Properties

Label 220.3.x.a.53.7
Level $220$
Weight $3$
Character 220.53
Analytic conductor $5.995$
Analytic rank $0$
Dimension $96$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [220,3,Mod(37,220)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(220, base_ring=CyclotomicField(20))
 
chi = DirichletCharacter(H, H._module([0, 5, 4]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("220.37");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 220 = 2^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 220.x (of order \(20\), degree \(8\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.99456581593\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(12\) over \(\Q(\zeta_{20})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 53.7
Character \(\chi\) \(=\) 220.53
Dual form 220.3.x.a.137.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.350343 - 0.0554888i) q^{3} +(2.67198 + 4.22617i) q^{5} +(-12.2603 + 1.94184i) q^{7} +(-8.43985 - 2.74227i) q^{9} +(8.92266 - 6.43321i) q^{11} +(-18.8590 + 9.60916i) q^{13} +(-0.701602 - 1.62887i) q^{15} +(7.21907 + 3.67830i) q^{17} +(-18.4082 - 25.3367i) q^{19} +4.40304 q^{21} +(8.87555 + 8.87555i) q^{23} +(-10.7211 + 22.5845i) q^{25} +(5.64911 + 2.87837i) q^{27} +(-28.0576 + 38.6180i) q^{29} +(-4.52004 + 13.9112i) q^{31} +(-3.48296 + 1.75872i) q^{33} +(-40.9657 - 46.6255i) q^{35} +(-22.0242 + 3.48830i) q^{37} +(7.14033 - 2.32003i) q^{39} +(8.10462 - 5.88835i) q^{41} +(13.3511 + 13.3511i) q^{43} +(-10.9618 - 42.9955i) q^{45} +(-4.66029 + 29.4239i) q^{47} +(99.9416 - 32.4730i) q^{49} +(-2.32504 - 1.68924i) q^{51} +(50.6879 - 25.8268i) q^{53} +(51.0290 + 20.5193i) q^{55} +(5.04327 + 9.89797i) q^{57} +(36.4128 - 50.1180i) q^{59} +(6.77803 + 20.8606i) q^{61} +(108.800 + 17.2322i) q^{63} +(-91.0009 - 54.0261i) q^{65} +(-23.8508 + 23.8508i) q^{67} +(-2.61699 - 3.60198i) q^{69} +(-18.0597 - 55.5820i) q^{71} +(7.12433 + 44.9812i) q^{73} +(5.00924 - 7.31740i) q^{75} +(-96.9019 + 96.1992i) q^{77} +(-23.1431 - 7.51964i) q^{79} +(62.7949 + 45.6231i) q^{81} +(26.4738 - 51.9577i) q^{83} +(3.74405 + 40.3373i) q^{85} +(11.9726 - 11.9726i) q^{87} +72.5414i q^{89} +(212.557 - 154.432i) q^{91} +(2.35548 - 4.62289i) q^{93} +(57.8910 - 145.495i) q^{95} +(40.7619 + 79.9997i) q^{97} +(-92.9475 + 29.8269i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q - 2 q^{3} + 4 q^{5} - 2 q^{7} - 20 q^{11} - 8 q^{13} + 88 q^{15} + 42 q^{17} + 56 q^{21} - 104 q^{23} - 126 q^{25} - 14 q^{27} - 32 q^{31} + 52 q^{33} + 56 q^{35} - 134 q^{37} + 24 q^{41} + 332 q^{43}+ \cdots - 310 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/220\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(111\) \(177\)
\(\chi(n)\) \(e\left(\frac{3}{5}\right)\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.350343 0.0554888i −0.116781 0.0184963i 0.0977704 0.995209i \(-0.468829\pi\)
−0.214551 + 0.976713i \(0.568829\pi\)
\(4\) 0 0
\(5\) 2.67198 + 4.22617i 0.534395 + 0.845235i
\(6\) 0 0
\(7\) −12.2603 + 1.94184i −1.75147 + 0.277405i −0.948075 0.318047i \(-0.896973\pi\)
−0.803391 + 0.595452i \(0.796973\pi\)
\(8\) 0 0
\(9\) −8.43985 2.74227i −0.937761 0.304697i
\(10\) 0 0
\(11\) 8.92266 6.43321i 0.811151 0.584837i
\(12\) 0 0
\(13\) −18.8590 + 9.60916i −1.45070 + 0.739166i −0.989006 0.147875i \(-0.952757\pi\)
−0.461690 + 0.887041i \(0.652757\pi\)
\(14\) 0 0
\(15\) −0.701602 1.62887i −0.0467735 0.108592i
\(16\) 0 0
\(17\) 7.21907 + 3.67830i 0.424651 + 0.216370i 0.653237 0.757153i \(-0.273410\pi\)
−0.228586 + 0.973524i \(0.573410\pi\)
\(18\) 0 0
\(19\) −18.4082 25.3367i −0.968852 1.33351i −0.942625 0.333855i \(-0.891651\pi\)
−0.0262275 0.999656i \(-0.508349\pi\)
\(20\) 0 0
\(21\) 4.40304 0.209669
\(22\) 0 0
\(23\) 8.87555 + 8.87555i 0.385893 + 0.385893i 0.873220 0.487326i \(-0.162028\pi\)
−0.487326 + 0.873220i \(0.662028\pi\)
\(24\) 0 0
\(25\) −10.7211 + 22.5845i −0.428843 + 0.903379i
\(26\) 0 0
\(27\) 5.64911 + 2.87837i 0.209226 + 0.106606i
\(28\) 0 0
\(29\) −28.0576 + 38.6180i −0.967503 + 1.33165i −0.0242052 + 0.999707i \(0.507706\pi\)
−0.943298 + 0.331947i \(0.892294\pi\)
\(30\) 0 0
\(31\) −4.52004 + 13.9112i −0.145808 + 0.448750i −0.997114 0.0759191i \(-0.975811\pi\)
0.851306 + 0.524669i \(0.175811\pi\)
\(32\) 0 0
\(33\) −3.48296 + 1.75872i −0.105544 + 0.0532945i
\(34\) 0 0
\(35\) −40.9657 46.6255i −1.17045 1.33216i
\(36\) 0 0
\(37\) −22.0242 + 3.48830i −0.595250 + 0.0942783i −0.446788 0.894640i \(-0.647432\pi\)
−0.148462 + 0.988918i \(0.547432\pi\)
\(38\) 0 0
\(39\) 7.14033 2.32003i 0.183085 0.0594880i
\(40\) 0 0
\(41\) 8.10462 5.88835i 0.197674 0.143618i −0.484545 0.874766i \(-0.661015\pi\)
0.682219 + 0.731148i \(0.261015\pi\)
\(42\) 0 0
\(43\) 13.3511 + 13.3511i 0.310491 + 0.310491i 0.845100 0.534609i \(-0.179541\pi\)
−0.534609 + 0.845100i \(0.679541\pi\)
\(44\) 0 0
\(45\) −10.9618 42.9955i −0.243595 0.955457i
\(46\) 0 0
\(47\) −4.66029 + 29.4239i −0.0991552 + 0.626041i 0.887197 + 0.461391i \(0.152650\pi\)
−0.986352 + 0.164650i \(0.947350\pi\)
\(48\) 0 0
\(49\) 99.9416 32.4730i 2.03962 0.662714i
\(50\) 0 0
\(51\) −2.32504 1.68924i −0.0455891 0.0331224i
\(52\) 0 0
\(53\) 50.6879 25.8268i 0.956375 0.487297i 0.0951173 0.995466i \(-0.469677\pi\)
0.861258 + 0.508169i \(0.169677\pi\)
\(54\) 0 0
\(55\) 51.0290 + 20.5193i 0.927800 + 0.373078i
\(56\) 0 0
\(57\) 5.04327 + 9.89797i 0.0884784 + 0.173649i
\(58\) 0 0
\(59\) 36.4128 50.1180i 0.617167 0.849457i −0.379976 0.924996i \(-0.624068\pi\)
0.997143 + 0.0755390i \(0.0240677\pi\)
\(60\) 0 0
\(61\) 6.77803 + 20.8606i 0.111115 + 0.341978i 0.991117 0.132993i \(-0.0424587\pi\)
−0.880002 + 0.474971i \(0.842459\pi\)
\(62\) 0 0
\(63\) 108.800 + 17.2322i 1.72698 + 0.273527i
\(64\) 0 0
\(65\) −91.0009 54.0261i −1.40001 0.831171i
\(66\) 0 0
\(67\) −23.8508 + 23.8508i −0.355983 + 0.355983i −0.862330 0.506347i \(-0.830995\pi\)
0.506347 + 0.862330i \(0.330995\pi\)
\(68\) 0 0
\(69\) −2.61699 3.60198i −0.0379274 0.0522025i
\(70\) 0 0
\(71\) −18.0597 55.5820i −0.254362 0.782845i −0.993955 0.109790i \(-0.964982\pi\)
0.739593 0.673054i \(-0.235018\pi\)
\(72\) 0 0
\(73\) 7.12433 + 44.9812i 0.0975935 + 0.616181i 0.987204 + 0.159461i \(0.0509758\pi\)
−0.889611 + 0.456720i \(0.849024\pi\)
\(74\) 0 0
\(75\) 5.00924 7.31740i 0.0667898 0.0975654i
\(76\) 0 0
\(77\) −96.9019 + 96.1992i −1.25847 + 1.24934i
\(78\) 0 0
\(79\) −23.1431 7.51964i −0.292950 0.0951853i 0.158855 0.987302i \(-0.449220\pi\)
−0.451805 + 0.892117i \(0.649220\pi\)
\(80\) 0 0
\(81\) 62.7949 + 45.6231i 0.775245 + 0.563249i
\(82\) 0 0
\(83\) 26.4738 51.9577i 0.318961 0.625997i −0.674740 0.738055i \(-0.735744\pi\)
0.993702 + 0.112058i \(0.0357443\pi\)
\(84\) 0 0
\(85\) 3.74405 + 40.3373i 0.0440477 + 0.474557i
\(86\) 0 0
\(87\) 11.9726 11.9726i 0.137617 0.137617i
\(88\) 0 0
\(89\) 72.5414i 0.815072i 0.913189 + 0.407536i \(0.133612\pi\)
−0.913189 + 0.407536i \(0.866388\pi\)
\(90\) 0 0
\(91\) 212.557 154.432i 2.33580 1.69706i
\(92\) 0 0
\(93\) 2.35548 4.62289i 0.0253277 0.0497085i
\(94\) 0 0
\(95\) 57.8910 145.495i 0.609379 1.53153i
\(96\) 0 0
\(97\) 40.7619 + 79.9997i 0.420226 + 0.824740i 0.999951 + 0.00992731i \(0.00316001\pi\)
−0.579725 + 0.814812i \(0.696840\pi\)
\(98\) 0 0
\(99\) −92.9475 + 29.8269i −0.938863 + 0.301282i
\(100\) 0 0
\(101\) −33.0013 + 101.568i −0.326745 + 1.00562i 0.643901 + 0.765109i \(0.277315\pi\)
−0.970647 + 0.240510i \(0.922685\pi\)
\(102\) 0 0
\(103\) −15.8418 100.021i −0.153804 0.971079i −0.937006 0.349313i \(-0.886415\pi\)
0.783202 0.621767i \(-0.213585\pi\)
\(104\) 0 0
\(105\) 11.7648 + 18.6080i 0.112046 + 0.177219i
\(106\) 0 0
\(107\) −26.8561 + 169.563i −0.250992 + 1.58470i 0.464172 + 0.885745i \(0.346352\pi\)
−0.715164 + 0.698956i \(0.753648\pi\)
\(108\) 0 0
\(109\) 161.851i 1.48487i −0.669919 0.742435i \(-0.733671\pi\)
0.669919 0.742435i \(-0.266329\pi\)
\(110\) 0 0
\(111\) 7.90959 0.0712576
\(112\) 0 0
\(113\) −170.989 27.0819i −1.51317 0.239663i −0.656028 0.754737i \(-0.727765\pi\)
−0.857146 + 0.515073i \(0.827765\pi\)
\(114\) 0 0
\(115\) −13.7943 + 61.2249i −0.119951 + 0.532390i
\(116\) 0 0
\(117\) 185.518 29.3832i 1.58563 0.251139i
\(118\) 0 0
\(119\) −95.6503 31.0787i −0.803784 0.261165i
\(120\) 0 0
\(121\) 38.2276 114.803i 0.315931 0.948782i
\(122\) 0 0
\(123\) −3.16613 + 1.61322i −0.0257409 + 0.0131156i
\(124\) 0 0
\(125\) −124.092 + 15.0361i −0.992739 + 0.120288i
\(126\) 0 0
\(127\) −184.032 93.7688i −1.44907 0.738337i −0.460295 0.887766i \(-0.652256\pi\)
−0.988772 + 0.149429i \(0.952256\pi\)
\(128\) 0 0
\(129\) −3.93662 5.41830i −0.0305165 0.0420023i
\(130\) 0 0
\(131\) 13.3339 0.101785 0.0508927 0.998704i \(-0.483793\pi\)
0.0508927 + 0.998704i \(0.483793\pi\)
\(132\) 0 0
\(133\) 274.889 + 274.889i 2.06683 + 2.06683i
\(134\) 0 0
\(135\) 2.92982 + 31.5650i 0.0217024 + 0.233815i
\(136\) 0 0
\(137\) −70.4787 35.9107i −0.514443 0.262122i 0.177440 0.984132i \(-0.443218\pi\)
−0.691883 + 0.722010i \(0.743218\pi\)
\(138\) 0 0
\(139\) 11.2988 15.5514i 0.0812862 0.111881i −0.766438 0.642319i \(-0.777973\pi\)
0.847724 + 0.530438i \(0.177973\pi\)
\(140\) 0 0
\(141\) 3.26540 10.0499i 0.0231589 0.0712756i
\(142\) 0 0
\(143\) −106.455 + 207.063i −0.744441 + 1.44800i
\(144\) 0 0
\(145\) −238.175 15.3899i −1.64259 0.106138i
\(146\) 0 0
\(147\) −36.8157 + 5.83103i −0.250447 + 0.0396669i
\(148\) 0 0
\(149\) −94.0120 + 30.5463i −0.630953 + 0.205009i −0.606997 0.794704i \(-0.707626\pi\)
−0.0239556 + 0.999713i \(0.507626\pi\)
\(150\) 0 0
\(151\) −16.7508 + 12.1702i −0.110932 + 0.0805972i −0.641868 0.766815i \(-0.721840\pi\)
0.530936 + 0.847412i \(0.321840\pi\)
\(152\) 0 0
\(153\) −50.8409 50.8409i −0.332294 0.332294i
\(154\) 0 0
\(155\) −70.8688 + 18.0681i −0.457218 + 0.116568i
\(156\) 0 0
\(157\) −27.1588 + 171.474i −0.172986 + 1.09219i 0.736495 + 0.676443i \(0.236479\pi\)
−0.909481 + 0.415746i \(0.863521\pi\)
\(158\) 0 0
\(159\) −19.1912 + 6.23560i −0.120699 + 0.0392176i
\(160\) 0 0
\(161\) −126.051 91.5817i −0.782928 0.568830i
\(162\) 0 0
\(163\) −205.471 + 104.693i −1.26056 + 0.642287i −0.951176 0.308650i \(-0.900123\pi\)
−0.309384 + 0.950937i \(0.600123\pi\)
\(164\) 0 0
\(165\) −16.7390 10.0203i −0.101449 0.0607292i
\(166\) 0 0
\(167\) −62.0509 121.782i −0.371562 0.729232i 0.627206 0.778853i \(-0.284198\pi\)
−0.998768 + 0.0496218i \(0.984198\pi\)
\(168\) 0 0
\(169\) 163.992 225.715i 0.970366 1.33559i
\(170\) 0 0
\(171\) 85.8822 + 264.318i 0.502235 + 1.54572i
\(172\) 0 0
\(173\) 190.255 + 30.1335i 1.09974 + 0.174182i 0.679820 0.733379i \(-0.262058\pi\)
0.419921 + 0.907561i \(0.362058\pi\)
\(174\) 0 0
\(175\) 87.5879 297.710i 0.500503 1.70120i
\(176\) 0 0
\(177\) −15.5380 + 15.5380i −0.0877851 + 0.0877851i
\(178\) 0 0
\(179\) 93.6028 + 128.833i 0.522921 + 0.719739i 0.986031 0.166562i \(-0.0532666\pi\)
−0.463110 + 0.886301i \(0.653267\pi\)
\(180\) 0 0
\(181\) 7.83564 + 24.1156i 0.0432908 + 0.133235i 0.970366 0.241640i \(-0.0776854\pi\)
−0.927075 + 0.374876i \(0.877685\pi\)
\(182\) 0 0
\(183\) −1.21710 7.68448i −0.00665083 0.0419917i
\(184\) 0 0
\(185\) −73.5904 83.7576i −0.397786 0.452744i
\(186\) 0 0
\(187\) 88.0765 13.6216i 0.470997 0.0728426i
\(188\) 0 0
\(189\) −74.8489 24.3199i −0.396026 0.128677i
\(190\) 0 0
\(191\) 62.3456 + 45.2967i 0.326417 + 0.237156i 0.738909 0.673806i \(-0.235341\pi\)
−0.412492 + 0.910961i \(0.635341\pi\)
\(192\) 0 0
\(193\) 8.54851 16.7774i 0.0442928 0.0869295i −0.867799 0.496915i \(-0.834466\pi\)
0.912092 + 0.409985i \(0.134466\pi\)
\(194\) 0 0
\(195\) 28.8837 + 23.9772i 0.148121 + 0.122960i
\(196\) 0 0
\(197\) −40.9468 + 40.9468i −0.207852 + 0.207852i −0.803354 0.595502i \(-0.796953\pi\)
0.595502 + 0.803354i \(0.296953\pi\)
\(198\) 0 0
\(199\) 318.283i 1.59941i 0.600393 + 0.799705i \(0.295011\pi\)
−0.600393 + 0.799705i \(0.704989\pi\)
\(200\) 0 0
\(201\) 9.67942 7.03251i 0.0481563 0.0349876i
\(202\) 0 0
\(203\) 269.004 527.950i 1.32514 2.60074i
\(204\) 0 0
\(205\) 46.5406 + 18.5180i 0.227027 + 0.0903317i
\(206\) 0 0
\(207\) −50.5691 99.2474i −0.244295 0.479456i
\(208\) 0 0
\(209\) −327.246 107.647i −1.56577 0.515057i
\(210\) 0 0
\(211\) −75.2908 + 231.721i −0.356828 + 1.09820i 0.598113 + 0.801412i \(0.295917\pi\)
−0.954942 + 0.296793i \(0.904083\pi\)
\(212\) 0 0
\(213\) 3.24290 + 20.4748i 0.0152249 + 0.0961260i
\(214\) 0 0
\(215\) −20.7502 + 92.0979i −0.0965127 + 0.428362i
\(216\) 0 0
\(217\) 28.4035 179.333i 0.130892 0.826418i
\(218\) 0 0
\(219\) 16.1542i 0.0737633i
\(220\) 0 0
\(221\) −171.490 −0.775973
\(222\) 0 0
\(223\) −0.586386 0.0928744i −0.00262953 0.000416477i 0.155120 0.987896i \(-0.450424\pi\)
−0.157749 + 0.987479i \(0.550424\pi\)
\(224\) 0 0
\(225\) 152.417 161.209i 0.677409 0.716486i
\(226\) 0 0
\(227\) −202.161 + 32.0192i −0.890577 + 0.141054i −0.584923 0.811089i \(-0.698875\pi\)
−0.305654 + 0.952143i \(0.598875\pi\)
\(228\) 0 0
\(229\) 180.637 + 58.6926i 0.788809 + 0.256300i 0.675597 0.737271i \(-0.263886\pi\)
0.113212 + 0.993571i \(0.463886\pi\)
\(230\) 0 0
\(231\) 39.2868 28.3257i 0.170073 0.122622i
\(232\) 0 0
\(233\) −61.7968 + 31.4870i −0.265222 + 0.135137i −0.581545 0.813514i \(-0.697552\pi\)
0.316323 + 0.948652i \(0.397552\pi\)
\(234\) 0 0
\(235\) −136.803 + 58.9249i −0.582140 + 0.250744i
\(236\) 0 0
\(237\) 7.69075 + 3.91863i 0.0324504 + 0.0165343i
\(238\) 0 0
\(239\) 141.009 + 194.083i 0.589998 + 0.812062i 0.994747 0.102365i \(-0.0326411\pi\)
−0.404749 + 0.914428i \(0.632641\pi\)
\(240\) 0 0
\(241\) −149.627 −0.620857 −0.310429 0.950597i \(-0.600473\pi\)
−0.310429 + 0.950597i \(0.600473\pi\)
\(242\) 0 0
\(243\) −59.8166 59.8166i −0.246159 0.246159i
\(244\) 0 0
\(245\) 404.278 + 335.603i 1.65011 + 1.36981i
\(246\) 0 0
\(247\) 590.625 + 300.939i 2.39120 + 1.21838i
\(248\) 0 0
\(249\) −12.1580 + 16.7340i −0.0488272 + 0.0672049i
\(250\) 0 0
\(251\) 69.3075 213.307i 0.276126 0.849827i −0.712794 0.701374i \(-0.752570\pi\)
0.988919 0.148454i \(-0.0474296\pi\)
\(252\) 0 0
\(253\) 136.292 + 22.0952i 0.538702 + 0.0873329i
\(254\) 0 0
\(255\) 0.926570 14.3396i 0.00363361 0.0562339i
\(256\) 0 0
\(257\) 309.762 49.0615i 1.20530 0.190901i 0.478710 0.877973i \(-0.341104\pi\)
0.726589 + 0.687072i \(0.241104\pi\)
\(258\) 0 0
\(259\) 263.249 85.5349i 1.01641 0.330250i
\(260\) 0 0
\(261\) 342.703 248.988i 1.31304 0.953978i
\(262\) 0 0
\(263\) −110.511 110.511i −0.420194 0.420194i 0.465077 0.885270i \(-0.346027\pi\)
−0.885270 + 0.465077i \(0.846027\pi\)
\(264\) 0 0
\(265\) 244.585 + 145.207i 0.922963 + 0.547952i
\(266\) 0 0
\(267\) 4.02524 25.4143i 0.0150758 0.0951848i
\(268\) 0 0
\(269\) 328.445 106.718i 1.22098 0.396722i 0.373544 0.927613i \(-0.378143\pi\)
0.847440 + 0.530891i \(0.178143\pi\)
\(270\) 0 0
\(271\) −298.886 217.153i −1.10290 0.801303i −0.121369 0.992608i \(-0.538728\pi\)
−0.981531 + 0.191304i \(0.938728\pi\)
\(272\) 0 0
\(273\) −83.0372 + 42.3096i −0.304166 + 0.154980i
\(274\) 0 0
\(275\) 49.6301 + 270.484i 0.180473 + 0.983580i
\(276\) 0 0
\(277\) −194.904 382.521i −0.703626 1.38094i −0.914966 0.403531i \(-0.867783\pi\)
0.211340 0.977413i \(-0.432217\pi\)
\(278\) 0 0
\(279\) 76.2969 105.014i 0.273465 0.376393i
\(280\) 0 0
\(281\) −31.5789 97.1898i −0.112380 0.345871i 0.879011 0.476801i \(-0.158204\pi\)
−0.991392 + 0.130930i \(0.958204\pi\)
\(282\) 0 0
\(283\) −344.690 54.5935i −1.21799 0.192910i −0.485834 0.874051i \(-0.661484\pi\)
−0.732152 + 0.681141i \(0.761484\pi\)
\(284\) 0 0
\(285\) −28.3551 + 47.7609i −0.0994914 + 0.167582i
\(286\) 0 0
\(287\) −87.9306 + 87.9306i −0.306378 + 0.306378i
\(288\) 0 0
\(289\) −131.285 180.698i −0.454273 0.625253i
\(290\) 0 0
\(291\) −9.84154 30.2891i −0.0338197 0.104086i
\(292\) 0 0
\(293\) 4.18371 + 26.4149i 0.0142789 + 0.0901532i 0.993799 0.111195i \(-0.0354678\pi\)
−0.979520 + 0.201348i \(0.935468\pi\)
\(294\) 0 0
\(295\) 309.102 + 19.9729i 1.04780 + 0.0677048i
\(296\) 0 0
\(297\) 68.9222 10.6592i 0.232061 0.0358897i
\(298\) 0 0
\(299\) −252.671 82.0978i −0.845053 0.274574i
\(300\) 0 0
\(301\) −189.614 137.762i −0.629946 0.457682i
\(302\) 0 0
\(303\) 17.1976 33.7522i 0.0567578 0.111393i
\(304\) 0 0
\(305\) −70.0499 + 84.3843i −0.229672 + 0.276670i
\(306\) 0 0
\(307\) −10.6495 + 10.6495i −0.0346890 + 0.0346890i −0.724239 0.689550i \(-0.757809\pi\)
0.689550 + 0.724239i \(0.257809\pi\)
\(308\) 0 0
\(309\) 35.9207i 0.116248i
\(310\) 0 0
\(311\) −375.853 + 273.073i −1.20853 + 0.878049i −0.995097 0.0989088i \(-0.968465\pi\)
−0.213434 + 0.976958i \(0.568465\pi\)
\(312\) 0 0
\(313\) −71.6274 + 140.577i −0.228842 + 0.449127i −0.976664 0.214772i \(-0.931099\pi\)
0.747823 + 0.663898i \(0.231099\pi\)
\(314\) 0 0
\(315\) 217.884 + 505.851i 0.691696 + 1.60588i
\(316\) 0 0
\(317\) −91.7142 179.999i −0.289319 0.567821i 0.699904 0.714237i \(-0.253226\pi\)
−0.989223 + 0.146416i \(0.953226\pi\)
\(318\) 0 0
\(319\) −1.91084 + 525.075i −0.00599009 + 1.64600i
\(320\) 0 0
\(321\) 18.8177 57.9149i 0.0586221 0.180420i
\(322\) 0 0
\(323\) −39.6940 250.618i −0.122892 0.775907i
\(324\) 0 0
\(325\) −14.8286 528.942i −0.0456264 1.62751i
\(326\) 0 0
\(327\) −8.98091 + 56.7032i −0.0274645 + 0.173404i
\(328\) 0 0
\(329\) 369.795i 1.12400i
\(330\) 0 0
\(331\) 532.628 1.60915 0.804573 0.593853i \(-0.202394\pi\)
0.804573 + 0.593853i \(0.202394\pi\)
\(332\) 0 0
\(333\) 195.447 + 30.9558i 0.586928 + 0.0929603i
\(334\) 0 0
\(335\) −164.527 37.0689i −0.491124 0.110653i
\(336\) 0 0
\(337\) 280.502 44.4272i 0.832352 0.131832i 0.274307 0.961642i \(-0.411552\pi\)
0.558045 + 0.829811i \(0.311552\pi\)
\(338\) 0 0
\(339\) 58.4019 + 18.9759i 0.172277 + 0.0559762i
\(340\) 0 0
\(341\) 49.1632 + 153.204i 0.144174 + 0.449278i
\(342\) 0 0
\(343\) −620.306 + 316.062i −1.80847 + 0.921463i
\(344\) 0 0
\(345\) 8.23004 20.6842i 0.0238552 0.0599543i
\(346\) 0 0
\(347\) −114.283 58.2303i −0.329347 0.167811i 0.281496 0.959562i \(-0.409169\pi\)
−0.610843 + 0.791752i \(0.709169\pi\)
\(348\) 0 0
\(349\) 271.297 + 373.408i 0.777354 + 1.06994i 0.995569 + 0.0940353i \(0.0299766\pi\)
−0.218215 + 0.975901i \(0.570023\pi\)
\(350\) 0 0
\(351\) −134.196 −0.382323
\(352\) 0 0
\(353\) −79.2335 79.2335i −0.224457 0.224457i 0.585915 0.810373i \(-0.300735\pi\)
−0.810373 + 0.585915i \(0.800735\pi\)
\(354\) 0 0
\(355\) 186.644 224.837i 0.525758 0.633344i
\(356\) 0 0
\(357\) 31.7859 + 16.1957i 0.0890360 + 0.0453661i
\(358\) 0 0
\(359\) 10.1402 13.9568i 0.0282458 0.0388770i −0.794661 0.607054i \(-0.792351\pi\)
0.822906 + 0.568177i \(0.192351\pi\)
\(360\) 0 0
\(361\) −191.532 + 589.474i −0.530559 + 1.63289i
\(362\) 0 0
\(363\) −19.7630 + 38.0991i −0.0544436 + 0.104956i
\(364\) 0 0
\(365\) −171.062 + 150.297i −0.468664 + 0.411774i
\(366\) 0 0
\(367\) 108.237 17.1430i 0.294923 0.0467113i −0.00721945 0.999974i \(-0.502298\pi\)
0.302143 + 0.953263i \(0.402298\pi\)
\(368\) 0 0
\(369\) −84.5492 + 27.4717i −0.229131 + 0.0744491i
\(370\) 0 0
\(371\) −571.295 + 415.070i −1.53988 + 1.11879i
\(372\) 0 0
\(373\) 60.7347 + 60.7347i 0.162828 + 0.162828i 0.783818 0.620990i \(-0.213269\pi\)
−0.620990 + 0.783818i \(0.713269\pi\)
\(374\) 0 0
\(375\) 44.3092 + 1.61797i 0.118158 + 0.00431459i
\(376\) 0 0
\(377\) 158.053 997.908i 0.419239 2.64697i
\(378\) 0 0
\(379\) −648.436 + 210.690i −1.71091 + 0.555909i −0.990485 0.137620i \(-0.956055\pi\)
−0.720428 + 0.693530i \(0.756055\pi\)
\(380\) 0 0
\(381\) 59.2710 + 43.0629i 0.155567 + 0.113026i
\(382\) 0 0
\(383\) 360.399 183.633i 0.940990 0.479459i 0.0849601 0.996384i \(-0.472924\pi\)
0.856030 + 0.516926i \(0.172924\pi\)
\(384\) 0 0
\(385\) −665.474 152.482i −1.72850 0.396058i
\(386\) 0 0
\(387\) −76.0689 149.294i −0.196560 0.385772i
\(388\) 0 0
\(389\) −411.817 + 566.817i −1.05866 + 1.45711i −0.177599 + 0.984103i \(0.556833\pi\)
−0.881056 + 0.473011i \(0.843167\pi\)
\(390\) 0 0
\(391\) 31.4263 + 96.7201i 0.0803740 + 0.247366i
\(392\) 0 0
\(393\) −4.67143 0.739881i −0.0118866 0.00188265i
\(394\) 0 0
\(395\) −30.0584 117.899i −0.0760973 0.298478i
\(396\) 0 0
\(397\) 264.463 264.463i 0.666155 0.666155i −0.290669 0.956824i \(-0.593878\pi\)
0.956824 + 0.290669i \(0.0938778\pi\)
\(398\) 0 0
\(399\) −81.0521 111.559i −0.203138 0.279595i
\(400\) 0 0
\(401\) −84.9644 261.494i −0.211881 0.652104i −0.999360 0.0357621i \(-0.988614\pi\)
0.787479 0.616341i \(-0.211386\pi\)
\(402\) 0 0
\(403\) −48.4318 305.787i −0.120178 0.758776i
\(404\) 0 0
\(405\) −25.0249 + 387.286i −0.0617898 + 0.956262i
\(406\) 0 0
\(407\) −174.074 + 172.811i −0.427700 + 0.424598i
\(408\) 0 0
\(409\) 197.874 + 64.2931i 0.483799 + 0.157196i 0.540754 0.841181i \(-0.318139\pi\)
−0.0569547 + 0.998377i \(0.518139\pi\)
\(410\) 0 0
\(411\) 22.6990 + 16.4918i 0.0552288 + 0.0401261i
\(412\) 0 0
\(413\) −349.110 + 685.168i −0.845303 + 1.65900i
\(414\) 0 0
\(415\) 290.320 26.9471i 0.699566 0.0649327i
\(416\) 0 0
\(417\) −4.82137 + 4.82137i −0.0115620 + 0.0115620i
\(418\) 0 0
\(419\) 8.44454i 0.0201540i 0.999949 + 0.0100770i \(0.00320767\pi\)
−0.999949 + 0.0100770i \(0.996792\pi\)
\(420\) 0 0
\(421\) −391.978 + 284.789i −0.931064 + 0.676458i −0.946253 0.323427i \(-0.895165\pi\)
0.0151892 + 0.999885i \(0.495165\pi\)
\(422\) 0 0
\(423\) 120.021 235.554i 0.283737 0.556865i
\(424\) 0 0
\(425\) −160.469 + 123.603i −0.377573 + 0.290832i
\(426\) 0 0
\(427\) −123.608 242.595i −0.289481 0.568139i
\(428\) 0 0
\(429\) 48.7854 66.6361i 0.113719 0.155329i
\(430\) 0 0
\(431\) −20.6383 + 63.5181i −0.0478847 + 0.147374i −0.972140 0.234401i \(-0.924687\pi\)
0.924255 + 0.381775i \(0.124687\pi\)
\(432\) 0 0
\(433\) −74.2965 469.089i −0.171585 1.08335i −0.911697 0.410863i \(-0.865227\pi\)
0.740112 0.672484i \(-0.234773\pi\)
\(434\) 0 0
\(435\) 82.5890 + 18.6078i 0.189860 + 0.0427766i
\(436\) 0 0
\(437\) 61.4943 388.260i 0.140719 0.888466i
\(438\) 0 0
\(439\) 113.504i 0.258550i −0.991609 0.129275i \(-0.958735\pi\)
0.991609 0.129275i \(-0.0412650\pi\)
\(440\) 0 0
\(441\) −932.542 −2.11461
\(442\) 0 0
\(443\) −284.291 45.0273i −0.641741 0.101642i −0.172921 0.984936i \(-0.555321\pi\)
−0.468820 + 0.883294i \(0.655321\pi\)
\(444\) 0 0
\(445\) −306.573 + 193.829i −0.688927 + 0.435571i
\(446\) 0 0
\(447\) 34.6314 5.48507i 0.0774751 0.0122709i
\(448\) 0 0
\(449\) 57.4458 + 18.6653i 0.127942 + 0.0415707i 0.372288 0.928117i \(-0.378573\pi\)
−0.244346 + 0.969688i \(0.578573\pi\)
\(450\) 0 0
\(451\) 34.4338 104.678i 0.0763498 0.232103i
\(452\) 0 0
\(453\) 6.54383 3.33425i 0.0144455 0.00736037i
\(454\) 0 0
\(455\) 1220.61 + 485.666i 2.68265 + 1.06740i
\(456\) 0 0
\(457\) 370.313 + 188.684i 0.810313 + 0.412875i 0.809497 0.587124i \(-0.199740\pi\)
0.000816565 1.00000i \(0.499740\pi\)
\(458\) 0 0
\(459\) 30.1938 + 41.5582i 0.0657817 + 0.0905408i
\(460\) 0 0
\(461\) 816.237 1.77058 0.885290 0.465039i \(-0.153960\pi\)
0.885290 + 0.465039i \(0.153960\pi\)
\(462\) 0 0
\(463\) −211.921 211.921i −0.457712 0.457712i 0.440192 0.897904i \(-0.354910\pi\)
−0.897904 + 0.440192i \(0.854910\pi\)
\(464\) 0 0
\(465\) 25.8309 2.39759i 0.0555504 0.00515610i
\(466\) 0 0
\(467\) −167.892 85.5450i −0.359511 0.183180i 0.264900 0.964276i \(-0.414661\pi\)
−0.624411 + 0.781096i \(0.714661\pi\)
\(468\) 0 0
\(469\) 246.103 338.732i 0.524740 0.722243i
\(470\) 0 0
\(471\) 19.0297 58.5675i 0.0404028 0.124347i
\(472\) 0 0
\(473\) 205.018 + 33.2369i 0.433441 + 0.0702682i
\(474\) 0 0
\(475\) 769.572 144.103i 1.62015 0.303374i
\(476\) 0 0
\(477\) −498.622 + 78.9739i −1.04533 + 0.165564i
\(478\) 0 0
\(479\) 38.5182 12.5153i 0.0804137 0.0261280i −0.268534 0.963270i \(-0.586539\pi\)
0.348948 + 0.937142i \(0.386539\pi\)
\(480\) 0 0
\(481\) 381.836 277.420i 0.793839 0.576758i
\(482\) 0 0
\(483\) 39.0794 + 39.0794i 0.0809098 + 0.0809098i
\(484\) 0 0
\(485\) −229.178 + 386.024i −0.472532 + 0.795926i
\(486\) 0 0
\(487\) 29.4028 185.642i 0.0603754 0.381195i −0.938936 0.344092i \(-0.888187\pi\)
0.999311 0.0371035i \(-0.0118131\pi\)
\(488\) 0 0
\(489\) 77.7946 25.2770i 0.159089 0.0516912i
\(490\) 0 0
\(491\) 158.315 + 115.023i 0.322434 + 0.234262i 0.737213 0.675660i \(-0.236141\pi\)
−0.414779 + 0.909922i \(0.636141\pi\)
\(492\) 0 0
\(493\) −344.598 + 175.581i −0.698982 + 0.356149i
\(494\) 0 0
\(495\) −374.407 313.115i −0.756379 0.632556i
\(496\) 0 0
\(497\) 329.348 + 646.381i 0.662671 + 1.30057i
\(498\) 0 0
\(499\) −311.179 + 428.301i −0.623605 + 0.858319i −0.997609 0.0691080i \(-0.977985\pi\)
0.374004 + 0.927427i \(0.377985\pi\)
\(500\) 0 0
\(501\) 14.9815 + 46.1084i 0.0299033 + 0.0920328i
\(502\) 0 0
\(503\) 228.733 + 36.2277i 0.454738 + 0.0720234i 0.379602 0.925150i \(-0.376061\pi\)
0.0751357 + 0.997173i \(0.476061\pi\)
\(504\) 0 0
\(505\) −517.421 + 131.917i −1.02460 + 0.261222i
\(506\) 0 0
\(507\) −69.9780 + 69.9780i −0.138024 + 0.138024i
\(508\) 0 0
\(509\) 545.647 + 751.019i 1.07200 + 1.47548i 0.868037 + 0.496500i \(0.165382\pi\)
0.203962 + 0.978979i \(0.434618\pi\)
\(510\) 0 0
\(511\) −174.692 537.647i −0.341863 1.05215i
\(512\) 0 0
\(513\) −31.0616 196.115i −0.0605490 0.382291i
\(514\) 0 0
\(515\) 380.378 334.204i 0.738598 0.648941i
\(516\) 0 0
\(517\) 147.708 + 292.520i 0.285702 + 0.565804i
\(518\) 0 0
\(519\) −64.9825 21.1141i −0.125207 0.0406822i
\(520\) 0 0
\(521\) −527.372 383.158i −1.01223 0.735428i −0.0475546 0.998869i \(-0.515143\pi\)
−0.964676 + 0.263440i \(0.915143\pi\)
\(522\) 0 0
\(523\) −251.596 + 493.784i −0.481062 + 0.944138i 0.515143 + 0.857104i \(0.327739\pi\)
−0.996205 + 0.0870338i \(0.972261\pi\)
\(524\) 0 0
\(525\) −47.2054 + 99.4404i −0.0899150 + 0.189410i
\(526\) 0 0
\(527\) −83.8002 + 83.8002i −0.159014 + 0.159014i
\(528\) 0 0
\(529\) 371.449i 0.702173i
\(530\) 0 0
\(531\) −444.756 + 323.134i −0.837582 + 0.608539i
\(532\) 0 0
\(533\) −96.2633 + 188.927i −0.180607 + 0.354460i
\(534\) 0 0
\(535\) −788.362 + 339.570i −1.47357 + 0.634710i
\(536\) 0 0
\(537\) −25.6442 50.3297i −0.0477547 0.0937238i
\(538\) 0 0
\(539\) 682.839 932.691i 1.26686 1.73041i
\(540\) 0 0
\(541\) 285.480 878.616i 0.527689 1.62406i −0.231249 0.972895i \(-0.574281\pi\)
0.758937 0.651164i \(-0.225719\pi\)
\(542\) 0 0
\(543\) −1.40701 8.88352i −0.00259118 0.0163601i
\(544\) 0 0
\(545\) 684.009 432.461i 1.25506 0.793507i
\(546\) 0 0
\(547\) −118.583 + 748.704i −0.216788 + 1.36875i 0.603759 + 0.797167i \(0.293669\pi\)
−0.820547 + 0.571579i \(0.806331\pi\)
\(548\) 0 0
\(549\) 194.648i 0.354550i
\(550\) 0 0
\(551\) 1494.94 2.71314
\(552\) 0 0
\(553\) 298.342 + 47.2527i 0.539497 + 0.0854480i
\(554\) 0 0
\(555\) 21.1342 + 33.4273i 0.0380797 + 0.0602294i
\(556\) 0 0
\(557\) 711.018 112.614i 1.27651 0.202180i 0.518873 0.854851i \(-0.326352\pi\)
0.757641 + 0.652672i \(0.226352\pi\)
\(558\) 0 0
\(559\) −380.082 123.496i −0.679932 0.220923i
\(560\) 0 0
\(561\) −31.6128 0.115044i −0.0563508 0.000205070i
\(562\) 0 0
\(563\) 679.556 346.251i 1.20703 0.615010i 0.269525 0.962993i \(-0.413133\pi\)
0.937501 + 0.347983i \(0.113133\pi\)
\(564\) 0 0
\(565\) −342.425 794.990i −0.606062 1.40706i
\(566\) 0 0
\(567\) −858.474 437.414i −1.51406 0.771454i
\(568\) 0 0
\(569\) −406.990 560.173i −0.715272 0.984487i −0.999668 0.0257802i \(-0.991793\pi\)
0.284396 0.958707i \(-0.408207\pi\)
\(570\) 0 0
\(571\) 468.711 0.820860 0.410430 0.911892i \(-0.365379\pi\)
0.410430 + 0.911892i \(0.365379\pi\)
\(572\) 0 0
\(573\) −19.3289 19.3289i −0.0337327 0.0337327i
\(574\) 0 0
\(575\) −295.605 + 105.294i −0.514096 + 0.183120i
\(576\) 0 0
\(577\) 873.348 + 444.993i 1.51360 + 0.771218i 0.996411 0.0846520i \(-0.0269779\pi\)
0.517191 + 0.855870i \(0.326978\pi\)
\(578\) 0 0
\(579\) −3.92586 + 5.40349i −0.00678042 + 0.00933245i
\(580\) 0 0
\(581\) −223.682 + 688.423i −0.384995 + 1.18489i
\(582\) 0 0
\(583\) 286.122 556.529i 0.490774 0.954595i
\(584\) 0 0
\(585\) 619.880 + 705.522i 1.05962 + 1.20602i
\(586\) 0 0
\(587\) 831.311 131.667i 1.41620 0.224304i 0.599043 0.800717i \(-0.295548\pi\)
0.817159 + 0.576412i \(0.195548\pi\)
\(588\) 0 0
\(589\) 435.671 141.558i 0.739679 0.240336i
\(590\) 0 0
\(591\) 16.6175 12.0733i 0.0281176 0.0204286i
\(592\) 0 0
\(593\) 607.974 + 607.974i 1.02525 + 1.02525i 0.999673 + 0.0255782i \(0.00814267\pi\)
0.0255782 + 0.999673i \(0.491857\pi\)
\(594\) 0 0
\(595\) −124.232 487.276i −0.208793 0.818952i
\(596\) 0 0
\(597\) 17.6611 111.508i 0.0295831 0.186781i
\(598\) 0 0
\(599\) 61.8895 20.1091i 0.103321 0.0335711i −0.256900 0.966438i \(-0.582701\pi\)
0.360221 + 0.932867i \(0.382701\pi\)
\(600\) 0 0
\(601\) 246.929 + 179.404i 0.410864 + 0.298510i 0.773951 0.633245i \(-0.218277\pi\)
−0.363088 + 0.931755i \(0.618277\pi\)
\(602\) 0 0
\(603\) 266.703 135.892i 0.442293 0.225360i
\(604\) 0 0
\(605\) 587.319 145.193i 0.970776 0.239989i
\(606\) 0 0
\(607\) 30.4016 + 59.6664i 0.0500849 + 0.0982972i 0.914692 0.404151i \(-0.132433\pi\)
−0.864607 + 0.502448i \(0.832433\pi\)
\(608\) 0 0
\(609\) −123.539 + 170.037i −0.202855 + 0.279206i
\(610\) 0 0
\(611\) −194.851 599.689i −0.318905 0.981488i
\(612\) 0 0
\(613\) −506.882 80.2823i −0.826888 0.130966i −0.271375 0.962474i \(-0.587478\pi\)
−0.555513 + 0.831508i \(0.687478\pi\)
\(614\) 0 0
\(615\) −15.2776 9.07012i −0.0248416 0.0147482i
\(616\) 0 0
\(617\) −593.471 + 593.471i −0.961866 + 0.961866i −0.999299 0.0374332i \(-0.988082\pi\)
0.0374332 + 0.999299i \(0.488082\pi\)
\(618\) 0 0
\(619\) 677.380 + 932.333i 1.09431 + 1.50619i 0.842715 + 0.538360i \(0.180956\pi\)
0.251598 + 0.967832i \(0.419044\pi\)
\(620\) 0 0
\(621\) 24.5919 + 75.6860i 0.0396004 + 0.121878i
\(622\) 0 0
\(623\) −140.863 889.377i −0.226105 1.42757i
\(624\) 0 0
\(625\) −395.117 484.260i −0.632187 0.774816i
\(626\) 0 0
\(627\) 108.675 + 55.8718i 0.173326 + 0.0891098i
\(628\) 0 0
\(629\) −171.825 55.8295i −0.273172 0.0887591i
\(630\) 0 0
\(631\) −110.345 80.1705i −0.174874 0.127053i 0.496905 0.867805i \(-0.334470\pi\)
−0.671779 + 0.740752i \(0.734470\pi\)
\(632\) 0 0
\(633\) 39.2355 77.0040i 0.0619834 0.121649i
\(634\) 0 0
\(635\) −95.4451 1028.30i −0.150307 1.61937i
\(636\) 0 0
\(637\) −1572.76 + 1572.76i −2.46902 + 2.46902i
\(638\) 0 0
\(639\) 518.628i 0.811624i
\(640\) 0 0
\(641\) −225.218 + 163.631i −0.351355 + 0.255274i −0.749437 0.662076i \(-0.769676\pi\)
0.398082 + 0.917350i \(0.369676\pi\)
\(642\) 0 0
\(643\) −230.607 + 452.591i −0.358642 + 0.703874i −0.997876 0.0651376i \(-0.979251\pi\)
0.639234 + 0.769012i \(0.279251\pi\)
\(644\) 0 0
\(645\) 12.3801 31.1144i 0.0191939 0.0482394i
\(646\) 0 0
\(647\) −295.583 580.115i −0.456852 0.896622i −0.998432 0.0559732i \(-0.982174\pi\)
0.541580 0.840649i \(-0.317826\pi\)
\(648\) 0 0
\(649\) 2.47987 681.437i 0.00382106 1.04998i
\(650\) 0 0
\(651\) −19.9019 + 61.2518i −0.0305713 + 0.0940888i
\(652\) 0 0
\(653\) 159.378 + 1006.27i 0.244070 + 1.54100i 0.739983 + 0.672626i \(0.234834\pi\)
−0.495912 + 0.868373i \(0.665166\pi\)
\(654\) 0 0
\(655\) 35.6278 + 56.3513i 0.0543936 + 0.0860325i
\(656\) 0 0
\(657\) 63.2226 399.171i 0.0962291 0.607567i
\(658\) 0 0
\(659\) 519.838i 0.788828i 0.918933 + 0.394414i \(0.129052\pi\)
−0.918933 + 0.394414i \(0.870948\pi\)
\(660\) 0 0
\(661\) −299.078 −0.452463 −0.226231 0.974074i \(-0.572641\pi\)
−0.226231 + 0.974074i \(0.572641\pi\)
\(662\) 0 0
\(663\) 60.0803 + 9.51578i 0.0906188 + 0.0143526i
\(664\) 0 0
\(665\) −427.231 + 1896.23i −0.642453 + 2.85147i
\(666\) 0 0
\(667\) −591.782 + 93.7291i −0.887229 + 0.140523i
\(668\) 0 0
\(669\) 0.200282 + 0.0650757i 0.000299376 + 9.72731e-5i
\(670\) 0 0
\(671\) 194.679 + 142.528i 0.290133 + 0.212411i
\(672\) 0 0
\(673\) 206.433 105.183i 0.306736 0.156290i −0.293846 0.955853i \(-0.594935\pi\)
0.600582 + 0.799563i \(0.294935\pi\)
\(674\) 0 0
\(675\) −125.571 + 96.7230i −0.186031 + 0.143293i
\(676\) 0 0
\(677\) −328.869 167.567i −0.485774 0.247514i 0.193910 0.981019i \(-0.437883\pi\)
−0.679684 + 0.733505i \(0.737883\pi\)
\(678\) 0 0
\(679\) −655.098 901.665i −0.964798 1.32793i
\(680\) 0 0
\(681\) 72.6023 0.106611
\(682\) 0 0
\(683\) −398.725 398.725i −0.583785 0.583785i 0.352156 0.935941i \(-0.385449\pi\)
−0.935941 + 0.352156i \(0.885449\pi\)
\(684\) 0 0
\(685\) −36.5526 393.808i −0.0533615 0.574902i
\(686\) 0 0
\(687\) −60.0282 30.5859i −0.0873772 0.0445209i
\(688\) 0 0
\(689\) −707.751 + 974.136i −1.02722 + 1.41384i
\(690\) 0 0
\(691\) 96.4604 296.874i 0.139595 0.429630i −0.856681 0.515846i \(-0.827478\pi\)
0.996276 + 0.0862161i \(0.0274776\pi\)
\(692\) 0 0
\(693\) 1081.64 546.175i 1.56081 0.788131i
\(694\) 0 0
\(695\) 95.9131 + 6.19752i 0.138005 + 0.00891730i
\(696\) 0 0
\(697\) 80.1669 12.6972i 0.115017 0.0182169i
\(698\) 0 0
\(699\) 23.3972 7.60222i 0.0334724 0.0108758i
\(700\) 0 0
\(701\) −320.859 + 233.118i −0.457716 + 0.332550i −0.792635 0.609697i \(-0.791291\pi\)
0.334919 + 0.942247i \(0.391291\pi\)
\(702\) 0 0
\(703\) 493.808 + 493.808i 0.702430 + 0.702430i
\(704\) 0 0
\(705\) 51.1975 13.0529i 0.0726206 0.0185147i
\(706\) 0 0
\(707\) 207.377 1309.33i 0.293320 1.85195i
\(708\) 0 0
\(709\) −118.249 + 38.4214i −0.166783 + 0.0541910i −0.391218 0.920298i \(-0.627946\pi\)
0.224435 + 0.974489i \(0.427946\pi\)
\(710\) 0 0
\(711\) 174.703 + 126.929i 0.245715 + 0.178522i
\(712\) 0 0
\(713\) −163.588 + 83.3521i −0.229436 + 0.116903i
\(714\) 0 0
\(715\) −1159.53 + 103.371i −1.62172 + 0.144575i
\(716\) 0 0
\(717\) −38.6322 75.8200i −0.0538803 0.105746i
\(718\) 0 0
\(719\) 318.617 438.538i 0.443139 0.609928i −0.527767 0.849389i \(-0.676971\pi\)
0.970906 + 0.239461i \(0.0769707\pi\)
\(720\) 0 0
\(721\) 388.449 + 1195.52i 0.538765 + 1.65815i
\(722\) 0 0
\(723\) 52.4206 + 8.30260i 0.0725042 + 0.0114835i
\(724\) 0 0
\(725\) −571.359 1047.69i −0.788081 1.44509i
\(726\) 0 0
\(727\) 299.978 299.978i 0.412624 0.412624i −0.470028 0.882652i \(-0.655756\pi\)
0.882652 + 0.470028i \(0.155756\pi\)
\(728\) 0 0
\(729\) −392.971 540.878i −0.539055 0.741946i
\(730\) 0 0
\(731\) 47.2731 + 145.492i 0.0646691 + 0.199031i
\(732\) 0 0
\(733\) 47.6287 + 300.716i 0.0649778 + 0.410254i 0.998642 + 0.0521033i \(0.0165925\pi\)
−0.933664 + 0.358150i \(0.883407\pi\)
\(734\) 0 0
\(735\) −123.014 140.009i −0.167365 0.190489i
\(736\) 0 0
\(737\) −59.3754 + 366.250i −0.0805636 + 0.496947i
\(738\) 0 0
\(739\) 858.134 + 278.825i 1.16121 + 0.377300i 0.825355 0.564614i \(-0.190975\pi\)
0.335855 + 0.941914i \(0.390975\pi\)
\(740\) 0 0
\(741\) −190.223 138.205i −0.256711 0.186511i
\(742\) 0 0
\(743\) 7.04706 13.8306i 0.00948460 0.0186146i −0.886216 0.463273i \(-0.846675\pi\)
0.895700 + 0.444658i \(0.146675\pi\)
\(744\) 0 0
\(745\) −380.292 315.692i −0.510459 0.423747i
\(746\) 0 0
\(747\) −365.917 + 365.917i −0.489849 + 0.489849i
\(748\) 0 0
\(749\) 2131.04i 2.84518i
\(750\) 0 0
\(751\) −239.838 + 174.253i −0.319359 + 0.232028i −0.735902 0.677088i \(-0.763241\pi\)
0.416543 + 0.909116i \(0.363241\pi\)
\(752\) 0 0
\(753\) −36.1175 + 70.8846i −0.0479648 + 0.0941363i
\(754\) 0 0
\(755\) −96.1910 38.2734i −0.127405 0.0506932i
\(756\) 0 0
\(757\) 568.338 + 1115.43i 0.750777 + 1.47348i 0.876492 + 0.481417i \(0.159878\pi\)
−0.125715 + 0.992066i \(0.540122\pi\)
\(758\) 0 0
\(759\) −46.5228 15.3036i −0.0612948 0.0201628i
\(760\) 0 0
\(761\) 79.7890 245.565i 0.104848 0.322688i −0.884847 0.465882i \(-0.845737\pi\)
0.989695 + 0.143194i \(0.0457373\pi\)
\(762\) 0 0
\(763\) 314.287 + 1984.33i 0.411910 + 2.60070i
\(764\) 0 0
\(765\) 79.0168 350.708i 0.103290 0.458442i
\(766\) 0 0
\(767\) −205.120 + 1295.07i −0.267431 + 1.68849i
\(768\) 0 0
\(769\) 419.115i 0.545013i 0.962154 + 0.272506i \(0.0878526\pi\)
−0.962154 + 0.272506i \(0.912147\pi\)
\(770\) 0 0
\(771\) −111.245 −0.144287
\(772\) 0 0
\(773\) −654.254 103.624i −0.846383 0.134054i −0.281844 0.959460i \(-0.590946\pi\)
−0.564539 + 0.825407i \(0.690946\pi\)
\(774\) 0 0
\(775\) −265.718 251.226i −0.342863 0.324163i
\(776\) 0 0
\(777\) −96.9736 + 15.3591i −0.124805 + 0.0197672i
\(778\) 0 0
\(779\) −298.383 96.9505i −0.383033 0.124455i
\(780\) 0 0
\(781\) −518.711 379.757i −0.664162 0.486245i
\(782\) 0 0
\(783\) −269.657 + 137.397i −0.344390 + 0.175475i
\(784\) 0 0
\(785\) −797.245 + 343.396i −1.01560 + 0.437447i
\(786\) 0 0
\(787\) −542.288 276.310i −0.689057 0.351092i 0.0741490 0.997247i \(-0.476376\pi\)
−0.763206 + 0.646155i \(0.776376\pi\)
\(788\) 0 0
\(789\) 32.5846 + 44.8488i 0.0412986 + 0.0568426i
\(790\) 0 0
\(791\) 2148.96 2.71676
\(792\) 0 0
\(793\) −328.281 328.281i −0.413973 0.413973i
\(794\) 0 0
\(795\) −77.6312 64.4440i −0.0976493 0.0810616i
\(796\) 0 0
\(797\) −793.235 404.173i −0.995276 0.507118i −0.121055 0.992646i \(-0.538628\pi\)
−0.874221 + 0.485527i \(0.838628\pi\)
\(798\) 0 0
\(799\) −141.873 + 195.271i −0.177563 + 0.244395i
\(800\) 0 0
\(801\) 198.928 612.238i 0.248350 0.764343i
\(802\) 0 0
\(803\) 352.942 + 355.520i 0.439529 + 0.442739i
\(804\) 0 0
\(805\) 50.2337 777.419i 0.0624021 0.965738i
\(806\) 0 0
\(807\) −120.990 + 19.1629i −0.149925 + 0.0237458i
\(808\) 0 0
\(809\) −646.431 + 210.038i −0.799050 + 0.259627i −0.679953 0.733256i \(-0.738000\pi\)
−0.119097 + 0.992883i \(0.538000\pi\)
\(810\) 0 0
\(811\) 372.607 270.715i 0.459441 0.333803i −0.333871 0.942619i \(-0.608355\pi\)
0.793312 + 0.608815i \(0.208355\pi\)
\(812\) 0 0
\(813\) 92.6628 + 92.6628i 0.113976 + 0.113976i
\(814\) 0 0
\(815\) −991.464 588.620i −1.21652 0.722233i
\(816\) 0 0
\(817\) 92.5032 584.042i 0.113223 0.714862i
\(818\) 0 0
\(819\) −2217.45 + 720.492i −2.70751 + 0.879722i
\(820\) 0 0
\(821\) 1088.17 + 790.600i 1.32542 + 0.962972i 0.999848 + 0.0174539i \(0.00555603\pi\)
0.325570 + 0.945518i \(0.394444\pi\)
\(822\) 0 0
\(823\) −812.415 + 413.946i −0.987138 + 0.502972i −0.871540 0.490324i \(-0.836878\pi\)
−0.115598 + 0.993296i \(0.536878\pi\)
\(824\) 0 0
\(825\) −2.37869 97.5161i −0.00288326 0.118201i
\(826\) 0 0
\(827\) 635.908 + 1248.04i 0.768933 + 1.50912i 0.858318 + 0.513119i \(0.171510\pi\)
−0.0893846 + 0.995997i \(0.528490\pi\)
\(828\) 0 0
\(829\) −48.1019 + 66.2066i −0.0580240 + 0.0798632i −0.837043 0.547137i \(-0.815718\pi\)
0.779019 + 0.627000i \(0.215718\pi\)
\(830\) 0 0
\(831\) 47.0577 + 144.829i 0.0566277 + 0.174282i
\(832\) 0 0
\(833\) 840.930 + 133.190i 1.00952 + 0.159892i
\(834\) 0 0
\(835\) 348.872 587.636i 0.417811 0.703755i
\(836\) 0 0
\(837\) −65.5758 + 65.5758i −0.0783463 + 0.0783463i
\(838\) 0 0
\(839\) −96.5954 132.952i −0.115132 0.158465i 0.747562 0.664192i \(-0.231224\pi\)
−0.862694 + 0.505727i \(0.831224\pi\)
\(840\) 0 0
\(841\) −444.235 1367.22i −0.528223 1.62570i
\(842\) 0 0
\(843\) 5.67048 + 35.8020i 0.00672655 + 0.0424698i
\(844\) 0 0
\(845\) 1392.10 + 89.9516i 1.64745 + 0.106452i
\(846\) 0 0
\(847\) −245.753 + 1481.74i −0.290145 + 1.74940i
\(848\) 0 0
\(849\) 117.730 + 38.2529i 0.138669 + 0.0450564i
\(850\) 0 0
\(851\) −226.438 164.517i −0.266084 0.193321i
\(852\) 0 0
\(853\) −326.827 + 641.434i −0.383150 + 0.751974i −0.999366 0.0356029i \(-0.988665\pi\)
0.616216 + 0.787577i \(0.288665\pi\)
\(854\) 0 0
\(855\) −887.579 + 1069.21i −1.03810 + 1.25053i
\(856\) 0 0
\(857\) −822.727 + 822.727i −0.960008 + 0.960008i −0.999231 0.0392223i \(-0.987512\pi\)
0.0392223 + 0.999231i \(0.487512\pi\)
\(858\) 0 0
\(859\) 998.912i 1.16288i −0.813590 0.581439i \(-0.802490\pi\)
0.813590 0.581439i \(-0.197510\pi\)
\(860\) 0 0
\(861\) 35.6850 25.9267i 0.0414460 0.0301123i
\(862\) 0 0
\(863\) 395.613 776.434i 0.458416 0.899692i −0.539903 0.841727i \(-0.681539\pi\)
0.998319 0.0579645i \(-0.0184610\pi\)
\(864\) 0 0
\(865\) 381.008 + 884.568i 0.440472 + 1.02262i
\(866\) 0 0
\(867\) 35.9680 + 70.5911i 0.0414855 + 0.0814200i
\(868\) 0 0
\(869\) −254.873 + 81.7890i −0.293295 + 0.0941186i
\(870\) 0 0
\(871\) 220.617 678.991i 0.253292 0.779553i
\(872\) 0 0
\(873\) −124.643 786.966i −0.142776 0.901450i
\(874\) 0 0
\(875\) 1492.21 425.313i 1.70538 0.486072i
\(876\) 0 0
\(877\) 149.590 944.476i 0.170571 1.07694i −0.742711 0.669612i \(-0.766461\pi\)
0.913282 0.407328i \(-0.133539\pi\)
\(878\) 0 0
\(879\) 9.48641i 0.0107923i
\(880\) 0 0
\(881\) 688.978 0.782041 0.391021 0.920382i \(-0.372122\pi\)
0.391021 + 0.920382i \(0.372122\pi\)
\(882\) 0 0
\(883\) −1375.23 217.815i −1.55745 0.246676i −0.682498 0.730888i \(-0.739106\pi\)
−0.874951 + 0.484212i \(0.839106\pi\)
\(884\) 0 0
\(885\) −107.183 24.1490i −0.121111 0.0272871i
\(886\) 0 0
\(887\) 1248.93 197.812i 1.40804 0.223012i 0.594302 0.804242i \(-0.297428\pi\)
0.813739 + 0.581230i \(0.197428\pi\)
\(888\) 0 0
\(889\) 2438.36 + 792.271i 2.74281 + 0.891194i
\(890\) 0 0
\(891\) 853.800 + 3.10713i 0.958249 + 0.00348724i
\(892\) 0 0
\(893\) 831.293 423.565i 0.930899 0.474317i
\(894\) 0 0
\(895\) −294.367 + 739.821i −0.328902 + 0.826616i
\(896\) 0 0
\(897\) 83.9659 + 42.7828i 0.0936075 + 0.0476954i
\(898\) 0 0
\(899\) −410.403 564.871i −0.456510 0.628332i
\(900\) 0 0
\(901\) 460.918 0.511562
\(902\) 0 0
\(903\) 58.7855 + 58.7855i 0.0651002 + 0.0651002i
\(904\) 0 0
\(905\) −80.9801 + 97.5511i −0.0894808 + 0.107791i
\(906\) 0 0
\(907\) 370.591 + 188.825i 0.408589 + 0.208187i 0.646191 0.763176i \(-0.276361\pi\)
−0.237601 + 0.971363i \(0.576361\pi\)
\(908\) 0 0
\(909\) 557.052 766.716i 0.612818 0.843472i
\(910\) 0 0
\(911\) −123.474 + 380.014i −0.135537 + 0.417140i −0.995673 0.0929246i \(-0.970378\pi\)
0.860136 + 0.510064i \(0.170378\pi\)
\(912\) 0 0
\(913\) −98.0385 633.913i −0.107381 0.694318i
\(914\) 0 0
\(915\) 29.2239 25.6764i 0.0319386 0.0280617i
\(916\) 0 0
\(917\) −163.477 + 25.8922i −0.178274 + 0.0282358i
\(918\) 0 0
\(919\) 1476.20 479.647i 1.60631 0.521923i 0.637655 0.770322i \(-0.279904\pi\)
0.968658 + 0.248399i \(0.0799045\pi\)
\(920\) 0 0
\(921\) 4.32192 3.14006i 0.00469263 0.00340940i
\(922\) 0 0
\(923\) 874.685 + 874.685i 0.947654 + 0.947654i
\(924\) 0 0
\(925\) 157.342 534.804i 0.170100 0.578167i
\(926\) 0 0
\(927\) −140.583 + 887.606i −0.151654 + 0.957504i
\(928\) 0 0
\(929\) −520.229 + 169.033i −0.559988 + 0.181951i −0.575316 0.817931i \(-0.695121\pi\)
0.0153279 + 0.999883i \(0.495121\pi\)
\(930\) 0 0
\(931\) −2662.50 1934.42i −2.85983 2.07779i
\(932\) 0 0
\(933\) 146.830 74.8135i 0.157374 0.0801860i
\(934\) 0 0
\(935\) 292.906 + 335.830i 0.313268 + 0.359177i
\(936\) 0 0
\(937\) −327.072 641.915i −0.349063 0.685074i 0.648002 0.761639i \(-0.275605\pi\)
−0.997065 + 0.0765643i \(0.975605\pi\)
\(938\) 0 0
\(939\) 32.8946 45.2755i 0.0350315 0.0482167i
\(940\) 0 0
\(941\) 334.973 + 1030.94i 0.355975 + 1.09558i 0.955442 + 0.295179i \(0.0953794\pi\)
−0.599467 + 0.800400i \(0.704621\pi\)
\(942\) 0 0
\(943\) 124.195 + 19.6706i 0.131702 + 0.0208596i
\(944\) 0 0
\(945\) −97.2145 381.307i −0.102872 0.403499i
\(946\) 0 0
\(947\) 515.763 515.763i 0.544629 0.544629i −0.380254 0.924882i \(-0.624163\pi\)
0.924882 + 0.380254i \(0.124163\pi\)
\(948\) 0 0
\(949\) −566.590 779.844i −0.597039 0.821754i
\(950\) 0 0
\(951\) 22.1435 + 68.1506i 0.0232844 + 0.0716620i
\(952\) 0 0
\(953\) 7.91666 + 49.9838i 0.00830709 + 0.0524489i 0.991494 0.130155i \(-0.0415474\pi\)
−0.983187 + 0.182604i \(0.941547\pi\)
\(954\) 0 0
\(955\) −24.8458 + 384.515i −0.0260166 + 0.402634i
\(956\) 0 0
\(957\) 29.8053 183.850i 0.0311445 0.192111i
\(958\) 0 0
\(959\) 933.820 + 303.416i 0.973743 + 0.316388i
\(960\) 0 0
\(961\) 604.373 + 439.103i 0.628900 + 0.456923i
\(962\) 0 0
\(963\) 691.650 1357.44i 0.718224 1.40959i
\(964\) 0 0
\(965\) 93.7456 8.70133i 0.0971457 0.00901692i
\(966\) 0 0
\(967\) 19.7869 19.7869i 0.0204622 0.0204622i −0.696802 0.717264i \(-0.745394\pi\)
0.717264 + 0.696802i \(0.245394\pi\)
\(968\) 0 0
\(969\) 90.0048i 0.0928842i
\(970\) 0 0
\(971\) 84.7721 61.5905i 0.0873039 0.0634300i −0.543277 0.839553i \(-0.682817\pi\)
0.630581 + 0.776123i \(0.282817\pi\)
\(972\) 0 0
\(973\) −108.328 + 212.605i −0.111334 + 0.218505i
\(974\) 0 0
\(975\) −24.1553 + 186.134i −0.0247747 + 0.190906i
\(976\) 0 0
\(977\) −119.502 234.535i −0.122315 0.240057i 0.821728 0.569881i \(-0.193011\pi\)
−0.944042 + 0.329824i \(0.893011\pi\)
\(978\) 0 0
\(979\) 466.674 + 647.262i 0.476684 + 0.661146i
\(980\) 0 0
\(981\) −443.839 + 1366.00i −0.452435 + 1.39245i
\(982\) 0 0
\(983\) −170.672 1077.58i −0.173624 1.09622i −0.908460 0.417972i \(-0.862741\pi\)
0.734836 0.678245i \(-0.237259\pi\)
\(984\) 0 0
\(985\) −282.457 63.6394i −0.286759 0.0646085i
\(986\) 0 0
\(987\) −20.5195 + 129.555i −0.0207897 + 0.131261i
\(988\) 0 0
\(989\) 236.997i 0.239633i
\(990\) 0 0
\(991\) −1245.65 −1.25696 −0.628482 0.777824i \(-0.716323\pi\)
−0.628482 + 0.777824i \(0.716323\pi\)
\(992\) 0 0
\(993\) −186.602 29.5549i −0.187918 0.0297632i
\(994\) 0 0
\(995\) −1345.12 + 850.444i −1.35188 + 0.854718i
\(996\) 0 0
\(997\) −338.256 + 53.5746i −0.339274 + 0.0537358i −0.323747 0.946144i \(-0.604943\pi\)
−0.0155273 + 0.999879i \(0.504943\pi\)
\(998\) 0 0
\(999\) −134.458 43.6880i −0.134593 0.0437318i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 220.3.x.a.53.7 96
5.2 odd 4 inner 220.3.x.a.97.7 yes 96
11.5 even 5 inner 220.3.x.a.93.7 yes 96
55.27 odd 20 inner 220.3.x.a.137.7 yes 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
220.3.x.a.53.7 96 1.1 even 1 trivial
220.3.x.a.93.7 yes 96 11.5 even 5 inner
220.3.x.a.97.7 yes 96 5.2 odd 4 inner
220.3.x.a.137.7 yes 96 55.27 odd 20 inner