Properties

Label 2200.2.a.k
Level $2200$
Weight $2$
Character orbit 2200.a
Self dual yes
Analytic conductor $17.567$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2200,2,Mod(1,2200)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2200, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2200.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2200 = 2^{3} \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2200.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(17.5670884447\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 88)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 3 q^{3} + 2 q^{7} + 6 q^{9} - q^{11} + 6 q^{17} + 4 q^{19} + 6 q^{21} - q^{23} + 9 q^{27} - 8 q^{29} - 7 q^{31} - 3 q^{33} + q^{37} + 4 q^{41} - 6 q^{43} + 8 q^{47} - 3 q^{49} + 18 q^{51} - 2 q^{53}+ \cdots - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 3.00000 0 0 0 2.00000 0 6.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( +1 \)
\(11\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2200.2.a.k 1
4.b odd 2 1 4400.2.a.a 1
5.b even 2 1 88.2.a.a 1
5.c odd 4 2 2200.2.b.a 2
15.d odd 2 1 792.2.a.g 1
20.d odd 2 1 176.2.a.c 1
20.e even 4 2 4400.2.b.b 2
35.c odd 2 1 4312.2.a.l 1
40.e odd 2 1 704.2.a.b 1
40.f even 2 1 704.2.a.l 1
55.d odd 2 1 968.2.a.a 1
55.h odd 10 4 968.2.i.i 4
55.j even 10 4 968.2.i.j 4
60.h even 2 1 1584.2.a.q 1
80.k odd 4 2 2816.2.c.d 2
80.q even 4 2 2816.2.c.i 2
120.i odd 2 1 6336.2.a.h 1
120.m even 2 1 6336.2.a.k 1
140.c even 2 1 8624.2.a.c 1
165.d even 2 1 8712.2.a.x 1
220.g even 2 1 1936.2.a.l 1
440.c even 2 1 7744.2.a.b 1
440.o odd 2 1 7744.2.a.bk 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
88.2.a.a 1 5.b even 2 1
176.2.a.c 1 20.d odd 2 1
704.2.a.b 1 40.e odd 2 1
704.2.a.l 1 40.f even 2 1
792.2.a.g 1 15.d odd 2 1
968.2.a.a 1 55.d odd 2 1
968.2.i.i 4 55.h odd 10 4
968.2.i.j 4 55.j even 10 4
1584.2.a.q 1 60.h even 2 1
1936.2.a.l 1 220.g even 2 1
2200.2.a.k 1 1.a even 1 1 trivial
2200.2.b.a 2 5.c odd 4 2
2816.2.c.d 2 80.k odd 4 2
2816.2.c.i 2 80.q even 4 2
4312.2.a.l 1 35.c odd 2 1
4400.2.a.a 1 4.b odd 2 1
4400.2.b.b 2 20.e even 4 2
6336.2.a.h 1 120.i odd 2 1
6336.2.a.k 1 120.m even 2 1
7744.2.a.b 1 440.c even 2 1
7744.2.a.bk 1 440.o odd 2 1
8624.2.a.c 1 140.c even 2 1
8712.2.a.x 1 165.d even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(2200))\):

\( T_{3} - 3 \) Copy content Toggle raw display
\( T_{7} - 2 \) Copy content Toggle raw display
\( T_{13} \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T - 3 \) Copy content Toggle raw display
$5$ \( T \) Copy content Toggle raw display
$7$ \( T - 2 \) Copy content Toggle raw display
$11$ \( T + 1 \) Copy content Toggle raw display
$13$ \( T \) Copy content Toggle raw display
$17$ \( T - 6 \) Copy content Toggle raw display
$19$ \( T - 4 \) Copy content Toggle raw display
$23$ \( T + 1 \) Copy content Toggle raw display
$29$ \( T + 8 \) Copy content Toggle raw display
$31$ \( T + 7 \) Copy content Toggle raw display
$37$ \( T - 1 \) Copy content Toggle raw display
$41$ \( T - 4 \) Copy content Toggle raw display
$43$ \( T + 6 \) Copy content Toggle raw display
$47$ \( T - 8 \) Copy content Toggle raw display
$53$ \( T + 2 \) Copy content Toggle raw display
$59$ \( T + 1 \) Copy content Toggle raw display
$61$ \( T - 4 \) Copy content Toggle raw display
$67$ \( T - 5 \) Copy content Toggle raw display
$71$ \( T - 3 \) Copy content Toggle raw display
$73$ \( T + 16 \) Copy content Toggle raw display
$79$ \( T - 2 \) Copy content Toggle raw display
$83$ \( T - 2 \) Copy content Toggle raw display
$89$ \( T - 15 \) Copy content Toggle raw display
$97$ \( T - 7 \) Copy content Toggle raw display
show more
show less