Properties

Label 220.3.x.a.37.6
Level $220$
Weight $3$
Character 220.37
Analytic conductor $5.995$
Analytic rank $0$
Dimension $96$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [220,3,Mod(37,220)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(220, base_ring=CyclotomicField(20))
 
chi = DirichletCharacter(H, H._module([0, 5, 4]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("220.37");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 220 = 2^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 220.x (of order \(20\), degree \(8\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.99456581593\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(12\) over \(\Q(\zeta_{20})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 37.6
Character \(\chi\) \(=\) 220.37
Dual form 220.3.x.a.113.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.182447 - 0.358073i) q^{3} +(-4.08347 - 2.88535i) q^{5} +(-1.29828 + 2.54802i) q^{7} +(5.19514 - 7.15049i) q^{9} +(-5.47755 + 9.53920i) q^{11} +(-17.6258 + 2.79165i) q^{13} +(-0.288147 + 1.98860i) q^{15} +(-24.1910 - 3.83149i) q^{17} +(-20.3278 - 6.60491i) q^{19} +1.14924 q^{21} +(15.5799 - 15.5799i) q^{23} +(8.34950 + 23.5645i) q^{25} +(-7.08057 - 1.12145i) q^{27} +(-6.31998 + 2.05349i) q^{29} +(-9.79713 - 7.11803i) q^{31} +(4.41509 + 0.220962i) q^{33} +(12.6534 - 6.65877i) q^{35} +(-15.1322 + 29.6987i) q^{37} +(4.21539 + 5.80199i) q^{39} +(22.8406 - 70.2961i) q^{41} +(20.1403 - 20.1403i) q^{43} +(-41.8459 + 14.2091i) q^{45} +(-32.1844 + 16.3988i) q^{47} +(23.9946 + 33.0257i) q^{49} +(3.04164 + 9.36119i) q^{51} +(-49.2390 + 7.79870i) q^{53} +(49.8914 - 23.1484i) q^{55} +(1.34371 + 8.48388i) q^{57} +(104.881 - 34.0778i) q^{59} +(-35.4315 + 25.7425i) q^{61} +(11.4748 + 22.5207i) q^{63} +(80.0294 + 39.4570i) q^{65} +(84.3898 + 84.3898i) q^{67} +(-8.42125 - 2.73623i) q^{69} +(78.8588 - 57.2943i) q^{71} +(-87.2685 - 44.4655i) q^{73} +(6.91446 - 7.28900i) q^{75} +(-17.1947 - 26.3415i) q^{77} +(7.16911 - 9.86744i) q^{79} +(-23.6909 - 72.9132i) q^{81} +(12.1527 - 76.7291i) q^{83} +(87.7283 + 85.4454i) q^{85} +(1.88836 + 1.88836i) q^{87} +31.4868i q^{89} +(15.7701 - 48.5353i) q^{91} +(-0.761314 + 4.80675i) q^{93} +(63.9506 + 85.6238i) q^{95} +(-13.0738 - 82.5448i) q^{97} +(39.7534 + 88.7247i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q - 2 q^{3} + 4 q^{5} - 2 q^{7} - 20 q^{11} - 8 q^{13} + 88 q^{15} + 42 q^{17} + 56 q^{21} - 104 q^{23} - 126 q^{25} - 14 q^{27} - 32 q^{31} + 52 q^{33} + 56 q^{35} - 134 q^{37} + 24 q^{41} + 332 q^{43}+ \cdots - 310 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/220\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(111\) \(177\)
\(\chi(n)\) \(e\left(\frac{1}{5}\right)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.182447 0.358073i −0.0608157 0.119358i 0.858598 0.512650i \(-0.171336\pi\)
−0.919414 + 0.393292i \(0.871336\pi\)
\(4\) 0 0
\(5\) −4.08347 2.88535i −0.816695 0.577070i
\(6\) 0 0
\(7\) −1.29828 + 2.54802i −0.185469 + 0.364003i −0.964955 0.262417i \(-0.915480\pi\)
0.779486 + 0.626420i \(0.215480\pi\)
\(8\) 0 0
\(9\) 5.19514 7.15049i 0.577238 0.794499i
\(10\) 0 0
\(11\) −5.47755 + 9.53920i −0.497959 + 0.867200i
\(12\) 0 0
\(13\) −17.6258 + 2.79165i −1.35583 + 0.214743i −0.791684 0.610931i \(-0.790795\pi\)
−0.564148 + 0.825674i \(0.690795\pi\)
\(14\) 0 0
\(15\) −0.288147 + 1.98860i −0.0192098 + 0.132574i
\(16\) 0 0
\(17\) −24.1910 3.83149i −1.42300 0.225381i −0.603000 0.797741i \(-0.706028\pi\)
−0.820003 + 0.572360i \(0.806028\pi\)
\(18\) 0 0
\(19\) −20.3278 6.60491i −1.06988 0.347627i −0.279442 0.960163i \(-0.590150\pi\)
−0.790443 + 0.612536i \(0.790150\pi\)
\(20\) 0 0
\(21\) 1.14924 0.0547259
\(22\) 0 0
\(23\) 15.5799 15.5799i 0.677388 0.677388i −0.282021 0.959408i \(-0.591005\pi\)
0.959408 + 0.282021i \(0.0910046\pi\)
\(24\) 0 0
\(25\) 8.34950 + 23.5645i 0.333980 + 0.942580i
\(26\) 0 0
\(27\) −7.08057 1.12145i −0.262243 0.0415353i
\(28\) 0 0
\(29\) −6.31998 + 2.05349i −0.217930 + 0.0708099i −0.415947 0.909389i \(-0.636550\pi\)
0.198017 + 0.980199i \(0.436550\pi\)
\(30\) 0 0
\(31\) −9.79713 7.11803i −0.316037 0.229614i 0.418446 0.908242i \(-0.362575\pi\)
−0.734482 + 0.678628i \(0.762575\pi\)
\(32\) 0 0
\(33\) 4.41509 + 0.220962i 0.133791 + 0.00669582i
\(34\) 0 0
\(35\) 12.6534 6.65877i 0.361526 0.190251i
\(36\) 0 0
\(37\) −15.1322 + 29.6987i −0.408979 + 0.802667i −0.999992 0.00399540i \(-0.998728\pi\)
0.591013 + 0.806662i \(0.298728\pi\)
\(38\) 0 0
\(39\) 4.21539 + 5.80199i 0.108087 + 0.148769i
\(40\) 0 0
\(41\) 22.8406 70.2961i 0.557088 1.71454i −0.133278 0.991079i \(-0.542550\pi\)
0.690365 0.723461i \(-0.257450\pi\)
\(42\) 0 0
\(43\) 20.1403 20.1403i 0.468380 0.468380i −0.433009 0.901389i \(-0.642548\pi\)
0.901389 + 0.433009i \(0.142548\pi\)
\(44\) 0 0
\(45\) −41.8459 + 14.2091i −0.929909 + 0.315757i
\(46\) 0 0
\(47\) −32.1844 + 16.3988i −0.684775 + 0.348910i −0.761521 0.648140i \(-0.775547\pi\)
0.0767458 + 0.997051i \(0.475547\pi\)
\(48\) 0 0
\(49\) 23.9946 + 33.0257i 0.489686 + 0.673995i
\(50\) 0 0
\(51\) 3.04164 + 9.36119i 0.0596399 + 0.183553i
\(52\) 0 0
\(53\) −49.2390 + 7.79870i −0.929038 + 0.147145i −0.602573 0.798064i \(-0.705858\pi\)
−0.326465 + 0.945209i \(0.605858\pi\)
\(54\) 0 0
\(55\) 49.8914 23.1484i 0.907116 0.420880i
\(56\) 0 0
\(57\) 1.34371 + 8.48388i 0.0235739 + 0.148840i
\(58\) 0 0
\(59\) 104.881 34.0778i 1.77764 0.577590i 0.778871 0.627184i \(-0.215793\pi\)
0.998769 + 0.0495937i \(0.0157927\pi\)
\(60\) 0 0
\(61\) −35.4315 + 25.7425i −0.580845 + 0.422008i −0.839029 0.544087i \(-0.816876\pi\)
0.258184 + 0.966096i \(0.416876\pi\)
\(62\) 0 0
\(63\) 11.4748 + 22.5207i 0.182140 + 0.357471i
\(64\) 0 0
\(65\) 80.0294 + 39.4570i 1.23122 + 0.607031i
\(66\) 0 0
\(67\) 84.3898 + 84.3898i 1.25955 + 1.25955i 0.951308 + 0.308241i \(0.0997403\pi\)
0.308241 + 0.951308i \(0.400260\pi\)
\(68\) 0 0
\(69\) −8.42125 2.73623i −0.122047 0.0396555i
\(70\) 0 0
\(71\) 78.8588 57.2943i 1.11069 0.806962i 0.127916 0.991785i \(-0.459171\pi\)
0.982772 + 0.184823i \(0.0591713\pi\)
\(72\) 0 0
\(73\) −87.2685 44.4655i −1.19546 0.609117i −0.261052 0.965325i \(-0.584069\pi\)
−0.934407 + 0.356208i \(0.884069\pi\)
\(74\) 0 0
\(75\) 6.91446 7.28900i 0.0921928 0.0971867i
\(76\) 0 0
\(77\) −17.1947 26.3415i −0.223307 0.342097i
\(78\) 0 0
\(79\) 7.16911 9.86744i 0.0907483 0.124904i −0.761229 0.648483i \(-0.775404\pi\)
0.851977 + 0.523579i \(0.175404\pi\)
\(80\) 0 0
\(81\) −23.6909 72.9132i −0.292481 0.900163i
\(82\) 0 0
\(83\) 12.1527 76.7291i 0.146418 0.924447i −0.799647 0.600470i \(-0.794980\pi\)
0.946065 0.323977i \(-0.105020\pi\)
\(84\) 0 0
\(85\) 87.7283 + 85.4454i 1.03210 + 1.00524i
\(86\) 0 0
\(87\) 1.88836 + 1.88836i 0.0217053 + 0.0217053i
\(88\) 0 0
\(89\) 31.4868i 0.353784i 0.984230 + 0.176892i \(0.0566044\pi\)
−0.984230 + 0.176892i \(0.943396\pi\)
\(90\) 0 0
\(91\) 15.7701 48.5353i 0.173297 0.533354i
\(92\) 0 0
\(93\) −0.761314 + 4.80675i −0.00818617 + 0.0516855i
\(94\) 0 0
\(95\) 63.9506 + 85.6238i 0.673164 + 0.901303i
\(96\) 0 0
\(97\) −13.0738 82.5448i −0.134782 0.850977i −0.958731 0.284314i \(-0.908234\pi\)
0.823950 0.566663i \(-0.191766\pi\)
\(98\) 0 0
\(99\) 39.7534 + 88.7247i 0.401549 + 0.896209i
\(100\) 0 0
\(101\) 26.5653 + 19.3008i 0.263023 + 0.191097i 0.711479 0.702708i \(-0.248026\pi\)
−0.448456 + 0.893805i \(0.648026\pi\)
\(102\) 0 0
\(103\) −45.2946 23.0787i −0.439753 0.224065i 0.220074 0.975483i \(-0.429370\pi\)
−0.659827 + 0.751418i \(0.729370\pi\)
\(104\) 0 0
\(105\) −4.69290 3.31597i −0.0446943 0.0315807i
\(106\) 0 0
\(107\) −105.542 + 53.7761i −0.986370 + 0.502581i −0.871286 0.490775i \(-0.836714\pi\)
−0.115084 + 0.993356i \(0.536714\pi\)
\(108\) 0 0
\(109\) 72.5798i 0.665870i 0.942950 + 0.332935i \(0.108039\pi\)
−0.942950 + 0.332935i \(0.891961\pi\)
\(110\) 0 0
\(111\) 13.3951 0.120677
\(112\) 0 0
\(113\) 12.2427 + 24.0277i 0.108343 + 0.212634i 0.938812 0.344430i \(-0.111928\pi\)
−0.830469 + 0.557064i \(0.811928\pi\)
\(114\) 0 0
\(115\) −108.574 + 18.6666i −0.944119 + 0.162319i
\(116\) 0 0
\(117\) −71.6068 + 140.536i −0.612024 + 1.20117i
\(118\) 0 0
\(119\) 41.1695 56.6649i 0.345962 0.476176i
\(120\) 0 0
\(121\) −60.9928 104.503i −0.504073 0.863661i
\(122\) 0 0
\(123\) −29.3383 + 4.64673i −0.238523 + 0.0377783i
\(124\) 0 0
\(125\) 33.8969 120.316i 0.271175 0.962530i
\(126\) 0 0
\(127\) −243.078 38.4998i −1.91400 0.303148i −0.918310 0.395861i \(-0.870446\pi\)
−0.995693 + 0.0927127i \(0.970446\pi\)
\(128\) 0 0
\(129\) −10.8862 3.53716i −0.0843895 0.0274198i
\(130\) 0 0
\(131\) 28.7357 0.219357 0.109678 0.993967i \(-0.465018\pi\)
0.109678 + 0.993967i \(0.465018\pi\)
\(132\) 0 0
\(133\) 43.2206 43.2206i 0.324967 0.324967i
\(134\) 0 0
\(135\) 25.6775 + 25.0094i 0.190204 + 0.185254i
\(136\) 0 0
\(137\) −13.1319 2.07989i −0.0958534 0.0151817i 0.108324 0.994116i \(-0.465452\pi\)
−0.204177 + 0.978934i \(0.565452\pi\)
\(138\) 0 0
\(139\) 13.8981 4.51576i 0.0999863 0.0324875i −0.258597 0.965985i \(-0.583260\pi\)
0.358583 + 0.933498i \(0.383260\pi\)
\(140\) 0 0
\(141\) 11.7439 + 8.53245i 0.0832901 + 0.0605138i
\(142\) 0 0
\(143\) 69.9162 183.428i 0.488924 1.28271i
\(144\) 0 0
\(145\) 31.7325 + 9.85001i 0.218845 + 0.0679311i
\(146\) 0 0
\(147\) 7.44787 14.6173i 0.0506658 0.0994372i
\(148\) 0 0
\(149\) −159.812 219.962i −1.07256 1.47626i −0.867454 0.497518i \(-0.834245\pi\)
−0.205110 0.978739i \(-0.565755\pi\)
\(150\) 0 0
\(151\) −1.12964 + 3.47666i −0.00748103 + 0.0230242i −0.954727 0.297482i \(-0.903853\pi\)
0.947246 + 0.320506i \(0.103853\pi\)
\(152\) 0 0
\(153\) −153.073 + 153.073i −1.00048 + 1.00048i
\(154\) 0 0
\(155\) 19.4683 + 57.3345i 0.125602 + 0.369900i
\(156\) 0 0
\(157\) −172.630 + 87.9592i −1.09955 + 0.560250i −0.907040 0.421045i \(-0.861664\pi\)
−0.192512 + 0.981295i \(0.561664\pi\)
\(158\) 0 0
\(159\) 11.7760 + 16.2083i 0.0740630 + 0.101939i
\(160\) 0 0
\(161\) 19.4708 + 59.9250i 0.120937 + 0.372205i
\(162\) 0 0
\(163\) 97.2579 15.4041i 0.596674 0.0945039i 0.149210 0.988806i \(-0.452327\pi\)
0.447465 + 0.894302i \(0.352327\pi\)
\(164\) 0 0
\(165\) −17.3913 13.6414i −0.105402 0.0826750i
\(166\) 0 0
\(167\) 42.7432 + 269.870i 0.255948 + 1.61599i 0.696017 + 0.718025i \(0.254954\pi\)
−0.440070 + 0.897964i \(0.645046\pi\)
\(168\) 0 0
\(169\) 142.147 46.1865i 0.841109 0.273293i
\(170\) 0 0
\(171\) −152.834 + 111.041i −0.893767 + 0.649360i
\(172\) 0 0
\(173\) −47.5781 93.3773i −0.275018 0.539753i 0.711643 0.702541i \(-0.247951\pi\)
−0.986661 + 0.162788i \(0.947951\pi\)
\(174\) 0 0
\(175\) −70.8828 9.31865i −0.405044 0.0532494i
\(176\) 0 0
\(177\) −31.3375 31.3375i −0.177048 0.177048i
\(178\) 0 0
\(179\) −211.415 68.6930i −1.18109 0.383760i −0.348319 0.937376i \(-0.613247\pi\)
−0.832772 + 0.553616i \(0.813247\pi\)
\(180\) 0 0
\(181\) −161.686 + 117.472i −0.893295 + 0.649017i −0.936735 0.350039i \(-0.886168\pi\)
0.0434403 + 0.999056i \(0.486168\pi\)
\(182\) 0 0
\(183\) 15.6821 + 7.99041i 0.0856944 + 0.0436635i
\(184\) 0 0
\(185\) 147.483 77.6119i 0.797206 0.419524i
\(186\) 0 0
\(187\) 169.057 209.776i 0.904049 1.12180i
\(188\) 0 0
\(189\) 12.0500 16.5855i 0.0637569 0.0877538i
\(190\) 0 0
\(191\) −62.1612 191.313i −0.325451 1.00164i −0.971236 0.238117i \(-0.923470\pi\)
0.645785 0.763519i \(-0.276530\pi\)
\(192\) 0 0
\(193\) −21.8599 + 138.018i −0.113264 + 0.715120i 0.864063 + 0.503384i \(0.167912\pi\)
−0.977327 + 0.211736i \(0.932088\pi\)
\(194\) 0 0
\(195\) −0.472663 35.8552i −0.00242391 0.183873i
\(196\) 0 0
\(197\) 73.6593 + 73.6593i 0.373905 + 0.373905i 0.868897 0.494992i \(-0.164829\pi\)
−0.494992 + 0.868897i \(0.664829\pi\)
\(198\) 0 0
\(199\) 319.676i 1.60641i 0.595701 + 0.803206i \(0.296874\pi\)
−0.595701 + 0.803206i \(0.703126\pi\)
\(200\) 0 0
\(201\) 14.8210 45.6143i 0.0737363 0.226937i
\(202\) 0 0
\(203\) 2.97279 18.7694i 0.0146443 0.0924603i
\(204\) 0 0
\(205\) −296.098 + 221.149i −1.44438 + 1.07878i
\(206\) 0 0
\(207\) −30.4643 192.344i −0.147170 0.929198i
\(208\) 0 0
\(209\) 174.352 157.732i 0.834221 0.754701i
\(210\) 0 0
\(211\) −113.236 82.2711i −0.536666 0.389911i 0.286179 0.958176i \(-0.407615\pi\)
−0.822845 + 0.568266i \(0.807615\pi\)
\(212\) 0 0
\(213\) −34.9031 17.7840i −0.163864 0.0834930i
\(214\) 0 0
\(215\) −140.354 + 24.1306i −0.652812 + 0.112235i
\(216\) 0 0
\(217\) 30.8563 15.7221i 0.142195 0.0724519i
\(218\) 0 0
\(219\) 39.3611i 0.179731i
\(220\) 0 0
\(221\) 437.083 1.97775
\(222\) 0 0
\(223\) −22.5259 44.2096i −0.101013 0.198249i 0.834969 0.550297i \(-0.185485\pi\)
−0.935982 + 0.352048i \(0.885485\pi\)
\(224\) 0 0
\(225\) 211.875 + 62.7178i 0.941665 + 0.278746i
\(226\) 0 0
\(227\) 3.86877 7.59289i 0.0170430 0.0334489i −0.882328 0.470635i \(-0.844025\pi\)
0.899371 + 0.437186i \(0.144025\pi\)
\(228\) 0 0
\(229\) −69.8016 + 96.0737i −0.304811 + 0.419536i −0.933754 0.357915i \(-0.883488\pi\)
0.628944 + 0.777451i \(0.283488\pi\)
\(230\) 0 0
\(231\) −6.29504 + 10.9629i −0.0272513 + 0.0474583i
\(232\) 0 0
\(233\) 135.899 21.5244i 0.583259 0.0923792i 0.142170 0.989842i \(-0.454592\pi\)
0.441090 + 0.897463i \(0.354592\pi\)
\(234\) 0 0
\(235\) 178.741 + 25.8994i 0.760598 + 0.110210i
\(236\) 0 0
\(237\) −4.84124 0.766778i −0.0204272 0.00323535i
\(238\) 0 0
\(239\) 254.406 + 82.6614i 1.06446 + 0.345864i 0.788327 0.615256i \(-0.210947\pi\)
0.276131 + 0.961120i \(0.410947\pi\)
\(240\) 0 0
\(241\) 289.215 1.20006 0.600030 0.799977i \(-0.295155\pi\)
0.600030 + 0.799977i \(0.295155\pi\)
\(242\) 0 0
\(243\) −67.4080 + 67.4080i −0.277399 + 0.277399i
\(244\) 0 0
\(245\) −2.69046 204.093i −0.0109815 0.833031i
\(246\) 0 0
\(247\) 376.733 + 59.6686i 1.52523 + 0.241573i
\(248\) 0 0
\(249\) −29.6918 + 9.64745i −0.119244 + 0.0387448i
\(250\) 0 0
\(251\) 14.0474 + 10.2060i 0.0559657 + 0.0406615i 0.615416 0.788202i \(-0.288988\pi\)
−0.559451 + 0.828864i \(0.688988\pi\)
\(252\) 0 0
\(253\) 63.2802 + 233.960i 0.250119 + 0.924743i
\(254\) 0 0
\(255\) 14.5899 47.0024i 0.0572153 0.184323i
\(256\) 0 0
\(257\) 190.792 374.450i 0.742380 1.45700i −0.141819 0.989893i \(-0.545295\pi\)
0.884199 0.467110i \(-0.154705\pi\)
\(258\) 0 0
\(259\) −56.0269 77.1144i −0.216320 0.297739i
\(260\) 0 0
\(261\) −18.1497 + 55.8591i −0.0695392 + 0.214020i
\(262\) 0 0
\(263\) −17.9100 + 17.9100i −0.0680988 + 0.0680988i −0.740336 0.672237i \(-0.765334\pi\)
0.672237 + 0.740336i \(0.265334\pi\)
\(264\) 0 0
\(265\) 223.568 + 110.226i 0.843654 + 0.415948i
\(266\) 0 0
\(267\) 11.2746 5.74467i 0.0422268 0.0215156i
\(268\) 0 0
\(269\) −148.729 204.708i −0.552896 0.760997i 0.437505 0.899216i \(-0.355862\pi\)
−0.990402 + 0.138219i \(0.955862\pi\)
\(270\) 0 0
\(271\) 11.8212 + 36.3819i 0.0436206 + 0.134250i 0.970495 0.241121i \(-0.0775151\pi\)
−0.926874 + 0.375372i \(0.877515\pi\)
\(272\) 0 0
\(273\) −20.2563 + 3.20829i −0.0741991 + 0.0117520i
\(274\) 0 0
\(275\) −270.521 49.4283i −0.983714 0.179739i
\(276\) 0 0
\(277\) −4.31415 27.2385i −0.0155745 0.0983338i 0.978677 0.205407i \(-0.0658519\pi\)
−0.994251 + 0.107074i \(0.965852\pi\)
\(278\) 0 0
\(279\) −101.795 + 33.0752i −0.364856 + 0.118549i
\(280\) 0 0
\(281\) −62.3502 + 45.3000i −0.221887 + 0.161210i −0.693176 0.720769i \(-0.743789\pi\)
0.471289 + 0.881979i \(0.343789\pi\)
\(282\) 0 0
\(283\) −84.4855 165.812i −0.298535 0.585908i 0.692202 0.721704i \(-0.256641\pi\)
−0.990737 + 0.135796i \(0.956641\pi\)
\(284\) 0 0
\(285\) 18.9919 38.5208i 0.0666384 0.135161i
\(286\) 0 0
\(287\) 149.462 + 149.462i 0.520775 + 0.520775i
\(288\) 0 0
\(289\) 295.671 + 96.0694i 1.02308 + 0.332420i
\(290\) 0 0
\(291\) −27.1717 + 19.7414i −0.0933737 + 0.0678400i
\(292\) 0 0
\(293\) 159.801 + 81.4229i 0.545397 + 0.277894i 0.704904 0.709303i \(-0.250990\pi\)
−0.159506 + 0.987197i \(0.550990\pi\)
\(294\) 0 0
\(295\) −526.604 163.462i −1.78510 0.554108i
\(296\) 0 0
\(297\) 49.4820 61.4002i 0.166606 0.206735i
\(298\) 0 0
\(299\) −231.115 + 318.103i −0.772960 + 1.06389i
\(300\) 0 0
\(301\) 25.1702 + 77.4658i 0.0836218 + 0.257361i
\(302\) 0 0
\(303\) 2.06433 13.0337i 0.00681298 0.0430154i
\(304\) 0 0
\(305\) 218.960 2.88645i 0.717901 0.00946378i
\(306\) 0 0
\(307\) 365.669 + 365.669i 1.19111 + 1.19111i 0.976757 + 0.214349i \(0.0687628\pi\)
0.214349 + 0.976757i \(0.431237\pi\)
\(308\) 0 0
\(309\) 20.4294i 0.0661145i
\(310\) 0 0
\(311\) −150.750 + 463.961i −0.484727 + 1.49184i 0.347650 + 0.937625i \(0.386980\pi\)
−0.832376 + 0.554211i \(0.813020\pi\)
\(312\) 0 0
\(313\) −5.20489 + 32.8624i −0.0166290 + 0.104992i −0.994607 0.103718i \(-0.966926\pi\)
0.977978 + 0.208709i \(0.0669262\pi\)
\(314\) 0 0
\(315\) 18.1228 125.071i 0.0575326 0.397052i
\(316\) 0 0
\(317\) −66.0958 417.312i −0.208504 1.31644i −0.840644 0.541589i \(-0.817823\pi\)
0.632140 0.774855i \(-0.282177\pi\)
\(318\) 0 0
\(319\) 15.0294 71.5357i 0.0471142 0.224250i
\(320\) 0 0
\(321\) 38.5115 + 27.9803i 0.119974 + 0.0871659i
\(322\) 0 0
\(323\) 466.444 + 237.665i 1.44410 + 0.735806i
\(324\) 0 0
\(325\) −212.951 392.035i −0.655233 1.20626i
\(326\) 0 0
\(327\) 25.9888 13.2420i 0.0794766 0.0404953i
\(328\) 0 0
\(329\) 103.297i 0.313972i
\(330\) 0 0
\(331\) −412.705 −1.24684 −0.623421 0.781886i \(-0.714258\pi\)
−0.623421 + 0.781886i \(0.714258\pi\)
\(332\) 0 0
\(333\) 133.746 + 262.492i 0.401640 + 0.788263i
\(334\) 0 0
\(335\) −101.109 588.098i −0.301819 1.75552i
\(336\) 0 0
\(337\) −39.6192 + 77.7572i −0.117565 + 0.230733i −0.942288 0.334802i \(-0.891331\pi\)
0.824724 + 0.565536i \(0.191331\pi\)
\(338\) 0 0
\(339\) 6.37001 8.76757i 0.0187906 0.0258630i
\(340\) 0 0
\(341\) 121.565 54.4674i 0.356495 0.159729i
\(342\) 0 0
\(343\) −253.702 + 40.1825i −0.739657 + 0.117150i
\(344\) 0 0
\(345\) 26.4930 + 35.4716i 0.0767912 + 0.102816i
\(346\) 0 0
\(347\) 36.5667 + 5.79160i 0.105380 + 0.0166905i 0.208902 0.977937i \(-0.433011\pi\)
−0.103522 + 0.994627i \(0.533011\pi\)
\(348\) 0 0
\(349\) −198.022 64.3411i −0.567397 0.184358i 0.0112498 0.999937i \(-0.496419\pi\)
−0.578647 + 0.815578i \(0.696419\pi\)
\(350\) 0 0
\(351\) 127.932 0.364477
\(352\) 0 0
\(353\) −121.047 + 121.047i −0.342909 + 0.342909i −0.857460 0.514551i \(-0.827959\pi\)
0.514551 + 0.857460i \(0.327959\pi\)
\(354\) 0 0
\(355\) −487.332 + 6.42429i −1.37277 + 0.0180966i
\(356\) 0 0
\(357\) −27.8014 4.40331i −0.0778750 0.0123342i
\(358\) 0 0
\(359\) −415.549 + 135.020i −1.15752 + 0.376101i −0.823971 0.566632i \(-0.808246\pi\)
−0.333548 + 0.942733i \(0.608246\pi\)
\(360\) 0 0
\(361\) 77.5400 + 56.3361i 0.214792 + 0.156056i
\(362\) 0 0
\(363\) −26.2917 + 40.9061i −0.0724289 + 0.112689i
\(364\) 0 0
\(365\) 228.060 + 433.374i 0.624822 + 1.18733i
\(366\) 0 0
\(367\) 139.914 274.597i 0.381237 0.748220i −0.618043 0.786144i \(-0.712074\pi\)
0.999281 + 0.0379236i \(0.0120744\pi\)
\(368\) 0 0
\(369\) −383.992 528.520i −1.04063 1.43230i
\(370\) 0 0
\(371\) 44.0548 135.587i 0.118746 0.365463i
\(372\) 0 0
\(373\) 207.314 207.314i 0.555803 0.555803i −0.372307 0.928110i \(-0.621433\pi\)
0.928110 + 0.372307i \(0.121433\pi\)
\(374\) 0 0
\(375\) −49.2663 + 9.81379i −0.131377 + 0.0261701i
\(376\) 0 0
\(377\) 105.662 53.8376i 0.280271 0.142805i
\(378\) 0 0
\(379\) 46.7924 + 64.4042i 0.123463 + 0.169932i 0.866274 0.499569i \(-0.166508\pi\)
−0.742811 + 0.669501i \(0.766508\pi\)
\(380\) 0 0
\(381\) 30.5632 + 94.0639i 0.0802184 + 0.246887i
\(382\) 0 0
\(383\) 270.838 42.8966i 0.707150 0.112001i 0.207507 0.978233i \(-0.433465\pi\)
0.499642 + 0.866232i \(0.333465\pi\)
\(384\) 0 0
\(385\) −5.79043 + 157.177i −0.0150401 + 0.408253i
\(386\) 0 0
\(387\) −39.3815 248.645i −0.101761 0.642494i
\(388\) 0 0
\(389\) −169.432 + 55.0518i −0.435558 + 0.141521i −0.518585 0.855026i \(-0.673541\pi\)
0.0830272 + 0.996547i \(0.473541\pi\)
\(390\) 0 0
\(391\) −436.589 + 317.200i −1.11660 + 0.811254i
\(392\) 0 0
\(393\) −5.24274 10.2895i −0.0133403 0.0261818i
\(394\) 0 0
\(395\) −57.7459 + 19.6080i −0.146192 + 0.0496405i
\(396\) 0 0
\(397\) −269.251 269.251i −0.678213 0.678213i 0.281383 0.959596i \(-0.409207\pi\)
−0.959596 + 0.281383i \(0.909207\pi\)
\(398\) 0 0
\(399\) −23.3616 7.59064i −0.0585504 0.0190242i
\(400\) 0 0
\(401\) −259.141 + 188.277i −0.646238 + 0.469519i −0.861987 0.506930i \(-0.830780\pi\)
0.215750 + 0.976449i \(0.430780\pi\)
\(402\) 0 0
\(403\) 192.554 + 98.1109i 0.477800 + 0.243451i
\(404\) 0 0
\(405\) −113.639 + 366.096i −0.280590 + 0.903940i
\(406\) 0 0
\(407\) −200.414 307.025i −0.492418 0.754362i
\(408\) 0 0
\(409\) 225.231 310.004i 0.550688 0.757956i −0.439418 0.898283i \(-0.644815\pi\)
0.990105 + 0.140326i \(0.0448152\pi\)
\(410\) 0 0
\(411\) 1.65113 + 5.08165i 0.00401734 + 0.0123641i
\(412\) 0 0
\(413\) −49.3337 + 311.481i −0.119452 + 0.754191i
\(414\) 0 0
\(415\) −271.016 + 278.256i −0.653050 + 0.670497i
\(416\) 0 0
\(417\) −4.15264 4.15264i −0.00995836 0.00995836i
\(418\) 0 0
\(419\) 13.1294i 0.0313350i 0.999877 + 0.0156675i \(0.00498733\pi\)
−0.999877 + 0.0156675i \(0.995013\pi\)
\(420\) 0 0
\(421\) −174.212 + 536.169i −0.413805 + 1.27356i 0.499510 + 0.866308i \(0.333513\pi\)
−0.913315 + 0.407253i \(0.866487\pi\)
\(422\) 0 0
\(423\) −49.9431 + 315.329i −0.118069 + 0.745458i
\(424\) 0 0
\(425\) −111.696 602.041i −0.262814 1.41657i
\(426\) 0 0
\(427\) −19.5923 123.701i −0.0458837 0.289698i
\(428\) 0 0
\(429\) −78.4364 + 8.43077i −0.182835 + 0.0196522i
\(430\) 0 0
\(431\) −292.821 212.747i −0.679398 0.493612i 0.193760 0.981049i \(-0.437932\pi\)
−0.873158 + 0.487437i \(0.837932\pi\)
\(432\) 0 0
\(433\) −573.561 292.244i −1.32462 0.674928i −0.358624 0.933482i \(-0.616754\pi\)
−0.965997 + 0.258554i \(0.916754\pi\)
\(434\) 0 0
\(435\) −2.26248 13.1596i −0.00520111 0.0302521i
\(436\) 0 0
\(437\) −419.610 + 213.802i −0.960205 + 0.489249i
\(438\) 0 0
\(439\) 247.699i 0.564234i −0.959380 0.282117i \(-0.908963\pi\)
0.959380 0.282117i \(-0.0910366\pi\)
\(440\) 0 0
\(441\) 360.806 0.818154
\(442\) 0 0
\(443\) −262.716 515.609i −0.593038 1.16390i −0.971223 0.238172i \(-0.923452\pi\)
0.378185 0.925730i \(-0.376548\pi\)
\(444\) 0 0
\(445\) 90.8504 128.575i 0.204158 0.288934i
\(446\) 0 0
\(447\) −49.6052 + 97.3557i −0.110974 + 0.217798i
\(448\) 0 0
\(449\) 40.1176 55.2171i 0.0893487 0.122978i −0.762003 0.647574i \(-0.775784\pi\)
0.851351 + 0.524596i \(0.175784\pi\)
\(450\) 0 0
\(451\) 545.458 + 602.932i 1.20944 + 1.33688i
\(452\) 0 0
\(453\) 1.45100 0.229815i 0.00320308 0.000507318i
\(454\) 0 0
\(455\) −204.438 + 152.690i −0.449314 + 0.335583i
\(456\) 0 0
\(457\) 643.317 + 101.891i 1.40770 + 0.222957i 0.813594 0.581433i \(-0.197508\pi\)
0.594101 + 0.804390i \(0.297508\pi\)
\(458\) 0 0
\(459\) 166.990 + 54.2582i 0.363812 + 0.118210i
\(460\) 0 0
\(461\) −545.940 −1.18425 −0.592125 0.805846i \(-0.701711\pi\)
−0.592125 + 0.805846i \(0.701711\pi\)
\(462\) 0 0
\(463\) 517.853 517.853i 1.11847 1.11847i 0.126507 0.991966i \(-0.459623\pi\)
0.991966 0.126507i \(-0.0403766\pi\)
\(464\) 0 0
\(465\) 16.9780 17.4316i 0.0365117 0.0374872i
\(466\) 0 0
\(467\) 60.4646 + 9.57666i 0.129475 + 0.0205068i 0.220835 0.975311i \(-0.429122\pi\)
−0.0913608 + 0.995818i \(0.529122\pi\)
\(468\) 0 0
\(469\) −324.588 + 105.465i −0.692086 + 0.224872i
\(470\) 0 0
\(471\) 62.9916 + 45.7661i 0.133740 + 0.0971679i
\(472\) 0 0
\(473\) 81.8030 + 302.443i 0.172945 + 0.639414i
\(474\) 0 0
\(475\) −14.0857 534.162i −0.0296541 1.12455i
\(476\) 0 0
\(477\) −200.039 + 392.599i −0.419369 + 0.823058i
\(478\) 0 0
\(479\) 532.038 + 732.287i 1.11073 + 1.52878i 0.820343 + 0.571872i \(0.193783\pi\)
0.290383 + 0.956911i \(0.406217\pi\)
\(480\) 0 0
\(481\) 183.809 565.707i 0.382140 1.17611i
\(482\) 0 0
\(483\) 17.9051 17.9051i 0.0370706 0.0370706i
\(484\) 0 0
\(485\) −184.784 + 374.792i −0.380998 + 0.772767i
\(486\) 0 0
\(487\) 488.186 248.743i 1.00243 0.510766i 0.125868 0.992047i \(-0.459828\pi\)
0.876566 + 0.481281i \(0.159828\pi\)
\(488\) 0 0
\(489\) −23.2602 32.0150i −0.0475669 0.0654703i
\(490\) 0 0
\(491\) 149.712 + 460.767i 0.304913 + 0.938425i 0.979710 + 0.200421i \(0.0642311\pi\)
−0.674797 + 0.738003i \(0.735769\pi\)
\(492\) 0 0
\(493\) 160.755 25.4611i 0.326075 0.0516452i
\(494\) 0 0
\(495\) 93.6701 477.007i 0.189233 0.963651i
\(496\) 0 0
\(497\) 43.6061 + 275.318i 0.0877385 + 0.553959i
\(498\) 0 0
\(499\) 516.855 167.936i 1.03578 0.336546i 0.258708 0.965956i \(-0.416703\pi\)
0.777074 + 0.629410i \(0.216703\pi\)
\(500\) 0 0
\(501\) 88.8347 64.5422i 0.177315 0.128827i
\(502\) 0 0
\(503\) 88.9384 + 174.551i 0.176816 + 0.347021i 0.962357 0.271789i \(-0.0876152\pi\)
−0.785541 + 0.618810i \(0.787615\pi\)
\(504\) 0 0
\(505\) −52.7890 155.465i −0.104533 0.307851i
\(506\) 0 0
\(507\) −42.4725 42.4725i −0.0837722 0.0837722i
\(508\) 0 0
\(509\) −321.985 104.619i −0.632584 0.205539i −0.0248647 0.999691i \(-0.507916\pi\)
−0.607720 + 0.794152i \(0.707916\pi\)
\(510\) 0 0
\(511\) 226.598 164.633i 0.443440 0.322178i
\(512\) 0 0
\(513\) 136.525 + 69.5632i 0.266131 + 0.135601i
\(514\) 0 0
\(515\) 118.369 + 224.932i 0.229842 + 0.436761i
\(516\) 0 0
\(517\) 19.8606 396.839i 0.0384151 0.767580i
\(518\) 0 0
\(519\) −24.7554 + 34.0728i −0.0476982 + 0.0656510i
\(520\) 0 0
\(521\) −155.836 479.615i −0.299110 0.920567i −0.981810 0.189868i \(-0.939194\pi\)
0.682699 0.730699i \(-0.260806\pi\)
\(522\) 0 0
\(523\) 42.9881 271.416i 0.0821952 0.518960i −0.911897 0.410420i \(-0.865382\pi\)
0.994092 0.108541i \(-0.0346177\pi\)
\(524\) 0 0
\(525\) 9.59560 + 27.0813i 0.0182773 + 0.0515835i
\(526\) 0 0
\(527\) 209.730 + 209.730i 0.397970 + 0.397970i
\(528\) 0 0
\(529\) 43.5322i 0.0822915i
\(530\) 0 0
\(531\) 301.197 926.989i 0.567226 1.74574i
\(532\) 0 0
\(533\) −206.342 + 1302.79i −0.387132 + 2.44426i
\(534\) 0 0
\(535\) 586.139 + 84.9312i 1.09559 + 0.158750i
\(536\) 0 0
\(537\) 13.9750 + 88.2348i 0.0260243 + 0.164311i
\(538\) 0 0
\(539\) −446.471 + 47.9892i −0.828332 + 0.0890337i
\(540\) 0 0
\(541\) 333.293 + 242.152i 0.616069 + 0.447600i 0.851546 0.524280i \(-0.175665\pi\)
−0.235477 + 0.971880i \(0.575665\pi\)
\(542\) 0 0
\(543\) 71.5627 + 36.4630i 0.131791 + 0.0671510i
\(544\) 0 0
\(545\) 209.418 296.378i 0.384254 0.543812i
\(546\) 0 0
\(547\) −85.8878 + 43.7620i −0.157016 + 0.0800037i −0.530733 0.847539i \(-0.678083\pi\)
0.373717 + 0.927543i \(0.378083\pi\)
\(548\) 0 0
\(549\) 387.089i 0.705080i
\(550\) 0 0
\(551\) 142.035 0.257776
\(552\) 0 0
\(553\) 15.8349 + 31.0777i 0.0286345 + 0.0561984i
\(554\) 0 0
\(555\) −54.6986 38.6496i −0.0985560 0.0696389i
\(556\) 0 0
\(557\) 369.996 726.158i 0.664266 1.30370i −0.275310 0.961355i \(-0.588781\pi\)
0.939576 0.342340i \(-0.111219\pi\)
\(558\) 0 0
\(559\) −298.765 + 411.215i −0.534463 + 0.735626i
\(560\) 0 0
\(561\) −105.959 22.2617i −0.188875 0.0396821i
\(562\) 0 0
\(563\) −632.909 + 100.243i −1.12417 + 0.178051i −0.690718 0.723124i \(-0.742705\pi\)
−0.433454 + 0.901176i \(0.642705\pi\)
\(564\) 0 0
\(565\) 19.3355 133.441i 0.0342221 0.236179i
\(566\) 0 0
\(567\) 216.542 + 34.2968i 0.381908 + 0.0604883i
\(568\) 0 0
\(569\) 469.148 + 152.435i 0.824513 + 0.267901i 0.690733 0.723110i \(-0.257288\pi\)
0.133781 + 0.991011i \(0.457288\pi\)
\(570\) 0 0
\(571\) −897.837 −1.57239 −0.786197 0.617976i \(-0.787953\pi\)
−0.786197 + 0.617976i \(0.787953\pi\)
\(572\) 0 0
\(573\) −57.1626 + 57.1626i −0.0997603 + 0.0997603i
\(574\) 0 0
\(575\) 497.218 + 237.049i 0.864726 + 0.412258i
\(576\) 0 0
\(577\) 691.060 + 109.453i 1.19768 + 0.189694i 0.723241 0.690596i \(-0.242652\pi\)
0.474437 + 0.880289i \(0.342652\pi\)
\(578\) 0 0
\(579\) 53.4088 17.3536i 0.0922432 0.0299716i
\(580\) 0 0
\(581\) 179.730 + 130.581i 0.309345 + 0.224752i
\(582\) 0 0
\(583\) 195.316 512.419i 0.335019 0.878935i
\(584\) 0 0
\(585\) 697.901 367.265i 1.19299 0.627804i
\(586\) 0 0
\(587\) −393.992 + 773.253i −0.671196 + 1.31730i 0.264465 + 0.964395i \(0.414805\pi\)
−0.935661 + 0.352901i \(0.885195\pi\)
\(588\) 0 0
\(589\) 152.140 + 209.403i 0.258303 + 0.355523i
\(590\) 0 0
\(591\) 12.9365 39.8143i 0.0218891 0.0673677i
\(592\) 0 0
\(593\) −425.152 + 425.152i −0.716952 + 0.716952i −0.967980 0.251028i \(-0.919231\pi\)
0.251028 + 0.967980i \(0.419231\pi\)
\(594\) 0 0
\(595\) −331.612 + 112.601i −0.557332 + 0.189246i
\(596\) 0 0
\(597\) 114.467 58.3240i 0.191737 0.0976951i
\(598\) 0 0
\(599\) −332.591 457.772i −0.555244 0.764227i 0.435468 0.900204i \(-0.356583\pi\)
−0.990712 + 0.135977i \(0.956583\pi\)
\(600\) 0 0
\(601\) −237.934 732.286i −0.395897 1.21845i −0.928261 0.371930i \(-0.878696\pi\)
0.532364 0.846516i \(-0.321304\pi\)
\(602\) 0 0
\(603\) 1041.85 165.012i 1.72777 0.273652i
\(604\) 0 0
\(605\) −52.4654 + 602.721i −0.0867196 + 0.996233i
\(606\) 0 0
\(607\) 143.116 + 903.597i 0.235775 + 1.48863i 0.767138 + 0.641482i \(0.221680\pi\)
−0.531362 + 0.847145i \(0.678320\pi\)
\(608\) 0 0
\(609\) −7.26319 + 2.35996i −0.0119264 + 0.00387513i
\(610\) 0 0
\(611\) 521.497 378.890i 0.853514 0.620114i
\(612\) 0 0
\(613\) −404.786 794.437i −0.660336 1.29598i −0.941723 0.336388i \(-0.890795\pi\)
0.281387 0.959594i \(-0.409205\pi\)
\(614\) 0 0
\(615\) 133.210 + 65.6765i 0.216601 + 0.106791i
\(616\) 0 0
\(617\) −543.471 543.471i −0.880827 0.880827i 0.112791 0.993619i \(-0.464021\pi\)
−0.993619 + 0.112791i \(0.964021\pi\)
\(618\) 0 0
\(619\) 849.572 + 276.043i 1.37249 + 0.445950i 0.900194 0.435489i \(-0.143425\pi\)
0.472298 + 0.881439i \(0.343425\pi\)
\(620\) 0 0
\(621\) −127.787 + 92.8426i −0.205776 + 0.149505i
\(622\) 0 0
\(623\) −80.2289 40.8787i −0.128778 0.0656159i
\(624\) 0 0
\(625\) −485.572 + 393.504i −0.776915 + 0.629606i
\(626\) 0 0
\(627\) −88.2897 33.6529i −0.140813 0.0536729i
\(628\) 0 0
\(629\) 479.854 660.463i 0.762885 1.05002i
\(630\) 0 0
\(631\) 267.261 + 822.544i 0.423551 + 1.30356i 0.904375 + 0.426739i \(0.140338\pi\)
−0.480824 + 0.876817i \(0.659662\pi\)
\(632\) 0 0
\(633\) −8.79936 + 55.5570i −0.0139010 + 0.0877678i
\(634\) 0 0
\(635\) 881.519 + 858.580i 1.38822 + 1.35209i
\(636\) 0 0
\(637\) −515.121 515.121i −0.808667 0.808667i
\(638\) 0 0
\(639\) 861.531i 1.34825i
\(640\) 0 0
\(641\) −0.0348576 + 0.107281i −5.43800e−5 + 0.000167364i −0.951084 0.308933i \(-0.900028\pi\)
0.951029 + 0.309101i \(0.100028\pi\)
\(642\) 0 0
\(643\) 184.512 1164.96i 0.286955 1.81176i −0.250106 0.968219i \(-0.580465\pi\)
0.537061 0.843544i \(-0.319535\pi\)
\(644\) 0 0
\(645\) 34.2478 + 45.8545i 0.0530973 + 0.0710923i
\(646\) 0 0
\(647\) −10.8945 68.7849i −0.0168384 0.106314i 0.977838 0.209365i \(-0.0671395\pi\)
−0.994676 + 0.103051i \(0.967140\pi\)
\(648\) 0 0
\(649\) −249.415 + 1187.14i −0.384306 + 1.82919i
\(650\) 0 0
\(651\) −11.2593 8.18035i −0.0172954 0.0125658i
\(652\) 0 0
\(653\) −580.642 295.852i −0.889192 0.453066i −0.0511619 0.998690i \(-0.516292\pi\)
−0.838030 + 0.545625i \(0.816292\pi\)
\(654\) 0 0
\(655\) −117.341 82.9126i −0.179147 0.126584i
\(656\) 0 0
\(657\) −771.322 + 393.008i −1.17401 + 0.598186i
\(658\) 0 0
\(659\) 364.819i 0.553595i −0.960928 0.276797i \(-0.910727\pi\)
0.960928 0.276797i \(-0.0892731\pi\)
\(660\) 0 0
\(661\) 90.6917 0.137204 0.0686019 0.997644i \(-0.478146\pi\)
0.0686019 + 0.997644i \(0.478146\pi\)
\(662\) 0 0
\(663\) −79.7445 156.507i −0.120278 0.236059i
\(664\) 0 0
\(665\) −301.197 + 51.7836i −0.452928 + 0.0778700i
\(666\) 0 0
\(667\) −66.4717 + 130.458i −0.0996577 + 0.195589i
\(668\) 0 0
\(669\) −11.7204 + 16.1318i −0.0175194 + 0.0241133i
\(670\) 0 0
\(671\) −51.4850 478.995i −0.0767287 0.713852i
\(672\) 0 0
\(673\) 17.9659 2.84552i 0.0266953 0.00422811i −0.143073 0.989712i \(-0.545698\pi\)
0.169768 + 0.985484i \(0.445698\pi\)
\(674\) 0 0
\(675\) −32.6928 176.214i −0.0484337 0.261057i
\(676\) 0 0
\(677\) 306.500 + 48.5448i 0.452733 + 0.0717058i 0.378637 0.925545i \(-0.376393\pi\)
0.0740958 + 0.997251i \(0.476393\pi\)
\(678\) 0 0
\(679\) 227.299 + 73.8540i 0.334756 + 0.108769i
\(680\) 0 0
\(681\) −3.42465 −0.00502886
\(682\) 0 0
\(683\) −483.833 + 483.833i −0.708394 + 0.708394i −0.966197 0.257803i \(-0.917001\pi\)
0.257803 + 0.966197i \(0.417001\pi\)
\(684\) 0 0
\(685\) 47.6226 + 46.3833i 0.0695220 + 0.0677129i
\(686\) 0 0
\(687\) 47.1364 + 7.46568i 0.0686120 + 0.0108671i
\(688\) 0 0
\(689\) 846.107 274.917i 1.22802 0.399008i
\(690\) 0 0
\(691\) 263.762 + 191.635i 0.381711 + 0.277329i 0.762050 0.647518i \(-0.224193\pi\)
−0.380339 + 0.924847i \(0.624193\pi\)
\(692\) 0 0
\(693\) −277.683 13.8972i −0.400697 0.0200537i
\(694\) 0 0
\(695\) −69.7821 21.6609i −0.100406 0.0311667i
\(696\) 0 0
\(697\) −821.876 + 1613.02i −1.17916 + 2.31424i
\(698\) 0 0
\(699\) −32.5017 44.7348i −0.0464975 0.0639983i
\(700\) 0 0
\(701\) 193.025 594.069i 0.275356 0.847459i −0.713769 0.700381i \(-0.753013\pi\)
0.989125 0.147077i \(-0.0469867\pi\)
\(702\) 0 0
\(703\) 503.762 503.762i 0.716589 0.716589i
\(704\) 0 0
\(705\) −23.3368 68.7273i −0.0331019 0.0974856i
\(706\) 0 0
\(707\) −83.6680 + 42.6310i −0.118342 + 0.0602984i
\(708\) 0 0
\(709\) −169.046 232.672i −0.238429 0.328169i 0.672988 0.739653i \(-0.265011\pi\)
−0.911417 + 0.411484i \(0.865011\pi\)
\(710\) 0 0
\(711\) −33.3125 102.525i −0.0468531 0.144199i
\(712\) 0 0
\(713\) −263.537 + 41.7401i −0.369617 + 0.0585416i
\(714\) 0 0
\(715\) −814.754 + 547.289i −1.13952 + 0.765439i
\(716\) 0 0
\(717\) −16.8168 106.177i −0.0234544 0.148085i
\(718\) 0 0
\(719\) −39.8885 + 12.9606i −0.0554778 + 0.0180258i −0.336624 0.941639i \(-0.609285\pi\)
0.281147 + 0.959665i \(0.409285\pi\)
\(720\) 0 0
\(721\) 117.610 85.4487i 0.163121 0.118514i
\(722\) 0 0
\(723\) −52.7664 103.560i −0.0729825 0.143236i
\(724\) 0 0
\(725\) −101.158 131.782i −0.139528 0.181768i
\(726\) 0 0
\(727\) −674.310 674.310i −0.927524 0.927524i 0.0700219 0.997545i \(-0.477693\pi\)
−0.997545 + 0.0700219i \(0.977693\pi\)
\(728\) 0 0
\(729\) −619.784 201.380i −0.850183 0.276241i
\(730\) 0 0
\(731\) −564.383 + 410.048i −0.772070 + 0.560942i
\(732\) 0 0
\(733\) −684.081 348.557i −0.933262 0.475521i −0.0798790 0.996805i \(-0.525453\pi\)
−0.853384 + 0.521284i \(0.825453\pi\)
\(734\) 0 0
\(735\) −72.5891 + 38.1995i −0.0987607 + 0.0519721i
\(736\) 0 0
\(737\) −1267.26 + 342.762i −1.71949 + 0.465077i
\(738\) 0 0
\(739\) 224.718 309.297i 0.304083 0.418535i −0.629441 0.777048i \(-0.716716\pi\)
0.933525 + 0.358513i \(0.116716\pi\)
\(740\) 0 0
\(741\) −47.3681 145.784i −0.0639246 0.196740i
\(742\) 0 0
\(743\) −190.499 + 1202.77i −0.256392 + 1.61880i 0.437845 + 0.899050i \(0.355742\pi\)
−0.694237 + 0.719746i \(0.744258\pi\)
\(744\) 0 0
\(745\) 17.9194 + 1359.32i 0.0240528 + 1.82460i
\(746\) 0 0
\(747\) −485.516 485.516i −0.649955 0.649955i
\(748\) 0 0
\(749\) 338.739i 0.452254i
\(750\) 0 0
\(751\) 147.128 452.815i 0.195910 0.602949i −0.804055 0.594555i \(-0.797328\pi\)
0.999965 0.00839394i \(-0.00267190\pi\)
\(752\) 0 0
\(753\) 1.09159 6.89205i 0.00144966 0.00915279i
\(754\) 0 0
\(755\) 14.6442 10.9375i 0.0193963 0.0144867i
\(756\) 0 0
\(757\) −44.7236 282.374i −0.0590801 0.373017i −0.999459 0.0328884i \(-0.989529\pi\)
0.940379 0.340129i \(-0.110471\pi\)
\(758\) 0 0
\(759\) 72.2293 65.3442i 0.0951638 0.0860925i
\(760\) 0 0
\(761\) −959.555 697.158i −1.26091 0.916107i −0.262111 0.965038i \(-0.584419\pi\)
−0.998802 + 0.0489303i \(0.984419\pi\)
\(762\) 0 0
\(763\) −184.935 94.2289i −0.242378 0.123498i
\(764\) 0 0
\(765\) 1066.74 183.400i 1.39443 0.239738i
\(766\) 0 0
\(767\) −1753.48 + 893.441i −2.28615 + 1.16485i
\(768\) 0 0
\(769\) 446.621i 0.580782i −0.956908 0.290391i \(-0.906215\pi\)
0.956908 0.290391i \(-0.0937853\pi\)
\(770\) 0 0
\(771\) −168.890 −0.219053
\(772\) 0 0
\(773\) 266.639 + 523.308i 0.344940 + 0.676983i 0.996676 0.0814627i \(-0.0259592\pi\)
−0.651736 + 0.758446i \(0.725959\pi\)
\(774\) 0 0
\(775\) 85.9318 290.297i 0.110880 0.374576i
\(776\) 0 0
\(777\) −17.3906 + 34.1310i −0.0223817 + 0.0439266i
\(778\) 0 0
\(779\) −928.599 + 1278.11i −1.19204 + 1.64070i
\(780\) 0 0
\(781\) 114.588 + 1066.08i 0.146720 + 1.36502i
\(782\) 0 0
\(783\) 47.0520 7.45230i 0.0600919 0.00951763i
\(784\) 0 0
\(785\) 958.722 + 138.918i 1.22130 + 0.176966i
\(786\) 0 0
\(787\) 1206.83 + 191.144i 1.53346 + 0.242876i 0.865344 0.501179i \(-0.167100\pi\)
0.668118 + 0.744055i \(0.267100\pi\)
\(788\) 0 0
\(789\) 9.68069 + 3.14545i 0.0122696 + 0.00398662i
\(790\) 0 0
\(791\) −77.1175 −0.0974937
\(792\) 0 0
\(793\) 552.645 552.645i 0.696905 0.696905i
\(794\) 0 0
\(795\) −1.32042 100.164i −0.00166090 0.125993i
\(796\) 0 0
\(797\) 553.159 + 87.6118i 0.694051 + 0.109927i 0.493486 0.869753i \(-0.335722\pi\)
0.200565 + 0.979680i \(0.435722\pi\)
\(798\) 0 0
\(799\) 841.407 273.390i 1.05307 0.342165i
\(800\) 0 0
\(801\) 225.146 + 163.578i 0.281081 + 0.204218i
\(802\) 0 0
\(803\) 902.184 588.910i 1.12352 0.733387i
\(804\) 0 0
\(805\) 93.3962 300.882i 0.116020 0.373767i
\(806\) 0 0
\(807\) −46.1651 + 90.6042i −0.0572059 + 0.112273i
\(808\) 0 0
\(809\) 104.804 + 144.250i 0.129548 + 0.178307i 0.868863 0.495052i \(-0.164851\pi\)
−0.739316 + 0.673359i \(0.764851\pi\)
\(810\) 0 0
\(811\) 434.951 1338.64i 0.536314 1.65060i −0.204479 0.978871i \(-0.565550\pi\)
0.740793 0.671734i \(-0.234450\pi\)
\(812\) 0 0
\(813\) 10.8706 10.8706i 0.0133710 0.0133710i
\(814\) 0 0
\(815\) −441.596 217.721i −0.541836 0.267142i
\(816\) 0 0
\(817\) −542.434 + 276.384i −0.663934 + 0.338291i
\(818\) 0 0
\(819\) −265.123 364.911i −0.323716 0.445557i
\(820\) 0 0
\(821\) −96.1813 296.016i −0.117151 0.360555i 0.875238 0.483692i \(-0.160705\pi\)
−0.992390 + 0.123137i \(0.960705\pi\)
\(822\) 0 0
\(823\) −563.875 + 89.3091i −0.685146 + 0.108517i −0.489297 0.872117i \(-0.662746\pi\)
−0.195850 + 0.980634i \(0.562746\pi\)
\(824\) 0 0
\(825\) 31.6569 + 105.884i 0.0383720 + 0.128345i
\(826\) 0 0
\(827\) 67.3354 + 425.139i 0.0814213 + 0.514074i 0.994367 + 0.105993i \(0.0338020\pi\)
−0.912946 + 0.408081i \(0.866198\pi\)
\(828\) 0 0
\(829\) −578.093 + 187.834i −0.697338 + 0.226579i −0.636170 0.771549i \(-0.719482\pi\)
−0.0611675 + 0.998128i \(0.519482\pi\)
\(830\) 0 0
\(831\) −8.96624 + 6.51435i −0.0107897 + 0.00783917i
\(832\) 0 0
\(833\) −453.917 890.862i −0.544918 1.06946i
\(834\) 0 0
\(835\) 604.129 1225.34i 0.723508 1.46747i
\(836\) 0 0
\(837\) 61.3868 + 61.3868i 0.0733414 + 0.0733414i
\(838\) 0 0
\(839\) −627.883 204.012i −0.748371 0.243160i −0.0900907 0.995934i \(-0.528716\pi\)
−0.658280 + 0.752773i \(0.728716\pi\)
\(840\) 0 0
\(841\) −644.658 + 468.371i −0.766537 + 0.556922i
\(842\) 0 0
\(843\) 27.5963 + 14.0610i 0.0327358 + 0.0166797i
\(844\) 0 0
\(845\) −713.719 221.544i −0.844638 0.262182i
\(846\) 0 0
\(847\) 345.461 19.7366i 0.407865 0.0233018i
\(848\) 0 0
\(849\) −43.9586 + 60.5039i −0.0517769 + 0.0712649i
\(850\) 0 0
\(851\) 226.944 + 698.462i 0.266679 + 0.820754i
\(852\) 0 0
\(853\) 114.230 721.222i 0.133916 0.845512i −0.825682 0.564136i \(-0.809209\pi\)
0.959598 0.281376i \(-0.0907907\pi\)
\(854\) 0 0
\(855\) 944.485 12.4507i 1.10466 0.0145623i
\(856\) 0 0
\(857\) 132.964 + 132.964i 0.155150 + 0.155150i 0.780414 0.625264i \(-0.215009\pi\)
−0.625264 + 0.780414i \(0.715009\pi\)
\(858\) 0 0
\(859\) 815.780i 0.949685i 0.880071 + 0.474843i \(0.157495\pi\)
−0.880071 + 0.474843i \(0.842505\pi\)
\(860\) 0 0
\(861\) 26.2494 80.7873i 0.0304871 0.0938296i
\(862\) 0 0
\(863\) −15.0614 + 95.0941i −0.0174524 + 0.110190i −0.994877 0.101096i \(-0.967765\pi\)
0.977424 + 0.211286i \(0.0677651\pi\)
\(864\) 0 0
\(865\) −75.1424 + 518.583i −0.0868698 + 0.599518i
\(866\) 0 0
\(867\) −19.5445 123.399i −0.0225427 0.142329i
\(868\) 0 0
\(869\) 54.8583 + 122.437i 0.0631281 + 0.140894i
\(870\) 0 0
\(871\) −1723.03 1251.85i −1.97822 1.43726i
\(872\) 0 0
\(873\) −658.156 335.347i −0.753902 0.384132i
\(874\) 0 0
\(875\) 262.560 + 242.574i 0.300069 + 0.277228i
\(876\) 0 0
\(877\) 80.8023 41.1708i 0.0921349 0.0469451i −0.407316 0.913287i \(-0.633535\pi\)
0.499451 + 0.866342i \(0.333535\pi\)
\(878\) 0 0
\(879\) 72.0759i 0.0819976i
\(880\) 0 0
\(881\) 131.451 0.149207 0.0746035 0.997213i \(-0.476231\pi\)
0.0746035 + 0.997213i \(0.476231\pi\)
\(882\) 0 0
\(883\) 372.699 + 731.464i 0.422083 + 0.828385i 0.999925 + 0.0122360i \(0.00389494\pi\)
−0.577842 + 0.816149i \(0.696105\pi\)
\(884\) 0 0
\(885\) 37.5462 + 218.386i 0.0424251 + 0.246764i
\(886\) 0 0
\(887\) 215.663 423.263i 0.243138 0.477185i −0.736898 0.676003i \(-0.763710\pi\)
0.980036 + 0.198819i \(0.0637104\pi\)
\(888\) 0 0
\(889\) 413.682 569.385i 0.465334 0.640478i
\(890\) 0 0
\(891\) 825.303 + 173.393i 0.926265 + 0.194605i
\(892\) 0 0
\(893\) 762.552 120.776i 0.853921 0.135248i
\(894\) 0 0
\(895\) 665.105 + 890.513i 0.743134 + 0.994987i
\(896\) 0 0
\(897\) 156.070 + 24.7191i 0.173991 + 0.0275575i
\(898\) 0 0
\(899\) 76.5345 + 24.8676i 0.0851329 + 0.0276614i
\(900\) 0 0
\(901\) 1221.02 1.35519
\(902\) 0 0
\(903\) 23.1461 23.1461i 0.0256325 0.0256325i
\(904\) 0 0
\(905\) 999.190 13.1719i 1.10408 0.0145546i
\(906\) 0 0
\(907\) 278.823 + 44.1612i 0.307412 + 0.0486893i 0.308235 0.951310i \(-0.400262\pi\)
−0.000822600 1.00000i \(0.500262\pi\)
\(908\) 0 0
\(909\) 276.021 89.6846i 0.303653 0.0986629i
\(910\) 0 0
\(911\) 972.809 + 706.787i 1.06785 + 0.775837i 0.975524 0.219892i \(-0.0705706\pi\)
0.0923236 + 0.995729i \(0.470571\pi\)
\(912\) 0 0
\(913\) 665.367 + 536.215i 0.728771 + 0.587311i
\(914\) 0 0
\(915\) −40.9822 77.8769i −0.0447892 0.0851114i
\(916\) 0 0
\(917\) −37.3070 + 73.2191i −0.0406837 + 0.0798464i
\(918\) 0 0
\(919\) 795.581 + 1095.02i 0.865703 + 1.19154i 0.980179 + 0.198112i \(0.0634811\pi\)
−0.114476 + 0.993426i \(0.536519\pi\)
\(920\) 0 0
\(921\) 64.2209 197.652i 0.0697295 0.214605i
\(922\) 0 0
\(923\) −1230.01 + 1230.01i −1.33262 + 1.33262i
\(924\) 0 0
\(925\) −826.181 108.614i −0.893169 0.117421i
\(926\) 0 0
\(927\) −400.336 + 203.981i −0.431862 + 0.220045i
\(928\) 0 0
\(929\) 698.781 + 961.789i 0.752186 + 1.03529i 0.997824 + 0.0659334i \(0.0210025\pi\)
−0.245638 + 0.969362i \(0.578998\pi\)
\(930\) 0 0
\(931\) −269.626 829.823i −0.289609 0.891325i
\(932\) 0 0
\(933\) 193.636 30.6689i 0.207541 0.0328712i
\(934\) 0 0
\(935\) −1295.62 + 368.826i −1.38569 + 0.394466i
\(936\) 0 0
\(937\) 152.820 + 964.869i 0.163095 + 1.02974i 0.924421 + 0.381373i \(0.124549\pi\)
−0.761326 + 0.648369i \(0.775451\pi\)
\(938\) 0 0
\(939\) 12.7167 4.13191i 0.0135428 0.00440033i
\(940\) 0 0
\(941\) 643.630 467.624i 0.683985 0.496944i −0.190692 0.981650i \(-0.561073\pi\)
0.874677 + 0.484706i \(0.161073\pi\)
\(942\) 0 0
\(943\) −739.353 1451.06i −0.784044 1.53877i
\(944\) 0 0
\(945\) −97.0609 + 32.9577i −0.102710 + 0.0348759i
\(946\) 0 0
\(947\) −1180.84 1180.84i −1.24693 1.24693i −0.957069 0.289860i \(-0.906391\pi\)
−0.289860 0.957069i \(-0.593609\pi\)
\(948\) 0 0
\(949\) 1662.31 + 540.118i 1.75164 + 0.569144i
\(950\) 0 0
\(951\) −137.369 + 99.8045i −0.144447 + 0.104947i
\(952\) 0 0
\(953\) −355.401 181.086i −0.372928 0.190016i 0.257474 0.966285i \(-0.417110\pi\)
−0.630402 + 0.776269i \(0.717110\pi\)
\(954\) 0 0
\(955\) −298.170 + 960.577i −0.312220 + 1.00584i
\(956\) 0 0
\(957\) −28.3570 + 7.66985i −0.0296312 + 0.00801448i
\(958\) 0 0
\(959\) 22.3485 30.7601i 0.0233040 0.0320752i
\(960\) 0 0
\(961\) −251.648 774.493i −0.261860 0.805924i
\(962\) 0 0
\(963\) −163.777 + 1034.05i −0.170070 + 1.07378i
\(964\) 0 0
\(965\) 487.495 500.520i 0.505177 0.518674i
\(966\) 0 0
\(967\) 359.473 + 359.473i 0.371740 + 0.371740i 0.868111 0.496371i \(-0.165334\pi\)
−0.496371 + 0.868111i \(0.665334\pi\)
\(968\) 0 0
\(969\) 210.382i 0.217113i
\(970\) 0 0
\(971\) 95.5922 294.203i 0.0984472 0.302989i −0.889690 0.456566i \(-0.849079\pi\)
0.988137 + 0.153577i \(0.0490792\pi\)
\(972\) 0 0
\(973\) −6.53737 + 41.2753i −0.00671878 + 0.0424207i
\(974\) 0 0
\(975\) −101.525 + 147.777i −0.104128 + 0.151567i
\(976\) 0 0
\(977\) 24.6680 + 155.748i 0.0252487 + 0.159414i 0.997091 0.0762171i \(-0.0242842\pi\)
−0.971843 + 0.235631i \(0.924284\pi\)
\(978\) 0 0
\(979\) −300.359 172.471i −0.306802 0.176170i
\(980\) 0 0
\(981\) 518.982 + 377.062i 0.529033 + 0.384365i
\(982\) 0 0
\(983\) −123.000 62.6716i −0.125127 0.0637554i 0.390306 0.920685i \(-0.372369\pi\)
−0.515433 + 0.856930i \(0.672369\pi\)
\(984\) 0 0
\(985\) −88.2529 513.319i −0.0895968 0.521136i
\(986\) 0 0
\(987\) −36.9877 + 18.8462i −0.0374749 + 0.0190944i
\(988\) 0 0
\(989\) 627.570i 0.634550i
\(990\) 0 0
\(991\) 144.588 0.145901 0.0729505 0.997336i \(-0.476758\pi\)
0.0729505 + 0.997336i \(0.476758\pi\)
\(992\) 0 0
\(993\) 75.2968 + 147.778i 0.0758275 + 0.148820i
\(994\) 0 0
\(995\) 922.378 1305.39i 0.927013 1.31195i
\(996\) 0 0
\(997\) 759.730 1491.05i 0.762016 1.49554i −0.103484 0.994631i \(-0.532999\pi\)
0.865500 0.500909i \(-0.167001\pi\)
\(998\) 0 0
\(999\) 140.450 193.313i 0.140591 0.193507i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 220.3.x.a.37.6 96
5.3 odd 4 inner 220.3.x.a.213.7 yes 96
11.3 even 5 inner 220.3.x.a.157.7 yes 96
55.3 odd 20 inner 220.3.x.a.113.6 yes 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
220.3.x.a.37.6 96 1.1 even 1 trivial
220.3.x.a.113.6 yes 96 55.3 odd 20 inner
220.3.x.a.157.7 yes 96 11.3 even 5 inner
220.3.x.a.213.7 yes 96 5.3 odd 4 inner