) 0 0
\(87\) 50.8439 + 50.8439i 0.584413 + 0.584413i
\(88\) 0 0
\(89\) 22.4520i 0.252269i 0.992013 + 0.126135i \(0.0402572\pi\)
−0.992013 + 0.126135i \(0.959743\pi\)
\(90\) 0 0
\(91\) −43.2710 + 133.175i −0.475506 + 1.46346i
\(92\) 0 0
\(93\) −1.52344 + 9.61863i −0.0163811 + 0.103426i
\(94\) 0 0
\(95\) 61.5527 143.835i 0.647923 1.51405i
\(96\) 0 0
\(97\) 11.9707 + 75.5798i 0.123409 + 0.779174i 0.969311 + 0.245836i \(0.0790625\pi\)
−0.845902 + 0.533338i \(0.820938\pi\)
\(98\) 0 0
\(99\) 57.2005 17.2306i 0.577783 0.174047i
\(100\) 0 0
\(101\) −4.48031 3.25514i −0.0443595 0.0322291i 0.565385 0.824827i \(-0.308728\pi\)
−0.609744 + 0.792598i \(0.708728\pi\)
\(102\) 0 0
\(103\) −127.934 65.1855i −1.24208 0.632869i −0.295498 0.955343i \(-0.595485\pi\)
−0.946578 + 0.322474i \(0.895485\pi\)
\(104\) 0 0
\(105\) 19.1917 212.194i 0.182779 2.02089i
\(106\) 0 0
\(107\) 49.6589 25.3025i 0.464102 0.236472i −0.206273 0.978495i \(-0.566133\pi\)
0.670375 + 0.742023i \(0.266133\pi\)
\(108\) 0 0
\(109\) 130.679i 1.19889i −0.800415 0.599447i \(-0.795387\pi\)
0.800415 0.599447i \(-0.204613\pi\)
\(110\) 0 0
\(111\) −90.2138 −0.812737
\(112\) 0 0
\(113\) −37.8895 74.3623i −0.335305 0.658074i 0.660373 0.750937i \(-0.270398\pi\)
−0.995679 + 0.0928635i \(0.970398\pi\)
\(114\) 0 0
\(115\) 25.0019 + 29.9742i 0.217408 + 0.260645i
\(116\) 0 0
\(117\) 30.7783 60.4058i 0.263062 0.516289i
\(118\) 0 0
\(119\) 75.1320 103.410i 0.631362 0.868995i
\(120\) 0 0
\(121\) 32.3927 + 116.583i 0.267709 + 0.963500i
\(122\) 0 0
\(123\) −136.732 + 21.6562i −1.11164 + 0.176066i
\(124\) 0 0
\(125\) 33.4134 120.451i 0.267307 0.963611i
\(126\) 0 0
\(127\) 198.096 + 31.3753i 1.55981 + 0.247049i 0.875891 0.482510i \(-0.160275\pi\)
0.683918 + 0.729559i \(0.260275\pi\)
\(128\) 0 0
\(129\) 120.598 + 39.1845i 0.934865 + 0.303756i
\(130\) 0 0
\(131\) −110.511 −0.843595 −0.421797 0.906690i \(-0.638601\pi\)
−0.421797 + 0.906690i \(0.638601\pi\)
\(132\) 0 0
\(133\) −248.188 + 248.188i −1.86608 + 1.86608i
\(134\) 0 0
\(135\) 16.5933 65.7302i 0.122913 0.486890i
\(136\) 0 0
\(137\) 170.244 + 26.9641i 1.24266 + 0.196818i 0.742933 0.669366i \(-0.233434\pi\)
0.499726 + 0.866184i \(0.333434\pi\)
\(138\) 0 0
\(139\) −111.384 + 36.1908i −0.801321 + 0.260365i −0.680918 0.732360i \(-0.738419\pi\)
−0.120404 + 0.992725i \(0.538419\pi\)
\(140\) 0 0
\(141\) −216.296 157.148i −1.53401 1.11452i
\(142\) 0 0
\(143\) 120.977 + 64.9650i 0.845990 + 0.454301i
\(144\) 0 0
\(145\) −21.0190 92.2771i −0.144959 0.636394i
\(146\) 0 0
\(147\) −132.496 + 260.038i −0.901332 + 1.76896i
\(148\) 0 0
\(149\) 5.49306 + 7.56054i 0.0368661 + 0.0507419i 0.827052 0.562125i \(-0.190016\pi\)
−0.790186 + 0.612867i \(0.790016\pi\)
\(150\) 0 0
\(151\) 43.8034 134.813i 0.290089 0.892802i −0.694738 0.719263i \(-0.744480\pi\)
0.984827 0.173539i \(-0.0555203\pi\)
\(152\) 0 0
\(153\) −43.7597 + 43.7597i −0.286011 + 0.286011i
\(154\) 0 0
\(155\) 8.43764 9.64910i 0.0544364 0.0622522i
\(156\) 0 0
\(157\) −192.492 + 98.0794i −1.22606 + 0.624710i −0.942488 0.334241i \(-0.891520\pi\)
−0.283574 + 0.958950i \(0.591520\pi\)
\(158\) 0 0
\(159\) −95.0422 130.814i −0.597750 0.822732i
\(160\) 0 0
\(161\) −27.0599 83.2818i −0.168074 0.517278i
\(162\) 0 0
\(163\) 272.746 43.1988i 1.67329 0.265023i 0.753504 0.657443i \(-0.228362\pi\)
0.919786 + 0.392420i \(0.128362\pi\)
\(164\) 0 0
\(165\) −201.428 55.4979i −1.22078 0.336351i
\(166\) 0 0
\(167\) −36.8986 232.969i −0.220950 1.39502i −0.809765 0.586754i \(-0.800405\pi\)
0.588815 0.808268i \(-0.299595\pi\)
\(168\) 0 0
\(169\) −12.5226 + 4.06885i −0.0740985 + 0.0240761i
\(170\) 0 0
\(171\) 137.479 99.8844i 0.803971 0.584119i
\(172\) 0 0
\(173\) −8.40995 16.5055i −0.0486124 0.0954072i 0.865422 0.501043i \(-0.167050\pi\)
−0.914035 + 0.405636i \(0.867050\pi\)
\(174\) 0 0
\(175\) −170.078 + 222.968i −0.971875 + 1.27410i
\(176\) 0 0
\(177\) −207.776 207.776i −1.17388 1.17388i
\(178\) 0 0
\(179\) 227.245 + 73.8362i 1.26952 + 0.412493i 0.864878 0.501981i \(-0.167395\pi\)
0.404644 + 0.914474i \(0.367395\pi\)
\(180\) 0 0
\(181\) −23.5411 + 17.1036i −0.130062 + 0.0944953i −0.650914 0.759151i \(-0.725614\pi\)
0.520852 + 0.853647i \(0.325614\pi\)
\(182\) 0 0
\(183\) −364.901 185.926i −1.99399 1.01599i
\(184\) 0 0
\(185\) 100.512 + 63.2176i 0.543309 + 0.341717i
\(186\) 0 0
\(187\) −86.7011 90.5249i −0.463642 0.484091i
\(188\) 0 0
\(189\) −89.3953 + 123.042i −0.472991 + 0.651016i
\(190\) 0 0
\(191\) 105.710 + 325.341i 0.553454 + 1.70336i 0.699992 + 0.714151i \(0.253187\pi\)
−0.146538 + 0.989205i \(0.546813\pi\)
\(192\) 0 0
\(193\) −4.04216 + 25.5212i −0.0209439 + 0.132234i −0.995945 0.0899664i \(-0.971324\pi\)
0.975001 + 0.222201i \(0.0713240\pi\)
\(194\) 0 0
\(195\) −203.598 + 121.523i −1.04409 + 0.623195i
\(196\) 0 0
\(197\) 186.939 + 186.939i 0.948927 + 0.948927i 0.998758 0.0498310i \(-0.0158683\pi\)
−0.0498310 + 0.998758i \(0.515868\pi\)
\(198\) 0 0
\(199\) 196.593i 0.987904i −0.869489 0.493952i \(-0.835552\pi\)
0.869489 0.493952i \(-0.164448\pi\)
\(200\) 0 0
\(201\) 86.2743 265.525i 0.429226 1.32102i
\(202\) 0 0
\(203\) −33.2144 + 209.707i −0.163618 + 1.03304i
\(204\) 0 0
\(205\) 167.516 + 71.6868i 0.817151 + 0.349692i
\(206\) 0 0
\(207\) 6.63222 + 41.8742i 0.0320397 + 0.202291i
\(208\) 0 0
\(209\) 196.259 + 282.758i 0.939036 + 1.35291i
\(210\) 0 0
\(211\) −300.828 218.565i −1.42573 1.03585i −0.990793 0.135389i \(-0.956772\pi\)
−0.434934 0.900462i \(-0.643228\pi\)
\(212\) 0 0
\(213\) 455.417 + 232.047i 2.13811 + 1.08942i
\(214\) 0 0
\(215\) −106.906 128.167i −0.497236 0.596125i
\(216\) 0 0
\(217\) −25.6220 + 13.0551i −0.118074 + 0.0601616i
\(218\) 0 0
\(219\) 26.0259i 0.118840i
\(220\) 0 0
\(221\) −142.249 −0.643663
\(222\) 0 0
\(223\) −153.651 301.558i −0.689019 1.35228i −0.924794 0.380469i \(-0.875763\pi\)
0.235774 0.971808i \(-0.424237\pi\)
\(224\) 0 0
\(225\) 98.2172 93.7403i 0.436521 0.416623i
\(226\) 0 0
\(227\) 96.1797 188.763i 0.423699 0.831556i −0.576200 0.817309i \(-0.695465\pi\)
0.999899 0.0142469i \(-0.00453509\pi\)
\(228\) 0 0
\(229\) −185.614 + 255.476i −0.810542 + 1.11561i 0.180698 + 0.983539i \(0.442164\pi\)
−0.991240 + 0.132076i \(0.957836\pi\)
\(230\) 0 0
\(231\) 373.180 + 283.629i 1.61550 + 1.22783i
\(232\) 0 0
\(233\) 329.962 52.2609i 1.41615 0.224296i 0.599011 0.800741i \(-0.295561\pi\)
0.817136 + 0.576445i \(0.195561\pi\)
\(234\) 0 0
\(235\) 130.865 + 326.657i 0.556873 + 1.39003i
\(236\) 0 0
\(237\) −2.52334 0.399659i −0.0106470 0.00168632i
\(238\) 0 0
\(239\) −246.388 80.0563i −1.03091 0.334964i −0.255761 0.966740i \(-0.582326\pi\)
−0.775151 + 0.631776i \(0.782326\pi\)
\(240\) 0 0
\(241\) 54.2324 0.225031 0.112515 0.993650i \(-0.464109\pi\)
0.112515 + 0.993650i \(0.464109\pi\)
\(242\) 0 0
\(243\) 183.360 183.360i 0.754568 0.754568i
\(244\) 0 0
\(245\) 329.843 196.876i 1.34630 0.803574i
\(246\) 0 0
\(247\) 385.798 + 61.1044i 1.56194 + 0.247386i
\(248\) 0 0
\(249\) −194.286 + 63.1275i −0.780267 + 0.253524i
\(250\) 0 0
\(251\) 38.7266 + 28.1365i 0.154289 + 0.112098i 0.662252 0.749282i \(-0.269601\pi\)
−0.507962 + 0.861379i \(0.669601\pi\)
\(252\) 0 0
\(253\) −85.0847 + 11.6007i −0.336303 + 0.0458524i
\(254\) 0 0
\(255\) 211.034 48.0697i 0.827585 0.188509i
\(256\) 0 0
\(257\) −26.9993 + 52.9891i −0.105056 + 0.206183i −0.937550 0.347850i \(-0.886912\pi\)
0.832495 + 0.554033i \(0.186912\pi\)
\(258\) 0 0
\(259\) −156.578 215.511i −0.604549 0.832090i
\(260\) 0 0
\(261\) 31.7657 97.7648i 0.121708 0.374578i
\(262\) 0 0
\(263\) −140.379 + 140.379i −0.533761 + 0.533761i −0.921689 0.387929i \(-0.873191\pi\)
0.387929 + 0.921689i \(0.373191\pi\)
\(264\) 0 0
\(265\) 14.2232 + 212.349i 0.0536725 + 0.801316i
\(266\) 0 0
\(267\) 75.9944 38.7211i 0.284623 0.145023i
\(268\) 0 0
\(269\) −25.5983 35.2330i −0.0951608 0.130978i 0.758782 0.651345i \(-0.225795\pi\)
−0.853942 + 0.520367i \(0.825795\pi\)
\(270\) 0 0
\(271\) 90.8577 + 279.631i 0.335268 + 1.03185i 0.966590 + 0.256328i \(0.0825129\pi\)
−0.631321 + 0.775521i \(0.717487\pi\)
\(272\) 0 0
\(273\) 525.389 83.2134i 1.92450 0.304811i
\(274\) 0 0
\(275\) 185.532 + 202.985i 0.674662 + 0.738127i
\(276\) 0 0
\(277\) −47.9161 302.531i −0.172982 1.09217i −0.909486 0.415735i \(-0.863525\pi\)
0.736504 0.676434i \(-0.236475\pi\)
\(278\) 0 0
\(279\) 13.2410 4.30227i 0.0474589 0.0154203i
\(280\) 0 0
\(281\) 240.589 174.798i 0.856187 0.622056i −0.0706580 0.997501i \(-0.522510\pi\)
0.926845 + 0.375444i \(0.122510\pi\)
\(282\) 0 0
\(283\) −61.6138 120.924i −0.217717 0.427293i 0.756155 0.654393i \(-0.227076\pi\)
−0.973872 + 0.227100i \(0.927076\pi\)
\(284\) 0 0
\(285\) −593.000 + 39.7194i −2.08070 + 0.139366i
\(286\) 0 0
\(287\) −289.050 289.050i −1.00714 1.00714i
\(288\) 0 0
\(289\) −151.361 49.1801i −0.523739 0.170173i
\(290\) 0 0
\(291\) 235.174 170.864i 0.808159 0.587162i
\(292\) 0 0
\(293\) 205.670 + 104.794i 0.701944 + 0.357659i 0.768258 0.640140i \(-0.221124\pi\)
−0.0663136 + 0.997799i \(0.521124\pi\)
\(294\) 0 0
\(295\) 85.8953 + 377.095i 0.291170 + 1.27829i
\(296\) 0 0
\(297\) 103.161 + 107.710i 0.347342 + 0.362661i
\(298\) 0 0
\(299\) −57.2805 + 78.8398i −0.191573 + 0.263678i
\(300\) 0 0
\(301\) 115.706 + 356.105i 0.384404 + 1.18307i
\(302\) 0 0
\(303\) −3.29101 + 20.7786i −0.0108614 + 0.0685763i
\(304\) 0 0
\(305\) 276.268 + 462.856i 0.905797 + 1.51756i
\(306\) 0 0
\(307\) −179.666 179.666i −0.585232 0.585232i 0.351104 0.936336i \(-0.385806\pi\)
−0.936336 + 0.351104i \(0.885806\pi\)
\(308\) 0 0
\(309\) 545.444i 1.76519i
\(310\) 0 0
\(311\) −63.2034 + 194.520i −0.203226 + 0.625467i 0.796555 + 0.604566i \(0.206653\pi\)
−0.999782 + 0.0209007i \(0.993347\pi\)
\(312\) 0 0
\(313\) 60.8925 384.460i 0.194545 1.22831i −0.676254 0.736668i \(-0.736398\pi\)
0.870799 0.491639i \(-0.163602\pi\)
\(314\) 0 0
\(315\) −282.750 + 113.275i −0.897618 + 0.359603i
\(316\) 0 0
\(317\) −46.9058 296.152i −0.147968 0.934233i −0.944231 0.329283i \(-0.893193\pi\)
0.796263 0.604950i \(-0.206807\pi\)
\(318\) 0 0
\(319\) 196.585 + 68.5968i 0.616254 + 0.215037i
\(320\) 0 0
\(321\) −171.285 124.446i −0.533598 0.387682i
\(322\) 0 0
\(323\) −317.697 161.875i −0.983581 0.501160i
\(324\) 0 0
\(325\) 311.998 + 7.27665i 0.959993 + 0.0223897i
\(326\) 0 0
\(327\) −442.317 + 225.372i −1.35265 + 0.689211i
\(328\) 0 0
\(329\) 789.459i 2.39957i
\(330\) 0 0
\(331\) −191.292 −0.577922 −0.288961 0.957341i \(-0.593310\pi\)
−0.288961 + 0.957341i \(0.593310\pi\)
\(332\) 0 0
\(333\) 58.5520 + 114.915i 0.175832 + 0.345090i
\(334\) 0 0
\(335\) −282.191 + 235.379i −0.842360 + 0.702625i
\(336\) 0 0
\(337\) 23.5723 46.2632i 0.0699474 0.137280i −0.853385 0.521281i \(-0.825454\pi\)
0.923332 + 0.384002i \(0.125454\pi\)
\(338\) 0 0
\(339\) −186.353 + 256.493i −0.549715 + 0.756617i
\(340\) 0 0
\(341\) 8.13355 + 27.0010i 0.0238521 + 0.0791817i
\(342\) 0 0
\(343\) −308.289 + 48.8282i −0.898803 + 0.142356i
\(344\) 0 0
\(345\) 58.3365 136.319i 0.169091 0.395129i
\(346\) 0 0
\(347\) −229.148 36.2935i −0.660369 0.104592i −0.182750 0.983159i \(-0.558500\pi\)
−0.477619 + 0.878567i \(0.658500\pi\)
\(348\) 0 0
\(349\) 107.761 + 35.0137i 0.308771 + 0.100326i 0.459304 0.888279i \(-0.348099\pi\)
−0.150533 + 0.988605i \(0.548099\pi\)
\(350\) 0 0
\(351\) 169.254 0.482206
\(352\) 0 0
\(353\) −21.9444 + 21.9444i −0.0621654 + 0.0621654i −0.737506 0.675341i \(-0.763997\pi\)
0.675341 + 0.737506i \(0.263997\pi\)
\(354\) 0 0
\(355\) −344.798 577.672i −0.971263 1.62724i
\(356\) 0 0
\(357\) −479.592 75.9600i −1.34340 0.212773i
\(358\) 0 0
\(359\) −259.373 + 84.2752i −0.722486 + 0.234750i −0.647101 0.762405i \(-0.724019\pi\)
−0.0753854 + 0.997154i \(0.524019\pi\)
\(360\) 0 0
\(361\) 500.043 + 363.303i 1.38516 + 1.00638i
\(362\) 0 0
\(363\) 338.741 310.703i 0.933171 0.855932i
\(364\) 0 0
\(365\) −18.2377 + 28.9969i −0.0499664 + 0.0794436i
\(366\) 0 0
\(367\) −94.3098 + 185.093i −0.256975 + 0.504342i −0.983065 0.183258i \(-0.941336\pi\)
0.726090 + 0.687600i \(0.241336\pi\)
\(368\) 0 0
\(369\) 116.329 + 160.114i 0.315256 + 0.433913i
\(370\) 0 0
\(371\) 147.543 454.092i 0.397691 1.22397i
\(372\) 0 0
\(373\) −246.912 + 246.912i −0.661963 + 0.661963i −0.955843 0.293879i \(-0.905054\pi\)
0.293879 + 0.955843i \(0.405054\pi\)
\(374\) 0 0
\(375\) −465.324 + 94.6366i −1.24086 + 0.252364i
\(376\) 0 0
\(377\) 210.532 107.272i 0.558441 0.284540i
\(378\) 0 0
\(379\) 307.277 + 422.931i 0.810758 + 1.11591i 0.991206 + 0.132328i \(0.0422452\pi\)
−0.180448 + 0.983585i \(0.557755\pi\)
\(380\) 0 0
\(381\) −235.442 724.615i −0.617957 1.90188i
\(382\) 0 0
\(383\) −126.077 + 19.9687i −0.329184 + 0.0521376i −0.318839 0.947809i \(-0.603293\pi\)
−0.0103447 + 0.999946i \(0.503293\pi\)
\(384\) 0 0
\(385\) −217.027 577.515i −0.563707 1.50004i
\(386\) 0 0
\(387\) −28.3587 179.050i −0.0732784 0.462662i
\(388\) 0 0
\(389\) 162.553 52.8166i 0.417874 0.135775i −0.0925308 0.995710i \(-0.529496\pi\)
0.510405 + 0.859934i \(0.329496\pi\)
\(390\) 0 0
\(391\) 71.9676 52.2875i 0.184060 0.133728i
\(392\) 0 0
\(393\) 190.589 + 374.052i 0.484959 + 0.951786i
\(394\) 0 0
\(395\) 2.53134 + 2.21352i 0.00640845 + 0.00560386i
\(396\) 0 0
\(397\) −115.211 115.211i −0.290203 0.290203i 0.546957 0.837161i \(-0.315786\pi\)
−0.837161 + 0.546957i \(0.815786\pi\)
\(398\) 0 0
\(399\) 1268.09 + 412.026i 3.17816 + 1.03265i
\(400\) 0 0
\(401\) −190.704 + 138.555i −0.475572 + 0.345523i −0.799609 0.600521i \(-0.794960\pi\)
0.324037 + 0.946045i \(0.394960\pi\)
\(402\) 0 0
\(403\) 28.5140 + 14.5286i 0.0707543 + 0.0360511i
\(404\) 0 0
\(405\) −489.382 + 111.472i −1.20835 + 0.275240i
\(406\) 0 0
\(407\) −235.260 + 113.547i −0.578034 + 0.278984i
\(408\) 0 0
\(409\) −42.7016 + 58.7737i −0.104405 + 0.143701i −0.858023 0.513612i \(-0.828307\pi\)
0.753618 + 0.657313i \(0.228307\pi\)
\(410\) 0 0
\(411\) −202.340 622.738i −0.492311 1.51518i
\(412\) 0 0
\(413\) 135.732 856.980i 0.328649 2.07501i
\(414\) 0 0
\(415\) 260.702 + 65.8130i 0.628198 + 0.158586i
\(416\) 0 0
\(417\) 314.591 + 314.591i 0.754415 + 0.754415i
\(418\) 0 0
\(419\) 197.381i 0.471077i 0.971865 + 0.235538i \(0.0756853\pi\)
−0.971865 + 0.235538i \(0.924315\pi\)
\(420\) 0 0
\(421\) −85.4299 + 262.926i −0.202921 + 0.624527i 0.796871 + 0.604149i \(0.206487\pi\)
−0.999792 + 0.0203781i \(0.993513\pi\)
\(422\) 0 0
\(423\) −59.7922 + 377.513i −0.141353 + 0.892466i
\(424\) 0 0
\(425\) −268.810 94.3259i −0.632494 0.221943i
\(426\) 0 0
\(427\) −189.176 1194.41i −0.443035 2.79721i
\(428\) 0 0
\(429\) 11.2522 521.516i 0.0262289 1.21565i
\(430\) 0 0
\(431\) −72.8571 52.9338i −0.169042 0.122816i 0.500048 0.865998i \(-0.333316\pi\)
−0.669090 + 0.743182i \(0.733316\pi\)
\(432\) 0 0
\(433\) −208.924 106.452i −0.482503 0.245847i 0.195781 0.980648i \(-0.437276\pi\)
−0.678283 + 0.734800i \(0.737276\pi\)
\(434\) 0 0
\(435\) −276.086 + 230.287i −0.634679 + 0.529395i
\(436\) 0 0
\(437\) −217.646 + 110.896i −0.498045 + 0.253767i
\(438\) 0 0
\(439\) 419.018i 0.954484i −0.878772 0.477242i \(-0.841637\pi\)
0.878772 0.477242i \(-0.158363\pi\)
\(440\) 0 0
\(441\) 417.232 0.946104
\(442\) 0 0
\(443\) 5.04160 + 9.89469i 0.0113806 + 0.0223357i 0.896627 0.442787i \(-0.146010\pi\)
−0.885246 + 0.465123i \(0.846010\pi\)
\(444\) 0 0
\(445\) −111.804 10.1120i −0.251244 0.0227236i
\(446\) 0 0
\(447\) 16.1171 31.6317i 0.0360563 0.0707644i
\(448\) 0 0
\(449\) −405.246 + 557.773i −0.902552 + 1.24226i 0.0670952 + 0.997747i \(0.478627\pi\)
−0.969647 + 0.244509i \(0.921373\pi\)
\(450\) 0 0
\(451\) −329.312 + 228.571i −0.730181 + 0.506809i
\(452\) 0 0
\(453\) −531.853 + 84.2373i −1.17407 + 0.185954i
\(454\) 0 0
\(455\) −643.677 275.455i −1.41468 0.605397i
\(456\) 0 0
\(457\) 278.139 + 44.0528i 0.608618 + 0.0963957i 0.453134 0.891443i \(-0.350306\pi\)
0.155485 + 0.987838i \(0.450306\pi\)
\(458\) 0 0
\(459\) −146.939 47.7434i −0.320129 0.104016i
\(460\) 0 0
\(461\) 432.726 0.938669 0.469334 0.883020i \(-0.344494\pi\)
0.469334 + 0.883020i \(0.344494\pi\)
\(462\) 0 0
\(463\) 317.108 317.108i 0.684899 0.684899i −0.276201 0.961100i \(-0.589076\pi\)
0.961100 + 0.276201i \(0.0890756\pi\)
\(464\) 0 0
\(465\) −47.2115 11.9183i −0.101530 0.0256308i
\(466\) 0 0
\(467\) 467.837 + 74.0981i 1.00179 + 0.158668i 0.635721 0.771919i \(-0.280703\pi\)
0.366071 + 0.930587i \(0.380703\pi\)
\(468\) 0 0
\(469\) 784.052 254.754i 1.67175 0.543186i
\(470\) 0 0
\(471\) 663.949 + 482.387i 1.40966 + 1.02418i
\(472\) 0 0
\(473\) 363.814 49.6033i 0.769163 0.104870i
\(474\) 0 0
\(475\) 688.528 + 371.293i 1.44953 + 0.781670i
\(476\) 0 0
\(477\) −104.946 + 205.968i −0.220013 + 0.431800i
\(478\) 0 0
\(479\) −43.2790 59.5685i −0.0903529 0.124360i 0.761447 0.648227i \(-0.224489\pi\)
−0.851800 + 0.523867i \(0.824489\pi\)
\(480\) 0 0
\(481\) −91.6092 + 281.944i −0.190456 + 0.586162i
\(482\) 0 0
\(483\) −235.220 + 235.220i −0.486998 + 0.486998i
\(484\) 0 0
\(485\) −381.754 + 25.5701i −0.787122 + 0.0527218i
\(486\) 0 0
\(487\) −682.710 + 347.858i −1.40187 + 0.714288i −0.981212 0.192932i \(-0.938200\pi\)
−0.420657 + 0.907220i \(0.638200\pi\)
\(488\) 0 0
\(489\) −616.600 848.678i −1.26094 1.73554i
\(490\) 0 0
\(491\) 155.108 + 477.373i 0.315902 + 0.972247i 0.975381 + 0.220524i \(0.0707769\pi\)
−0.659479 + 0.751723i \(0.729223\pi\)
\(492\) 0 0
\(493\) −213.034 + 33.7413i −0.432118 + 0.0684407i
\(494\) 0 0
\(495\) 60.0407 + 292.600i 0.121294 + 0.591112i
\(496\) 0 0
\(497\) 236.102 + 1490.69i 0.475055 + 2.99938i
\(498\) 0 0
\(499\) 571.374 185.651i 1.14504 0.372045i 0.325766 0.945451i \(-0.394378\pi\)
0.819272 + 0.573405i \(0.194378\pi\)
\(500\) 0 0
\(501\) −724.905 + 526.675i −1.44692 + 1.05125i
\(502\) 0 0
\(503\) −326.263 640.328i −0.648635 1.27302i −0.947815 0.318821i \(-0.896713\pi\)
0.299180 0.954197i \(-0.403287\pi\)
\(504\) 0 0
\(505\) 18.2274 20.8444i 0.0360938 0.0412761i
\(506\) 0 0
\(507\) 35.3688 + 35.3688i 0.0697610 + 0.0697610i
\(508\) 0 0
\(509\) −912.793 296.584i −1.79331 0.582680i −0.793637 0.608392i \(-0.791815\pi\)
−0.999669 + 0.0257117i \(0.991815\pi\)
\(510\) 0 0
\(511\) 62.1731 45.1714i 0.121670 0.0883981i
\(512\) 0 0
\(513\) 378.009 + 192.605i 0.736859 + 0.375449i
\(514\) 0 0
\(515\) 382.222 607.710i 0.742179 1.18002i
\(516\) 0 0
\(517\) −761.849 137.573i −1.47360 0.266098i
\(518\) 0 0
\(519\) −41.3629 + 56.9312i −0.0796973 + 0.109694i
\(520\) 0 0
\(521\) −43.2186 133.013i −0.0829533 0.255304i 0.900974 0.433873i \(-0.142853\pi\)
−0.983927 + 0.178569i \(0.942853\pi\)
\(522\) 0 0
\(523\) −38.7235 + 244.491i −0.0740412 + 0.467477i 0.922612 + 0.385730i \(0.126050\pi\)
−0.996653 + 0.0817479i \(0.973950\pi\)
\(524\) 0 0
\(525\) 1048.01 + 191.137i 1.99621 + 0.364071i
\(526\) 0 0
\(527\) −20.6563 20.6563i −0.0391961 0.0391961i
\(528\) 0 0
\(529\) 468.058i 0.884798i
\(530\) 0 0
\(531\) −129.812 + 399.521i −0.244467 + 0.752394i
\(532\) 0 0
\(533\) −71.1647 + 449.316i −0.133517 + 0.842995i
\(534\) 0 0
\(535\) 103.632 + 258.681i 0.193705 + 0.483516i
\(536\) 0 0
\(537\) −141.993 896.506i −0.264418 1.66947i
\(538\) 0 0
\(539\) −18.2293 + 844.891i −0.0338207 + 1.56752i
\(540\) 0 0
\(541\) 75.5642 + 54.9006i 0.139675 + 0.101480i 0.655429 0.755257i \(-0.272488\pi\)
−0.515754 + 0.856737i \(0.672488\pi\)
\(542\) 0 0
\(543\) 98.4911 + 50.1837i 0.181383 + 0.0924193i
\(544\) 0 0
\(545\) 650.741 + 58.8559i 1.19402 + 0.107992i
\(546\) 0 0
\(547\) 415.137 211.523i 0.758934 0.386696i −0.0312928 0.999510i \(-0.509962\pi\)
0.790227 + 0.612814i \(0.209962\pi\)
\(548\) 0 0
\(549\) 585.485i 1.06646i
\(550\) 0 0
\(551\) 592.269 1.07490
\(552\) 0 0
\(553\) −3.42486 6.72167i −0.00619324 0.0121549i
\(554\) 0 0
\(555\) 40.6309 449.235i 0.0732088 0.809433i
\(556\) 0 0
\(557\) 124.995 245.316i 0.224407 0.440424i −0.751162 0.660118i \(-0.770506\pi\)
0.975569 + 0.219695i \(0.0705061\pi\)
\(558\) 0 0
\(559\) 244.926 337.111i 0.438150 0.603062i
\(560\) 0 0
\(561\) −156.878 + 449.583i −0.279640 + 0.801395i
\(562\) 0 0
\(563\) 1003.30 158.907i 1.78206 0.282251i 0.823537 0.567263i \(-0.191998\pi\)
0.958524 + 0.285012i \(0.0919976\pi\)
\(564\) 0 0
\(565\) 387.365 155.186i 0.685602 0.274665i
\(566\) 0 0
\(567\) 1112.16 + 176.149i 1.96148 + 0.310669i
\(568\) 0 0
\(569\) −838.644 272.492i −1.47389 0.478896i −0.541609 0.840630i \(-0.682185\pi\)
−0.932281 + 0.361734i \(0.882185\pi\)
\(570\) 0 0
\(571\) 1065.50 1.86603 0.933013 0.359844i \(-0.117170\pi\)
0.933013 + 0.359844i \(0.117170\pi\)
\(572\) 0 0
\(573\) 918.890 918.890i 1.60365 1.60365i
\(574\) 0 0
\(575\) −160.522 + 111.001i −0.279169 + 0.193046i
\(576\) 0 0
\(577\) −63.0330 9.98345i −0.109243 0.0173023i 0.101574 0.994828i \(-0.467612\pi\)
−0.210816 + 0.977526i \(0.567612\pi\)
\(578\) 0 0
\(579\) 93.3542 30.3326i 0.161233 0.0523879i
\(580\) 0 0
\(581\) −488.015 354.564i −0.839957 0.610265i
\(582\) 0 0
\(583\) −412.499 221.514i −0.707546 0.379956i
\(584\) 0 0
\(585\) 286.939 + 180.472i 0.490494 + 0.308499i
\(586\) 0 0
\(587\) −109.448 + 214.803i −0.186453 + 0.365934i −0.965244 0.261349i \(-0.915833\pi\)
0.778792 + 0.627282i \(0.215833\pi\)
\(588\) 0 0
\(589\) 47.1495 + 64.8957i 0.0800500 + 0.110179i
\(590\) 0 0
\(591\) 310.343 955.138i 0.525115 1.61614i
\(592\) 0 0
\(593\) 173.130 173.130i 0.291956 0.291956i −0.545897 0.837853i \(-0.683811\pi\)
0.837853 + 0.545897i \(0.183811\pi\)
\(594\) 0 0
\(595\) 481.112 + 420.707i 0.808591 + 0.707071i
\(596\) 0 0
\(597\) −665.418 + 339.047i −1.11460 + 0.567919i
\(598\) 0 0
\(599\) −49.0843 67.5587i −0.0819437 0.112786i 0.766077 0.642748i \(-0.222206\pi\)
−0.848021 + 0.529963i \(0.822206\pi\)
\(600\) 0 0
\(601\) −280.867 864.418i −0.467332 1.43830i −0.856026 0.516933i \(-0.827074\pi\)
0.388694 0.921367i \(-0.372926\pi\)
\(602\) 0 0
\(603\) −394.222 + 62.4387i −0.653768 + 0.103547i
\(604\) 0 0
\(605\) −595.137 + 108.798i −0.983697 + 0.179831i
\(606\) 0 0
\(607\) −85.4608 539.578i −0.140792 0.888926i −0.952428 0.304763i \(-0.901423\pi\)
0.811636 0.584163i \(-0.198577\pi\)
\(608\) 0 0
\(609\) 767.089 249.242i 1.25959 0.409265i
\(610\) 0 0
\(611\) −710.773 + 516.407i −1.16330 + 0.845184i
\(612\) 0 0
\(613\) −243.555 478.004i −0.397317 0.779778i 0.602515 0.798107i \(-0.294165\pi\)
−0.999832 + 0.0183296i \(0.994165\pi\)
\(614\) 0 0
\(615\) −46.2589 690.632i −0.0752176 1.12298i
\(616\) 0 0
\(617\) 596.755 + 596.755i 0.967187 + 0.967187i 0.999479 0.0322910i \(-0.0102803\pi\)
−0.0322910 + 0.999479i \(0.510280\pi\)
\(618\) 0 0
\(619\) −105.382 34.2406i −0.170245 0.0553160i 0.222654 0.974897i \(-0.428528\pi\)
−0.392899 + 0.919581i \(0.628528\pi\)
\(620\) 0 0
\(621\) −85.6300 + 62.2139i −0.137891 + 0.100183i
\(622\) 0 0
\(623\) 224.399 + 114.337i 0.360191 + 0.183527i
\(624\) 0 0
\(625\) 584.760 + 220.637i 0.935616 + 0.353019i
\(626\) 0 0
\(627\) 618.596 1151.94i 0.986596 1.83722i
\(628\) 0 0
\(629\) 159.062 218.930i 0.252881 0.348061i
\(630\) 0 0
\(631\) −107.724 331.542i −0.170720 0.525423i 0.828692 0.559705i \(-0.189086\pi\)
−0.999412 + 0.0342821i \(0.989086\pi\)
\(632\) 0 0
\(633\) −220.973 + 1395.17i −0.349089 + 2.20406i
\(634\) 0 0
\(635\) −245.458 + 972.321i −0.386548 + 1.53121i
\(636\) 0 0
\(637\) 678.147 + 678.147i 1.06459 + 1.06459i
\(638\) 0 0
\(639\) 730.720i 1.14354i
\(640\) 0 0
\(641\) −5.42437 + 16.6945i −0.00846236 + 0.0260445i −0.955199 0.295966i \(-0.904359\pi\)
0.946736 + 0.322010i \(0.104359\pi\)
\(642\) 0 0
\(643\) −149.670 + 944.977i −0.232768 + 1.46964i 0.543593 + 0.839349i \(0.317064\pi\)
−0.776360 + 0.630289i \(0.782936\pi\)
\(644\) 0 0
\(645\) −249.441 + 582.889i −0.386731 + 0.903703i
\(646\) 0 0
\(647\) 122.051 + 770.600i 0.188641 + 1.19104i 0.882285 + 0.470716i \(0.156005\pi\)
−0.693643 + 0.720319i \(0.743995\pi\)
\(648\) 0 0
\(649\) −803.355 280.324i −1.23784 0.431933i
\(650\) 0 0
\(651\) 88.3764 + 64.2092i 0.135755 + 0.0986317i
\(652\) 0 0
\(653\) −27.3299 13.9253i −0.0418528 0.0213251i 0.432939 0.901423i \(-0.357477\pi\)
−0.474792 + 0.880098i \(0.657477\pi\)
\(654\) 0 0
\(655\) 49.7723 550.308i 0.0759883 0.840165i
\(656\) 0 0
\(657\) −33.1519 + 16.8917i −0.0504595 + 0.0257104i
\(658\) 0 0
\(659\) 460.688i 0.699071i 0.936923 + 0.349535i \(0.113661\pi\)
−0.936923 + 0.349535i \(0.886339\pi\)
\(660\) 0 0
\(661\) 293.536 0.444079 0.222040 0.975038i \(-0.428729\pi\)
0.222040 + 0.975038i \(0.428729\pi\)
\(662\) 0 0
\(663\) 245.326 + 481.479i 0.370024 + 0.726213i
\(664\) 0 0
\(665\) −1124.12 1347.68i −1.69040 2.02658i
\(666\) 0 0
\(667\) −67.0831 + 131.658i −0.100574 + 0.197388i
\(668\) 0 0
\(669\) −755.708 + 1040.14i −1.12961 + 1.55477i
\(670\) 0 0
\(671\) −1185.60 25.5805i −1.76692 0.0381230i
\(672\) 0 0
\(673\) −338.707 + 53.6460i −0.503280 + 0.0797117i −0.402912 0.915239i \(-0.632002\pi\)
−0.100368 + 0.994950i \(0.532002\pi\)
\(674\) 0 0
\(675\) 319.842 + 112.233i 0.473839 + 0.166271i
\(676\) 0 0
\(677\) −177.698 28.1446i −0.262478 0.0415725i 0.0238082 0.999717i \(-0.492421\pi\)
−0.286287 + 0.958144i \(0.592421\pi\)
\(678\) 0 0
\(679\) 816.353 + 265.249i 1.20229 + 0.390647i
\(680\) 0 0
\(681\) −804.790 −1.18178
\(682\) 0 0
\(683\) −599.854 + 599.854i −0.878263 + 0.878263i −0.993355 0.115092i \(-0.963284\pi\)
0.115092 + 0.993355i \(0.463284\pi\)
\(684\) 0 0
\(685\) −210.948 + 835.617i −0.307953 + 1.21988i
\(686\) 0 0
\(687\) 1184.84 + 187.660i 1.72465 + 0.273158i
\(688\) 0 0
\(689\) −505.345 + 164.196i −0.733447 + 0.238311i
\(690\) 0 0
\(691\) −279.266 202.899i −0.404148 0.293630i 0.367081 0.930189i \(-0.380357\pi\)
−0.771228 + 0.636559i \(0.780357\pi\)
\(692\) 0 0
\(693\) 119.081 659.445i 0.171834 0.951580i
\(694\) 0 0
\(695\) −130.053 570.954i −0.187126 0.821517i
\(696\) 0 0
\(697\) 188.526 370.002i 0.270482 0.530850i
\(698\) 0 0
\(699\) −745.949 1026.71i −1.06717 1.46883i
\(700\) 0 0
\(701\) 304.714 937.812i 0.434684 1.33782i −0.458726 0.888578i \(-0.651694\pi\)
0.893410 0.449242i \(-0.148306\pi\)
\(702\) 0 0
\(703\) −525.440 + 525.440i −0.747425 + 0.747425i
\(704\) 0 0
\(705\) 879.962 1006.30i 1.24817 1.42738i
\(706\) 0 0
\(707\) −55.3499 + 28.2022i −0.0782885 + 0.0398900i
\(708\) 0 0
\(709\) 22.9278 + 31.5574i 0.0323382 + 0.0445097i 0.824880 0.565308i \(-0.191243\pi\)
−0.792542 + 0.609818i \(0.791243\pi\)
\(710\) 0 0
\(711\) 1.12865 + 3.47364i 0.00158742 + 0.00488557i
\(712\) 0 0
\(713\) −19.7663 + 3.13067i −0.0277227 + 0.00439085i
\(714\) 0 0
\(715\) −377.991 + 573.165i −0.528658 + 0.801629i
\(716\) 0 0
\(717\) 153.954 + 972.029i 0.214720 + 1.35569i
\(718\) 0 0
\(719\) −105.220 + 34.1881i −0.146342 + 0.0475495i −0.381272 0.924463i \(-0.624514\pi\)
0.234930 + 0.972012i \(0.424514\pi\)
\(720\) 0 0
\(721\) −1303.01 + 946.692i −1.80723 + 1.31303i
\(722\) 0 0
\(723\) −93.5302 183.563i −0.129364 0.253891i
\(724\) 0 0
\(725\) 468.977 63.1077i 0.646864 0.0870451i
\(726\) 0 0
\(727\) −313.209 313.209i −0.430824 0.430824i 0.458085 0.888908i \(-0.348536\pi\)
−0.888908 + 0.458085i \(0.848536\pi\)
\(728\) 0 0
\(729\) −77.6213 25.2207i −0.106476 0.0345963i
\(730\) 0 0
\(731\) −307.727 + 223.576i −0.420966 + 0.305850i
\(732\) 0 0
\(733\) 647.057 + 329.692i 0.882751 + 0.449784i 0.835750 0.549111i \(-0.185033\pi\)
0.0470016 + 0.998895i \(0.485033\pi\)
\(734\) 0 0
\(735\) −1235.23 776.902i −1.68058 1.05701i
\(736\) 0 0
\(737\) −109.214 801.025i −0.148187 1.08687i
\(738\) 0 0
\(739\) 107.500 147.961i 0.145467 0.200218i −0.730066 0.683377i \(-0.760511\pi\)
0.875533 + 0.483159i \(0.160511\pi\)
\(740\) 0 0
\(741\) −458.531 1411.21i −0.618800 1.90447i
\(742\) 0 0
\(743\) −124.101 + 783.543i −0.167027 + 1.05457i 0.751652 + 0.659560i \(0.229258\pi\)
−0.918678 + 0.395006i \(0.870742\pi\)
\(744\) 0 0
\(745\) −40.1230 + 23.9485i −0.0538564 + 0.0321456i
\(746\) 0 0
\(747\) 206.511 + 206.511i 0.276454 + 0.276454i
\(748\) 0 0
\(749\) 625.175i 0.834679i
\(750\) 0 0
\(751\) 446.836 1375.22i 0.594988 1.83119i 0.0402046 0.999191i \(-0.487199\pi\)
0.554784 0.831995i \(-0.312801\pi\)
\(752\) 0 0
\(753\) 28.4466 179.605i 0.0377777 0.238519i
\(754\) 0 0
\(755\) 651.597 + 278.844i 0.863042 + 0.369330i
\(756\) 0 0
\(757\) −220.631 1393.01i −0.291454 1.84017i −0.504855 0.863204i \(-0.668454\pi\)
0.213401 0.976965i \(-0.431546\pi\)
\(758\) 0 0
\(759\) 186.004 + 267.984i 0.245064 + 0.353075i
\(760\) 0 0
\(761\) −387.904 281.829i −0.509729 0.370340i 0.302992 0.952993i \(-0.402015\pi\)
−0.812721 + 0.582653i \(0.802015\pi\)
\(762\) 0 0
\(763\) −1306.09 665.487i −1.71178 0.872197i
\(764\) 0 0
\(765\) −198.200 237.618i −0.259085 0.310611i
\(766\) 0 0
\(767\) −860.351 + 438.371i −1.12171 + 0.571539i
\(768\) 0 0
\(769\) 810.946i 1.05455i −0.849696 0.527273i \(-0.823215\pi\)
0.849696 0.527273i \(-0.176785\pi\)
\(770\) 0 0
\(771\) 225.919 0.293020
\(772\) 0 0
\(773\) 92.6498 + 181.835i 0.119857 + 0.235233i 0.943138 0.332401i \(-0.107859\pi\)
−0.823281 + 0.567634i \(0.807859\pi\)
\(774\) 0 0
\(775\) 44.2492 + 46.3625i 0.0570957 + 0.0598226i
\(776\) 0 0
\(777\) −459.415 + 901.653i −0.591268 + 1.16043i
\(778\) 0 0
\(779\) −670.243 + 922.510i −0.860389 + 1.18422i
\(780\) 0 0
\(781\) 1479.70 + 31.9260i 1.89462 + 0.0408783i
\(782\) 0 0
\(783\) 253.477 40.1468i 0.323725 0.0512730i
\(784\) 0 0
\(785\) −401.708 1002.72i −0.511730 1.27735i
\(786\) 0 0
\(787\) −62.5107 9.90073i −0.0794291 0.0125803i 0.116593 0.993180i \(-0.462803\pi\)
−0.196023 + 0.980599i \(0.562803\pi\)
\(788\) 0 0
\(789\) 717.249 + 233.048i 0.909060 + 0.295372i
\(790\) 0 0
\(791\) −936.176 −1.18354
\(792\) 0 0
\(793\) −951.618 + 951.618i −1.20002 + 1.20002i
\(794\) 0 0
\(795\) 694.218 414.362i 0.873231 0.521211i
\(796\) 0 0
\(797\) 770.168 + 121.983i 0.966334 + 0.153052i 0.619606 0.784913i \(-0.287293\pi\)
0.346729 + 0.937966i \(0.387293\pi\)
\(798\) 0 0
\(799\) 762.731 247.826i 0.954607 0.310171i
\(800\) 0 0
\(801\) −98.6462 71.6707i −0.123154 0.0894765i
\(802\) 0 0
\(803\) −32.7572 67.8704i −0.0407935 0.0845211i
\(804\) 0 0
\(805\) 426.903 97.2406i 0.530315 0.120796i
\(806\) 0 0
\(807\) −75.1077 + 147.407i −0.0930703 + 0.182661i
\(808\) 0 0
\(809\) 594.760 + 818.617i 0.735179 + 1.01189i 0.998882 + 0.0472832i \(0.0150563\pi\)
−0.263702 + 0.964604i \(0.584944\pi\)
\(810\) 0 0
\(811\) −282.131 + 868.311i −0.347881 + 1.07067i 0.612143 + 0.790747i \(0.290308\pi\)
−0.960024 + 0.279919i \(0.909692\pi\)
\(812\) 0 0
\(813\) 789.788 789.788i 0.971449 0.971449i
\(814\) 0 0
\(815\) 92.2752 + 1377.64i 0.113221 + 1.69036i
\(816\) 0 0
\(817\) 930.632 474.181i 1.13908 0.580393i
\(818\) 0 0
\(819\) −446.994 615.235i −0.545780 0.751202i
\(820\) 0 0
\(821\) 246.366 + 758.237i 0.300080 + 0.923553i 0.981467 + 0.191629i \(0.0613772\pi\)
−0.681387 + 0.731923i \(0.738623\pi\)
\(822\) 0 0
\(823\) 167.901 26.5929i 0.204011 0.0323121i −0.0535927 0.998563i \(-0.517067\pi\)
0.257603 + 0.966251i \(0.417067\pi\)
\(824\) 0 0
\(825\) 367.081 978.051i 0.444947 1.18552i
\(826\) 0 0
\(827\) 139.547 + 881.067i 0.168739 + 1.06538i 0.916097 + 0.400956i \(0.131322\pi\)
−0.747358 + 0.664421i \(0.768678\pi\)
\(828\) 0 0
\(829\) −344.025 + 111.781i −0.414988 + 0.134838i −0.509067 0.860727i \(-0.670009\pi\)
0.0940787 + 0.995565i \(0.470009\pi\)
\(830\) 0 0
\(831\) −941.354 + 683.934i −1.13280 + 0.823025i
\(832\) 0 0
\(833\) −397.445 780.029i −0.477125 0.936410i
\(834\) 0 0
\(835\) 1176.73 78.8177i 1.40925 0.0943924i
\(836\) 0 0
\(837\) 24.5778 + 24.5778i 0.0293641 + 0.0293641i
\(838\) 0 0
\(839\) 710.763 + 230.941i 0.847155 + 0.275257i 0.700254 0.713894i \(-0.253070\pi\)
0.146901 + 0.989151i \(0.453070\pi\)
\(840\) 0 0
\(841\) −390.533 + 283.739i −0.464367 + 0.337383i
\(842\) 0 0
\(843\) −1006.57 512.873i −1.19403 0.608391i
\(844\) 0 0
\(845\) −14.6216 64.1912i −0.0173036 0.0759659i
\(846\) 0 0
\(847\) 1330.17 + 269.950i 1.57045 + 0.318713i
\(848\) 0 0
\(849\) −303.037 + 417.095i −0.356934 + 0.491278i
\(850\) 0 0
\(851\) −57.2885 176.316i −0.0673190 0.207187i
\(852\) 0 0
\(853\) −101.123 + 638.463i −0.118549 + 0.748491i 0.854765 + 0.519015i \(0.173701\pi\)
−0.973314 + 0.229476i \(0.926299\pi\)
\(854\) 0 0
\(855\) 435.473 + 729.587i 0.509326 + 0.853319i
\(856\) 0 0
\(857\) −577.286 577.286i −0.673613 0.673613i 0.284934 0.958547i \(-0.408028\pi\)
−0.958547 + 0.284934i \(0.908028\pi\)
\(858\) 0 0
\(859\) 811.925i 0.945198i −0.881277 0.472599i \(-0.843316\pi\)
0.881277 0.472599i \(-0.156684\pi\)
\(860\) 0 0
\(861\) −479.862 + 1476.86i −0.557331 + 1.71529i
\(862\) 0 0
\(863\) −49.3286 + 311.448i −0.0571594 + 0.360890i 0.942486 + 0.334247i \(0.108482\pi\)
−0.999645 + 0.0266435i \(0.991518\pi\)
\(864\) 0 0
\(865\) 85.9795 34.4450i 0.0993982 0.0398208i
\(866\) 0 0
\(867\) 94.5769 + 597.135i 0.109085 + 0.688737i
\(868\) 0 0
\(869\) −7.08341 + 2.13375i −0.00815122 + 0.00245541i
\(870\) 0 0
\(871\) −742.233 539.264i −0.852162 0.619132i
\(872\) 0 0
\(873\) −370.284 188.669i −0.424151 0.216116i
\(874\) 0 0
\(875\) −1033.71 947.355i −1.18138 1.08269i
\(876\) 0 0
\(877\) −470.161 + 239.559i −0.536102 + 0.273157i −0.701010 0.713152i \(-0.747267\pi\)
0.164908 + 0.986309i \(0.447267\pi\)
\(878\) 0 0
\(879\) 876.871i 0.997577i
\(880\) 0 0
\(881\) 770.366 0.874423 0.437211 0.899359i \(-0.355966\pi\)
0.437211 + 0.899359i \(0.355966\pi\)
\(882\) 0 0
\(883\) 48.0796 + 94.3615i 0.0544503 + 0.106865i 0.916628 0.399741i \(-0.130900\pi\)
−0.862178 + 0.506606i \(0.830900\pi\)
\(884\) 0 0
\(885\) 1128.24 941.079i 1.27484 1.06337i
\(886\) 0 0
\(887\) −293.945 + 576.899i −0.331392 + 0.650394i −0.995238 0.0974756i \(-0.968923\pi\)
0.663846 + 0.747870i \(0.268923\pi\)
\(888\) 0 0
\(889\) 1322.39 1820.11i 1.48750 2.04737i
\(890\) 0 0
\(891\) 363.796 1042.57i 0.408301 1.17011i
\(892\) 0 0
\(893\) −2175.08 + 344.498i −2.43570 + 0.385776i
\(894\) 0 0
\(895\) −470.028 + 1098.35i −0.525171 + 1.22721i
\(896\) 0 0
\(897\) 365.640 + 57.9117i 0.407625 + 0.0645615i
\(898\) 0 0
\(899\) 46.1489 + 14.9947i 0.0513336 + 0.0166793i
\(900\) 0 0
\(901\) 485.035 0.538329
\(902\) 0 0
\(903\) 1005.78 1005.78i 1.11382 1.11382i
\(904\) 0 0
\(905\) −74.5680 124.930i −0.0823956 0.138045i
\(906\) 0 0
\(907\) 581.628 + 92.1208i 0.641265 + 0.101566i 0.468595 0.883413i \(-0.344760\pi\)
0.172670 + 0.984980i \(0.444760\pi\)
\(908\) 0 0
\(909\) 28.6039 9.29397i 0.0314674 0.0102244i
\(910\) 0 0
\(911\) 1139.71 + 828.050i 1.25106 + 0.908946i 0.998283 0.0585795i \(-0.0186571\pi\)
0.252774 + 0.967525i \(0.418657\pi\)
\(912\) 0 0
\(913\) −427.206 + 409.161i −0.467915 + 0.448150i
\(914\) 0 0
\(915\) 1090.20 1733.35i 1.19147 1.89437i
\(916\) 0 0
\(917\) −562.778 + 1104.51i −0.613717 + 1.20449i
\(918\) 0 0
\(919\) −846.476 1165.07i −0.921084 1.26776i −0.963237 0.268652i \(-0.913422\pi\)
0.0421531 0.999111i \(-0.486578\pi\)
\(920\) 0 0
\(921\) −298.270 + 917.981i −0.323855 + 0.996722i
\(922\) 0 0
\(923\) 1187.67 1187.67i 1.28675 1.28675i
\(924\) 0 0
\(925\) −360.072 + 472.046i −0.389267 + 0.510320i
\(926\) 0 0
\(927\) 694.790 354.013i 0.749504 0.381891i
\(928\) 0 0
\(929\) 840.445 + 1156.77i 0.904677 + 1.24518i 0.968952 + 0.247248i \(0.0795264\pi\)
−0.0642755 + 0.997932i \(0.520474\pi\)
\(930\) 0 0
\(931\) 742.852 + 2286.26i 0.797908 + 2.45571i
\(932\) 0 0
\(933\) 767.404 121.545i 0.822513 0.130273i
\(934\) 0 0
\(935\) 489.833 390.972i 0.523886 0.418152i
\(936\) 0 0
\(937\) 133.418 + 842.365i 0.142388 + 0.899002i 0.950669 + 0.310206i \(0.100398\pi\)
−0.808281 + 0.588796i \(0.799602\pi\)
\(938\) 0 0
\(939\) −1406.32 + 456.941i −1.49768 + 0.486625i
\(940\) 0 0
\(941\) 199.499 144.944i 0.212007 0.154032i −0.476714 0.879058i \(-0.658172\pi\)
0.688721 + 0.725026i \(0.258172\pi\)
\(942\) 0 0
\(943\) −129.154 253.479i −0.136961 0.268801i
\(944\) 0 0
\(945\) −572.447 500.575i −0.605764 0.529709i
\(946\) 0 0
\(947\) −135.167 135.167i −0.142731 0.142731i 0.632131 0.774862i \(-0.282181\pi\)
−0.774862 + 0.632131i \(0.782181\pi\)
\(948\) 0 0
\(949\) −81.3384 26.4284i −0.0857096 0.0278487i
\(950\) 0 0
\(951\) −921.506 + 669.513i −0.968986 + 0.704010i
\(952\) 0 0
\(953\) 1360.19 + 693.049i 1.42727 + 0.727229i 0.985464 0.169883i \(-0.0543390\pi\)
0.441803 + 0.897112i \(0.354339\pi\)
\(954\) 0 0
\(955\) −1667.70 + 379.871i −1.74629 + 0.397771i
\(956\) 0 0
\(957\) −106.851 783.695i −0.111652 0.818908i
\(958\) 0 0
\(959\) 1136.47 1564.21i 1.18505 1.63109i
\(960\) 0 0
\(961\) −294.934 907.715i −0.306904 0.944553i
\(962\) 0 0
\(963\) −47.3496 + 298.954i −0.0491689 + 0.310440i
\(964\) 0 0
\(965\) −125.267 31.6230i −0.129810 0.0327700i
\(966\) 0 0
\(967\) 1095.92 + 1095.92i 1.13332 + 1.13332i 0.989621 + 0.143703i \(0.0459011\pi\)
0.143703 + 0.989621i \(0.454099\pi\)
\(968\) 0 0
\(969\) 1354.50i 1.39783i
\(970\) 0 0
\(971\) −200.879 + 618.243i −0.206879 + 0.636707i 0.792752 + 0.609544i \(0.208647\pi\)
−0.999631 + 0.0271634i \(0.991353\pi\)
\(972\) 0 0
\(973\) −205.510 + 1297.54i −0.211213 + 1.33355i
\(974\) 0 0
\(975\) −513.447 1068.58i −0.526613 1.09598i
\(976\) 0 0
\(977\) 129.461 + 817.386i 0.132509 + 0.836629i 0.960984 + 0.276603i \(0.0892087\pi\)
−0.828475 + 0.560026i \(0.810791\pi\)
\(978\) 0 0
\(979\) 149.443 196.626i 0.152648 0.200844i
\(980\) 0 0
\(981\) 574.160 + 417.152i 0.585280 + 0.425231i
\(982\) 0 0
\(983\) 160.228 + 81.6401i 0.162999 + 0.0830520i 0.533587 0.845745i \(-0.320844\pi\)
−0.370588 + 0.928797i \(0.620844\pi\)
\(984\) 0 0
\(985\) −1015.09 + 846.699i −1.03055 + 0.859593i
\(986\) 0 0
\(987\) −2672.12 + 1361.51i −2.70732 + 1.37945i
\(988\) 0 0
\(989\) 260.582i 0.263480i
\(990\) 0 0
\(991\) 140.460 0.141735 0.0708676 0.997486i \(-0.477423\pi\)
0.0708676 + 0.997486i \(0.477423\pi\)
\(992\) 0 0
\(993\) 329.906 + 647.476i 0.332231 + 0.652041i
\(994\) 0 0
\(995\) 978.968 + 88.5423i 0.983888 + 0.0889872i
\(996\) 0 0
\(997\) 9.30658 18.2652i 0.00933459 0.0183202i −0.886292 0.463127i \(-0.846728\pi\)
0.895627 + 0.444806i \(0.146728\pi\)
\(998\) 0 0
\(999\) −189.259 + 260.492i −0.189448 + 0.260753i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 220.3.x.a.37.4 96
5.3 odd 4 inner 220.3.x.a.213.9 yes 96
11.3 even 5 inner 220.3.x.a.157.9 yes 96
55.3 odd 20 inner 220.3.x.a.113.4 yes 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
220.3.x.a.37.4 96 1.1 even 1 trivial
220.3.x.a.113.4 yes 96 55.3 odd 20 inner
220.3.x.a.157.9 yes 96 11.3 even 5 inner
220.3.x.a.213.9 yes 96 5.3 odd 4 inner