Properties

Label 2205.2.a.q.1.2
Level $2205$
Weight $2$
Character 2205.1
Self dual yes
Analytic conductor $17.607$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2205,2,Mod(1,2205)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2205, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2205.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2205 = 3^{2} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2205.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(17.6070136457\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{8})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 35)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(1.41421\) of defining polynomial
Character \(\chi\) \(=\) 2205.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.414214 q^{2} -1.82843 q^{4} +1.00000 q^{5} -1.58579 q^{8} +O(q^{10})\) \(q+0.414214 q^{2} -1.82843 q^{4} +1.00000 q^{5} -1.58579 q^{8} +0.414214 q^{10} -4.82843 q^{11} -0.828427 q^{13} +3.00000 q^{16} -0.828427 q^{17} +2.82843 q^{19} -1.82843 q^{20} -2.00000 q^{22} +2.41421 q^{23} +1.00000 q^{25} -0.343146 q^{26} +1.00000 q^{29} +6.00000 q^{31} +4.41421 q^{32} -0.343146 q^{34} +1.17157 q^{38} -1.58579 q^{40} -2.17157 q^{41} +6.41421 q^{43} +8.82843 q^{44} +1.00000 q^{46} +2.00000 q^{47} +0.414214 q^{50} +1.51472 q^{52} +6.82843 q^{53} -4.82843 q^{55} +0.414214 q^{58} -12.4853 q^{59} +11.4853 q^{61} +2.48528 q^{62} -4.17157 q^{64} -0.828427 q^{65} +12.4142 q^{67} +1.51472 q^{68} +12.4853 q^{71} -4.82843 q^{73} -5.17157 q^{76} +9.17157 q^{79} +3.00000 q^{80} -0.899495 q^{82} -11.7279 q^{83} -0.828427 q^{85} +2.65685 q^{86} +7.65685 q^{88} +2.65685 q^{89} -4.41421 q^{92} +0.828427 q^{94} +2.82843 q^{95} -0.343146 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} + 2 q^{4} + 2 q^{5} - 6 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{2} + 2 q^{4} + 2 q^{5} - 6 q^{8} - 2 q^{10} - 4 q^{11} + 4 q^{13} + 6 q^{16} + 4 q^{17} + 2 q^{20} - 4 q^{22} + 2 q^{23} + 2 q^{25} - 12 q^{26} + 2 q^{29} + 12 q^{31} + 6 q^{32} - 12 q^{34} + 8 q^{38} - 6 q^{40} - 10 q^{41} + 10 q^{43} + 12 q^{44} + 2 q^{46} + 4 q^{47} - 2 q^{50} + 20 q^{52} + 8 q^{53} - 4 q^{55} - 2 q^{58} - 8 q^{59} + 6 q^{61} - 12 q^{62} - 14 q^{64} + 4 q^{65} + 22 q^{67} + 20 q^{68} + 8 q^{71} - 4 q^{73} - 16 q^{76} + 24 q^{79} + 6 q^{80} + 18 q^{82} + 2 q^{83} + 4 q^{85} - 6 q^{86} + 4 q^{88} - 6 q^{89} - 6 q^{92} - 4 q^{94} - 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.414214 0.292893 0.146447 0.989219i \(-0.453216\pi\)
0.146447 + 0.989219i \(0.453216\pi\)
\(3\) 0 0
\(4\) −1.82843 −0.914214
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) 0 0
\(8\) −1.58579 −0.560660
\(9\) 0 0
\(10\) 0.414214 0.130986
\(11\) −4.82843 −1.45583 −0.727913 0.685670i \(-0.759509\pi\)
−0.727913 + 0.685670i \(0.759509\pi\)
\(12\) 0 0
\(13\) −0.828427 −0.229764 −0.114882 0.993379i \(-0.536649\pi\)
−0.114882 + 0.993379i \(0.536649\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 3.00000 0.750000
\(17\) −0.828427 −0.200923 −0.100462 0.994941i \(-0.532032\pi\)
−0.100462 + 0.994941i \(0.532032\pi\)
\(18\) 0 0
\(19\) 2.82843 0.648886 0.324443 0.945905i \(-0.394823\pi\)
0.324443 + 0.945905i \(0.394823\pi\)
\(20\) −1.82843 −0.408849
\(21\) 0 0
\(22\) −2.00000 −0.426401
\(23\) 2.41421 0.503398 0.251699 0.967806i \(-0.419011\pi\)
0.251699 + 0.967806i \(0.419011\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) −0.343146 −0.0672964
\(27\) 0 0
\(28\) 0 0
\(29\) 1.00000 0.185695 0.0928477 0.995680i \(-0.470403\pi\)
0.0928477 + 0.995680i \(0.470403\pi\)
\(30\) 0 0
\(31\) 6.00000 1.07763 0.538816 0.842424i \(-0.318872\pi\)
0.538816 + 0.842424i \(0.318872\pi\)
\(32\) 4.41421 0.780330
\(33\) 0 0
\(34\) −0.343146 −0.0588490
\(35\) 0 0
\(36\) 0 0
\(37\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(38\) 1.17157 0.190054
\(39\) 0 0
\(40\) −1.58579 −0.250735
\(41\) −2.17157 −0.339143 −0.169571 0.985518i \(-0.554238\pi\)
−0.169571 + 0.985518i \(0.554238\pi\)
\(42\) 0 0
\(43\) 6.41421 0.978158 0.489079 0.872239i \(-0.337333\pi\)
0.489079 + 0.872239i \(0.337333\pi\)
\(44\) 8.82843 1.33094
\(45\) 0 0
\(46\) 1.00000 0.147442
\(47\) 2.00000 0.291730 0.145865 0.989305i \(-0.453403\pi\)
0.145865 + 0.989305i \(0.453403\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0.414214 0.0585786
\(51\) 0 0
\(52\) 1.51472 0.210054
\(53\) 6.82843 0.937957 0.468978 0.883210i \(-0.344622\pi\)
0.468978 + 0.883210i \(0.344622\pi\)
\(54\) 0 0
\(55\) −4.82843 −0.651065
\(56\) 0 0
\(57\) 0 0
\(58\) 0.414214 0.0543889
\(59\) −12.4853 −1.62545 −0.812723 0.582651i \(-0.802016\pi\)
−0.812723 + 0.582651i \(0.802016\pi\)
\(60\) 0 0
\(61\) 11.4853 1.47054 0.735270 0.677775i \(-0.237055\pi\)
0.735270 + 0.677775i \(0.237055\pi\)
\(62\) 2.48528 0.315631
\(63\) 0 0
\(64\) −4.17157 −0.521447
\(65\) −0.828427 −0.102754
\(66\) 0 0
\(67\) 12.4142 1.51664 0.758319 0.651884i \(-0.226021\pi\)
0.758319 + 0.651884i \(0.226021\pi\)
\(68\) 1.51472 0.183687
\(69\) 0 0
\(70\) 0 0
\(71\) 12.4853 1.48173 0.740865 0.671654i \(-0.234416\pi\)
0.740865 + 0.671654i \(0.234416\pi\)
\(72\) 0 0
\(73\) −4.82843 −0.565125 −0.282562 0.959249i \(-0.591184\pi\)
−0.282562 + 0.959249i \(0.591184\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) −5.17157 −0.593220
\(77\) 0 0
\(78\) 0 0
\(79\) 9.17157 1.03188 0.515941 0.856624i \(-0.327442\pi\)
0.515941 + 0.856624i \(0.327442\pi\)
\(80\) 3.00000 0.335410
\(81\) 0 0
\(82\) −0.899495 −0.0993326
\(83\) −11.7279 −1.28731 −0.643653 0.765317i \(-0.722582\pi\)
−0.643653 + 0.765317i \(0.722582\pi\)
\(84\) 0 0
\(85\) −0.828427 −0.0898555
\(86\) 2.65685 0.286496
\(87\) 0 0
\(88\) 7.65685 0.816223
\(89\) 2.65685 0.281626 0.140813 0.990036i \(-0.455028\pi\)
0.140813 + 0.990036i \(0.455028\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −4.41421 −0.460214
\(93\) 0 0
\(94\) 0.828427 0.0854457
\(95\) 2.82843 0.290191
\(96\) 0 0
\(97\) −0.343146 −0.0348412 −0.0174206 0.999848i \(-0.505545\pi\)
−0.0174206 + 0.999848i \(0.505545\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −1.82843 −0.182843
\(101\) 12.3137 1.22526 0.612630 0.790370i \(-0.290112\pi\)
0.612630 + 0.790370i \(0.290112\pi\)
\(102\) 0 0
\(103\) −0.414214 −0.0408137 −0.0204068 0.999792i \(-0.506496\pi\)
−0.0204068 + 0.999792i \(0.506496\pi\)
\(104\) 1.31371 0.128820
\(105\) 0 0
\(106\) 2.82843 0.274721
\(107\) −2.75736 −0.266564 −0.133282 0.991078i \(-0.542552\pi\)
−0.133282 + 0.991078i \(0.542552\pi\)
\(108\) 0 0
\(109\) 3.48528 0.333829 0.166915 0.985971i \(-0.446620\pi\)
0.166915 + 0.985971i \(0.446620\pi\)
\(110\) −2.00000 −0.190693
\(111\) 0 0
\(112\) 0 0
\(113\) −12.4853 −1.17452 −0.587258 0.809400i \(-0.699793\pi\)
−0.587258 + 0.809400i \(0.699793\pi\)
\(114\) 0 0
\(115\) 2.41421 0.225127
\(116\) −1.82843 −0.169765
\(117\) 0 0
\(118\) −5.17157 −0.476082
\(119\) 0 0
\(120\) 0 0
\(121\) 12.3137 1.11943
\(122\) 4.75736 0.430711
\(123\) 0 0
\(124\) −10.9706 −0.985186
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 13.3137 1.18140 0.590700 0.806891i \(-0.298852\pi\)
0.590700 + 0.806891i \(0.298852\pi\)
\(128\) −10.5563 −0.933058
\(129\) 0 0
\(130\) −0.343146 −0.0300959
\(131\) 3.31371 0.289520 0.144760 0.989467i \(-0.453759\pi\)
0.144760 + 0.989467i \(0.453759\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 5.14214 0.444213
\(135\) 0 0
\(136\) 1.31371 0.112650
\(137\) −1.65685 −0.141555 −0.0707773 0.997492i \(-0.522548\pi\)
−0.0707773 + 0.997492i \(0.522548\pi\)
\(138\) 0 0
\(139\) −12.1421 −1.02988 −0.514941 0.857225i \(-0.672186\pi\)
−0.514941 + 0.857225i \(0.672186\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 5.17157 0.433989
\(143\) 4.00000 0.334497
\(144\) 0 0
\(145\) 1.00000 0.0830455
\(146\) −2.00000 −0.165521
\(147\) 0 0
\(148\) 0 0
\(149\) 7.82843 0.641330 0.320665 0.947193i \(-0.396094\pi\)
0.320665 + 0.947193i \(0.396094\pi\)
\(150\) 0 0
\(151\) 0.343146 0.0279248 0.0139624 0.999903i \(-0.495555\pi\)
0.0139624 + 0.999903i \(0.495555\pi\)
\(152\) −4.48528 −0.363804
\(153\) 0 0
\(154\) 0 0
\(155\) 6.00000 0.481932
\(156\) 0 0
\(157\) 5.31371 0.424080 0.212040 0.977261i \(-0.431989\pi\)
0.212040 + 0.977261i \(0.431989\pi\)
\(158\) 3.79899 0.302231
\(159\) 0 0
\(160\) 4.41421 0.348974
\(161\) 0 0
\(162\) 0 0
\(163\) 23.6569 1.85295 0.926474 0.376359i \(-0.122824\pi\)
0.926474 + 0.376359i \(0.122824\pi\)
\(164\) 3.97056 0.310049
\(165\) 0 0
\(166\) −4.85786 −0.377043
\(167\) 19.5858 1.51559 0.757797 0.652491i \(-0.226276\pi\)
0.757797 + 0.652491i \(0.226276\pi\)
\(168\) 0 0
\(169\) −12.3137 −0.947208
\(170\) −0.343146 −0.0263181
\(171\) 0 0
\(172\) −11.7279 −0.894246
\(173\) −19.3137 −1.46839 −0.734197 0.678936i \(-0.762441\pi\)
−0.734197 + 0.678936i \(0.762441\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −14.4853 −1.09187
\(177\) 0 0
\(178\) 1.10051 0.0824863
\(179\) 10.0000 0.747435 0.373718 0.927543i \(-0.378083\pi\)
0.373718 + 0.927543i \(0.378083\pi\)
\(180\) 0 0
\(181\) 8.65685 0.643459 0.321729 0.946832i \(-0.395736\pi\)
0.321729 + 0.946832i \(0.395736\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −3.82843 −0.282235
\(185\) 0 0
\(186\) 0 0
\(187\) 4.00000 0.292509
\(188\) −3.65685 −0.266704
\(189\) 0 0
\(190\) 1.17157 0.0849948
\(191\) 7.17157 0.518917 0.259458 0.965754i \(-0.416456\pi\)
0.259458 + 0.965754i \(0.416456\pi\)
\(192\) 0 0
\(193\) −2.00000 −0.143963 −0.0719816 0.997406i \(-0.522932\pi\)
−0.0719816 + 0.997406i \(0.522932\pi\)
\(194\) −0.142136 −0.0102047
\(195\) 0 0
\(196\) 0 0
\(197\) 23.6569 1.68548 0.842741 0.538320i \(-0.180941\pi\)
0.842741 + 0.538320i \(0.180941\pi\)
\(198\) 0 0
\(199\) −1.65685 −0.117451 −0.0587256 0.998274i \(-0.518704\pi\)
−0.0587256 + 0.998274i \(0.518704\pi\)
\(200\) −1.58579 −0.112132
\(201\) 0 0
\(202\) 5.10051 0.358870
\(203\) 0 0
\(204\) 0 0
\(205\) −2.17157 −0.151669
\(206\) −0.171573 −0.0119540
\(207\) 0 0
\(208\) −2.48528 −0.172323
\(209\) −13.6569 −0.944664
\(210\) 0 0
\(211\) 3.51472 0.241963 0.120982 0.992655i \(-0.461396\pi\)
0.120982 + 0.992655i \(0.461396\pi\)
\(212\) −12.4853 −0.857493
\(213\) 0 0
\(214\) −1.14214 −0.0780748
\(215\) 6.41421 0.437446
\(216\) 0 0
\(217\) 0 0
\(218\) 1.44365 0.0977764
\(219\) 0 0
\(220\) 8.82843 0.595212
\(221\) 0.686292 0.0461650
\(222\) 0 0
\(223\) −11.6569 −0.780601 −0.390300 0.920688i \(-0.627629\pi\)
−0.390300 + 0.920688i \(0.627629\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −5.17157 −0.344008
\(227\) 26.9706 1.79010 0.895050 0.445967i \(-0.147140\pi\)
0.895050 + 0.445967i \(0.147140\pi\)
\(228\) 0 0
\(229\) 0.343146 0.0226757 0.0113379 0.999936i \(-0.496391\pi\)
0.0113379 + 0.999936i \(0.496391\pi\)
\(230\) 1.00000 0.0659380
\(231\) 0 0
\(232\) −1.58579 −0.104112
\(233\) 11.1716 0.731874 0.365937 0.930640i \(-0.380749\pi\)
0.365937 + 0.930640i \(0.380749\pi\)
\(234\) 0 0
\(235\) 2.00000 0.130466
\(236\) 22.8284 1.48600
\(237\) 0 0
\(238\) 0 0
\(239\) −1.31371 −0.0849767 −0.0424884 0.999097i \(-0.513529\pi\)
−0.0424884 + 0.999097i \(0.513529\pi\)
\(240\) 0 0
\(241\) −16.3431 −1.05275 −0.526377 0.850251i \(-0.676450\pi\)
−0.526377 + 0.850251i \(0.676450\pi\)
\(242\) 5.10051 0.327873
\(243\) 0 0
\(244\) −21.0000 −1.34439
\(245\) 0 0
\(246\) 0 0
\(247\) −2.34315 −0.149091
\(248\) −9.51472 −0.604185
\(249\) 0 0
\(250\) 0.414214 0.0261972
\(251\) 13.3137 0.840354 0.420177 0.907442i \(-0.361968\pi\)
0.420177 + 0.907442i \(0.361968\pi\)
\(252\) 0 0
\(253\) −11.6569 −0.732860
\(254\) 5.51472 0.346024
\(255\) 0 0
\(256\) 3.97056 0.248160
\(257\) 17.6569 1.10140 0.550702 0.834702i \(-0.314360\pi\)
0.550702 + 0.834702i \(0.314360\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 1.51472 0.0939389
\(261\) 0 0
\(262\) 1.37258 0.0847985
\(263\) −19.0416 −1.17416 −0.587079 0.809530i \(-0.699722\pi\)
−0.587079 + 0.809530i \(0.699722\pi\)
\(264\) 0 0
\(265\) 6.82843 0.419467
\(266\) 0 0
\(267\) 0 0
\(268\) −22.6985 −1.38653
\(269\) −30.4558 −1.85693 −0.928463 0.371425i \(-0.878869\pi\)
−0.928463 + 0.371425i \(0.878869\pi\)
\(270\) 0 0
\(271\) 0.485281 0.0294787 0.0147394 0.999891i \(-0.495308\pi\)
0.0147394 + 0.999891i \(0.495308\pi\)
\(272\) −2.48528 −0.150692
\(273\) 0 0
\(274\) −0.686292 −0.0414604
\(275\) −4.82843 −0.291165
\(276\) 0 0
\(277\) −12.1421 −0.729550 −0.364775 0.931096i \(-0.618854\pi\)
−0.364775 + 0.931096i \(0.618854\pi\)
\(278\) −5.02944 −0.301646
\(279\) 0 0
\(280\) 0 0
\(281\) −26.2843 −1.56799 −0.783994 0.620768i \(-0.786821\pi\)
−0.783994 + 0.620768i \(0.786821\pi\)
\(282\) 0 0
\(283\) −14.0000 −0.832214 −0.416107 0.909316i \(-0.636606\pi\)
−0.416107 + 0.909316i \(0.636606\pi\)
\(284\) −22.8284 −1.35462
\(285\) 0 0
\(286\) 1.65685 0.0979718
\(287\) 0 0
\(288\) 0 0
\(289\) −16.3137 −0.959630
\(290\) 0.414214 0.0243235
\(291\) 0 0
\(292\) 8.82843 0.516645
\(293\) −16.0000 −0.934730 −0.467365 0.884064i \(-0.654797\pi\)
−0.467365 + 0.884064i \(0.654797\pi\)
\(294\) 0 0
\(295\) −12.4853 −0.726921
\(296\) 0 0
\(297\) 0 0
\(298\) 3.24264 0.187841
\(299\) −2.00000 −0.115663
\(300\) 0 0
\(301\) 0 0
\(302\) 0.142136 0.00817899
\(303\) 0 0
\(304\) 8.48528 0.486664
\(305\) 11.4853 0.657645
\(306\) 0 0
\(307\) 13.2426 0.755797 0.377899 0.925847i \(-0.376647\pi\)
0.377899 + 0.925847i \(0.376647\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 2.48528 0.141154
\(311\) −18.8284 −1.06766 −0.533831 0.845591i \(-0.679248\pi\)
−0.533831 + 0.845591i \(0.679248\pi\)
\(312\) 0 0
\(313\) 17.6569 0.998024 0.499012 0.866595i \(-0.333696\pi\)
0.499012 + 0.866595i \(0.333696\pi\)
\(314\) 2.20101 0.124210
\(315\) 0 0
\(316\) −16.7696 −0.943361
\(317\) −25.7990 −1.44902 −0.724508 0.689267i \(-0.757933\pi\)
−0.724508 + 0.689267i \(0.757933\pi\)
\(318\) 0 0
\(319\) −4.82843 −0.270340
\(320\) −4.17157 −0.233198
\(321\) 0 0
\(322\) 0 0
\(323\) −2.34315 −0.130376
\(324\) 0 0
\(325\) −0.828427 −0.0459529
\(326\) 9.79899 0.542716
\(327\) 0 0
\(328\) 3.44365 0.190144
\(329\) 0 0
\(330\) 0 0
\(331\) −10.9706 −0.602997 −0.301498 0.953467i \(-0.597487\pi\)
−0.301498 + 0.953467i \(0.597487\pi\)
\(332\) 21.4437 1.17687
\(333\) 0 0
\(334\) 8.11270 0.443907
\(335\) 12.4142 0.678261
\(336\) 0 0
\(337\) 14.8284 0.807756 0.403878 0.914813i \(-0.367662\pi\)
0.403878 + 0.914813i \(0.367662\pi\)
\(338\) −5.10051 −0.277431
\(339\) 0 0
\(340\) 1.51472 0.0821472
\(341\) −28.9706 −1.56884
\(342\) 0 0
\(343\) 0 0
\(344\) −10.1716 −0.548414
\(345\) 0 0
\(346\) −8.00000 −0.430083
\(347\) −22.0711 −1.18484 −0.592418 0.805630i \(-0.701827\pi\)
−0.592418 + 0.805630i \(0.701827\pi\)
\(348\) 0 0
\(349\) 26.6569 1.42691 0.713454 0.700702i \(-0.247130\pi\)
0.713454 + 0.700702i \(0.247130\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −21.3137 −1.13602
\(353\) −21.1716 −1.12685 −0.563425 0.826168i \(-0.690516\pi\)
−0.563425 + 0.826168i \(0.690516\pi\)
\(354\) 0 0
\(355\) 12.4853 0.662650
\(356\) −4.85786 −0.257466
\(357\) 0 0
\(358\) 4.14214 0.218919
\(359\) 10.0000 0.527780 0.263890 0.964553i \(-0.414994\pi\)
0.263890 + 0.964553i \(0.414994\pi\)
\(360\) 0 0
\(361\) −11.0000 −0.578947
\(362\) 3.58579 0.188465
\(363\) 0 0
\(364\) 0 0
\(365\) −4.82843 −0.252731
\(366\) 0 0
\(367\) 11.2426 0.586861 0.293431 0.955980i \(-0.405203\pi\)
0.293431 + 0.955980i \(0.405203\pi\)
\(368\) 7.24264 0.377549
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 12.9706 0.671590 0.335795 0.941935i \(-0.390995\pi\)
0.335795 + 0.941935i \(0.390995\pi\)
\(374\) 1.65685 0.0856739
\(375\) 0 0
\(376\) −3.17157 −0.163561
\(377\) −0.828427 −0.0426662
\(378\) 0 0
\(379\) 21.1716 1.08751 0.543755 0.839244i \(-0.317002\pi\)
0.543755 + 0.839244i \(0.317002\pi\)
\(380\) −5.17157 −0.265296
\(381\) 0 0
\(382\) 2.97056 0.151987
\(383\) 16.8995 0.863524 0.431762 0.901988i \(-0.357892\pi\)
0.431762 + 0.901988i \(0.357892\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −0.828427 −0.0421658
\(387\) 0 0
\(388\) 0.627417 0.0318523
\(389\) −12.3431 −0.625822 −0.312911 0.949782i \(-0.601304\pi\)
−0.312911 + 0.949782i \(0.601304\pi\)
\(390\) 0 0
\(391\) −2.00000 −0.101144
\(392\) 0 0
\(393\) 0 0
\(394\) 9.79899 0.493666
\(395\) 9.17157 0.461472
\(396\) 0 0
\(397\) −28.6274 −1.43677 −0.718384 0.695646i \(-0.755118\pi\)
−0.718384 + 0.695646i \(0.755118\pi\)
\(398\) −0.686292 −0.0344007
\(399\) 0 0
\(400\) 3.00000 0.150000
\(401\) −7.68629 −0.383835 −0.191918 0.981411i \(-0.561471\pi\)
−0.191918 + 0.981411i \(0.561471\pi\)
\(402\) 0 0
\(403\) −4.97056 −0.247601
\(404\) −22.5147 −1.12015
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −24.7990 −1.22623 −0.613116 0.789993i \(-0.710084\pi\)
−0.613116 + 0.789993i \(0.710084\pi\)
\(410\) −0.899495 −0.0444229
\(411\) 0 0
\(412\) 0.757359 0.0373124
\(413\) 0 0
\(414\) 0 0
\(415\) −11.7279 −0.575701
\(416\) −3.65685 −0.179292
\(417\) 0 0
\(418\) −5.65685 −0.276686
\(419\) −23.3137 −1.13895 −0.569475 0.822009i \(-0.692853\pi\)
−0.569475 + 0.822009i \(0.692853\pi\)
\(420\) 0 0
\(421\) −3.48528 −0.169862 −0.0849311 0.996387i \(-0.527067\pi\)
−0.0849311 + 0.996387i \(0.527067\pi\)
\(422\) 1.45584 0.0708694
\(423\) 0 0
\(424\) −10.8284 −0.525875
\(425\) −0.828427 −0.0401846
\(426\) 0 0
\(427\) 0 0
\(428\) 5.04163 0.243696
\(429\) 0 0
\(430\) 2.65685 0.128125
\(431\) 21.7990 1.05002 0.525010 0.851096i \(-0.324062\pi\)
0.525010 + 0.851096i \(0.324062\pi\)
\(432\) 0 0
\(433\) 31.7990 1.52816 0.764081 0.645120i \(-0.223193\pi\)
0.764081 + 0.645120i \(0.223193\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −6.37258 −0.305191
\(437\) 6.82843 0.326648
\(438\) 0 0
\(439\) −33.9411 −1.61992 −0.809961 0.586484i \(-0.800512\pi\)
−0.809961 + 0.586484i \(0.800512\pi\)
\(440\) 7.65685 0.365026
\(441\) 0 0
\(442\) 0.284271 0.0135214
\(443\) 12.2132 0.580267 0.290133 0.956986i \(-0.406300\pi\)
0.290133 + 0.956986i \(0.406300\pi\)
\(444\) 0 0
\(445\) 2.65685 0.125947
\(446\) −4.82843 −0.228633
\(447\) 0 0
\(448\) 0 0
\(449\) 1.82843 0.0862888 0.0431444 0.999069i \(-0.486262\pi\)
0.0431444 + 0.999069i \(0.486262\pi\)
\(450\) 0 0
\(451\) 10.4853 0.493733
\(452\) 22.8284 1.07376
\(453\) 0 0
\(454\) 11.1716 0.524308
\(455\) 0 0
\(456\) 0 0
\(457\) −32.2843 −1.51019 −0.755097 0.655613i \(-0.772410\pi\)
−0.755097 + 0.655613i \(0.772410\pi\)
\(458\) 0.142136 0.00664156
\(459\) 0 0
\(460\) −4.41421 −0.205814
\(461\) 18.6863 0.870307 0.435154 0.900356i \(-0.356694\pi\)
0.435154 + 0.900356i \(0.356694\pi\)
\(462\) 0 0
\(463\) 11.0416 0.513148 0.256574 0.966525i \(-0.417406\pi\)
0.256574 + 0.966525i \(0.417406\pi\)
\(464\) 3.00000 0.139272
\(465\) 0 0
\(466\) 4.62742 0.214361
\(467\) −22.8995 −1.05966 −0.529831 0.848103i \(-0.677745\pi\)
−0.529831 + 0.848103i \(0.677745\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0.828427 0.0382125
\(471\) 0 0
\(472\) 19.7990 0.911322
\(473\) −30.9706 −1.42403
\(474\) 0 0
\(475\) 2.82843 0.129777
\(476\) 0 0
\(477\) 0 0
\(478\) −0.544156 −0.0248891
\(479\) −24.3431 −1.11227 −0.556133 0.831093i \(-0.687716\pi\)
−0.556133 + 0.831093i \(0.687716\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) −6.76955 −0.308345
\(483\) 0 0
\(484\) −22.5147 −1.02340
\(485\) −0.343146 −0.0155814
\(486\) 0 0
\(487\) 15.6569 0.709480 0.354740 0.934965i \(-0.384569\pi\)
0.354740 + 0.934965i \(0.384569\pi\)
\(488\) −18.2132 −0.824473
\(489\) 0 0
\(490\) 0 0
\(491\) 13.3137 0.600839 0.300420 0.953807i \(-0.402873\pi\)
0.300420 + 0.953807i \(0.402873\pi\)
\(492\) 0 0
\(493\) −0.828427 −0.0373105
\(494\) −0.970563 −0.0436677
\(495\) 0 0
\(496\) 18.0000 0.808224
\(497\) 0 0
\(498\) 0 0
\(499\) 4.82843 0.216150 0.108075 0.994143i \(-0.465531\pi\)
0.108075 + 0.994143i \(0.465531\pi\)
\(500\) −1.82843 −0.0817697
\(501\) 0 0
\(502\) 5.51472 0.246134
\(503\) 37.8701 1.68854 0.844271 0.535916i \(-0.180034\pi\)
0.844271 + 0.535916i \(0.180034\pi\)
\(504\) 0 0
\(505\) 12.3137 0.547953
\(506\) −4.82843 −0.214650
\(507\) 0 0
\(508\) −24.3431 −1.08005
\(509\) 24.6569 1.09290 0.546448 0.837493i \(-0.315980\pi\)
0.546448 + 0.837493i \(0.315980\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 22.7574 1.00574
\(513\) 0 0
\(514\) 7.31371 0.322594
\(515\) −0.414214 −0.0182524
\(516\) 0 0
\(517\) −9.65685 −0.424708
\(518\) 0 0
\(519\) 0 0
\(520\) 1.31371 0.0576099
\(521\) −18.9706 −0.831115 −0.415558 0.909567i \(-0.636414\pi\)
−0.415558 + 0.909567i \(0.636414\pi\)
\(522\) 0 0
\(523\) −24.3431 −1.06445 −0.532226 0.846602i \(-0.678644\pi\)
−0.532226 + 0.846602i \(0.678644\pi\)
\(524\) −6.05887 −0.264683
\(525\) 0 0
\(526\) −7.88730 −0.343903
\(527\) −4.97056 −0.216521
\(528\) 0 0
\(529\) −17.1716 −0.746590
\(530\) 2.82843 0.122859
\(531\) 0 0
\(532\) 0 0
\(533\) 1.79899 0.0779229
\(534\) 0 0
\(535\) −2.75736 −0.119211
\(536\) −19.6863 −0.850318
\(537\) 0 0
\(538\) −12.6152 −0.543881
\(539\) 0 0
\(540\) 0 0
\(541\) 18.6569 0.802121 0.401060 0.916052i \(-0.368642\pi\)
0.401060 + 0.916052i \(0.368642\pi\)
\(542\) 0.201010 0.00863412
\(543\) 0 0
\(544\) −3.65685 −0.156786
\(545\) 3.48528 0.149293
\(546\) 0 0
\(547\) 5.10051 0.218082 0.109041 0.994037i \(-0.465222\pi\)
0.109041 + 0.994037i \(0.465222\pi\)
\(548\) 3.02944 0.129411
\(549\) 0 0
\(550\) −2.00000 −0.0852803
\(551\) 2.82843 0.120495
\(552\) 0 0
\(553\) 0 0
\(554\) −5.02944 −0.213680
\(555\) 0 0
\(556\) 22.2010 0.941533
\(557\) 34.2843 1.45267 0.726336 0.687340i \(-0.241222\pi\)
0.726336 + 0.687340i \(0.241222\pi\)
\(558\) 0 0
\(559\) −5.31371 −0.224746
\(560\) 0 0
\(561\) 0 0
\(562\) −10.8873 −0.459253
\(563\) 16.2721 0.685786 0.342893 0.939374i \(-0.388593\pi\)
0.342893 + 0.939374i \(0.388593\pi\)
\(564\) 0 0
\(565\) −12.4853 −0.525260
\(566\) −5.79899 −0.243750
\(567\) 0 0
\(568\) −19.7990 −0.830747
\(569\) 3.65685 0.153303 0.0766517 0.997058i \(-0.475577\pi\)
0.0766517 + 0.997058i \(0.475577\pi\)
\(570\) 0 0
\(571\) 14.8284 0.620550 0.310275 0.950647i \(-0.399579\pi\)
0.310275 + 0.950647i \(0.399579\pi\)
\(572\) −7.31371 −0.305802
\(573\) 0 0
\(574\) 0 0
\(575\) 2.41421 0.100680
\(576\) 0 0
\(577\) −23.9411 −0.996682 −0.498341 0.866981i \(-0.666057\pi\)
−0.498341 + 0.866981i \(0.666057\pi\)
\(578\) −6.75736 −0.281069
\(579\) 0 0
\(580\) −1.82843 −0.0759213
\(581\) 0 0
\(582\) 0 0
\(583\) −32.9706 −1.36550
\(584\) 7.65685 0.316843
\(585\) 0 0
\(586\) −6.62742 −0.273776
\(587\) 22.2843 0.919770 0.459885 0.887978i \(-0.347891\pi\)
0.459885 + 0.887978i \(0.347891\pi\)
\(588\) 0 0
\(589\) 16.9706 0.699260
\(590\) −5.17157 −0.212910
\(591\) 0 0
\(592\) 0 0
\(593\) 43.7990 1.79861 0.899304 0.437323i \(-0.144073\pi\)
0.899304 + 0.437323i \(0.144073\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −14.3137 −0.586312
\(597\) 0 0
\(598\) −0.828427 −0.0338769
\(599\) −17.6569 −0.721440 −0.360720 0.932674i \(-0.617469\pi\)
−0.360720 + 0.932674i \(0.617469\pi\)
\(600\) 0 0
\(601\) −8.34315 −0.340324 −0.170162 0.985416i \(-0.554429\pi\)
−0.170162 + 0.985416i \(0.554429\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −0.627417 −0.0255292
\(605\) 12.3137 0.500623
\(606\) 0 0
\(607\) 4.21320 0.171009 0.0855043 0.996338i \(-0.472750\pi\)
0.0855043 + 0.996338i \(0.472750\pi\)
\(608\) 12.4853 0.506345
\(609\) 0 0
\(610\) 4.75736 0.192620
\(611\) −1.65685 −0.0670291
\(612\) 0 0
\(613\) −15.4558 −0.624256 −0.312128 0.950040i \(-0.601042\pi\)
−0.312128 + 0.950040i \(0.601042\pi\)
\(614\) 5.48528 0.221368
\(615\) 0 0
\(616\) 0 0
\(617\) 11.3137 0.455473 0.227736 0.973723i \(-0.426868\pi\)
0.227736 + 0.973723i \(0.426868\pi\)
\(618\) 0 0
\(619\) −42.4853 −1.70763 −0.853814 0.520578i \(-0.825716\pi\)
−0.853814 + 0.520578i \(0.825716\pi\)
\(620\) −10.9706 −0.440588
\(621\) 0 0
\(622\) −7.79899 −0.312711
\(623\) 0 0
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 7.31371 0.292315
\(627\) 0 0
\(628\) −9.71573 −0.387700
\(629\) 0 0
\(630\) 0 0
\(631\) 8.14214 0.324133 0.162067 0.986780i \(-0.448184\pi\)
0.162067 + 0.986780i \(0.448184\pi\)
\(632\) −14.5442 −0.578535
\(633\) 0 0
\(634\) −10.6863 −0.424407
\(635\) 13.3137 0.528338
\(636\) 0 0
\(637\) 0 0
\(638\) −2.00000 −0.0791808
\(639\) 0 0
\(640\) −10.5563 −0.417276
\(641\) −14.5147 −0.573297 −0.286648 0.958036i \(-0.592541\pi\)
−0.286648 + 0.958036i \(0.592541\pi\)
\(642\) 0 0
\(643\) 30.2843 1.19430 0.597148 0.802131i \(-0.296301\pi\)
0.597148 + 0.802131i \(0.296301\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −0.970563 −0.0381863
\(647\) 17.0416 0.669976 0.334988 0.942222i \(-0.391268\pi\)
0.334988 + 0.942222i \(0.391268\pi\)
\(648\) 0 0
\(649\) 60.2843 2.36636
\(650\) −0.343146 −0.0134593
\(651\) 0 0
\(652\) −43.2548 −1.69399
\(653\) 24.8284 0.971611 0.485806 0.874067i \(-0.338526\pi\)
0.485806 + 0.874067i \(0.338526\pi\)
\(654\) 0 0
\(655\) 3.31371 0.129477
\(656\) −6.51472 −0.254357
\(657\) 0 0
\(658\) 0 0
\(659\) −26.8284 −1.04509 −0.522544 0.852613i \(-0.675017\pi\)
−0.522544 + 0.852613i \(0.675017\pi\)
\(660\) 0 0
\(661\) −26.1716 −1.01796 −0.508978 0.860779i \(-0.669977\pi\)
−0.508978 + 0.860779i \(0.669977\pi\)
\(662\) −4.54416 −0.176614
\(663\) 0 0
\(664\) 18.5980 0.721742
\(665\) 0 0
\(666\) 0 0
\(667\) 2.41421 0.0934787
\(668\) −35.8112 −1.38558
\(669\) 0 0
\(670\) 5.14214 0.198658
\(671\) −55.4558 −2.14085
\(672\) 0 0
\(673\) 18.3431 0.707076 0.353538 0.935420i \(-0.384978\pi\)
0.353538 + 0.935420i \(0.384978\pi\)
\(674\) 6.14214 0.236586
\(675\) 0 0
\(676\) 22.5147 0.865951
\(677\) 0.142136 0.00546272 0.00273136 0.999996i \(-0.499131\pi\)
0.00273136 + 0.999996i \(0.499131\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 1.31371 0.0503784
\(681\) 0 0
\(682\) −12.0000 −0.459504
\(683\) 43.2426 1.65463 0.827317 0.561736i \(-0.189866\pi\)
0.827317 + 0.561736i \(0.189866\pi\)
\(684\) 0 0
\(685\) −1.65685 −0.0633051
\(686\) 0 0
\(687\) 0 0
\(688\) 19.2426 0.733619
\(689\) −5.65685 −0.215509
\(690\) 0 0
\(691\) 4.82843 0.183682 0.0918410 0.995774i \(-0.470725\pi\)
0.0918410 + 0.995774i \(0.470725\pi\)
\(692\) 35.3137 1.34243
\(693\) 0 0
\(694\) −9.14214 −0.347031
\(695\) −12.1421 −0.460577
\(696\) 0 0
\(697\) 1.79899 0.0681416
\(698\) 11.0416 0.417932
\(699\) 0 0
\(700\) 0 0
\(701\) 42.7990 1.61650 0.808248 0.588843i \(-0.200416\pi\)
0.808248 + 0.588843i \(0.200416\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 20.1421 0.759135
\(705\) 0 0
\(706\) −8.76955 −0.330046
\(707\) 0 0
\(708\) 0 0
\(709\) 38.3137 1.43890 0.719451 0.694543i \(-0.244394\pi\)
0.719451 + 0.694543i \(0.244394\pi\)
\(710\) 5.17157 0.194086
\(711\) 0 0
\(712\) −4.21320 −0.157896
\(713\) 14.4853 0.542478
\(714\) 0 0
\(715\) 4.00000 0.149592
\(716\) −18.2843 −0.683315
\(717\) 0 0
\(718\) 4.14214 0.154583
\(719\) −41.1127 −1.53324 −0.766622 0.642098i \(-0.778064\pi\)
−0.766622 + 0.642098i \(0.778064\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −4.55635 −0.169570
\(723\) 0 0
\(724\) −15.8284 −0.588259
\(725\) 1.00000 0.0371391
\(726\) 0 0
\(727\) 40.4142 1.49888 0.749440 0.662072i \(-0.230323\pi\)
0.749440 + 0.662072i \(0.230323\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −2.00000 −0.0740233
\(731\) −5.31371 −0.196535
\(732\) 0 0
\(733\) 22.0000 0.812589 0.406294 0.913742i \(-0.366821\pi\)
0.406294 + 0.913742i \(0.366821\pi\)
\(734\) 4.65685 0.171888
\(735\) 0 0
\(736\) 10.6569 0.392817
\(737\) −59.9411 −2.20796
\(738\) 0 0
\(739\) 41.1127 1.51236 0.756178 0.654367i \(-0.227065\pi\)
0.756178 + 0.654367i \(0.227065\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 1.92893 0.0707657 0.0353828 0.999374i \(-0.488735\pi\)
0.0353828 + 0.999374i \(0.488735\pi\)
\(744\) 0 0
\(745\) 7.82843 0.286811
\(746\) 5.37258 0.196704
\(747\) 0 0
\(748\) −7.31371 −0.267416
\(749\) 0 0
\(750\) 0 0
\(751\) −41.6569 −1.52008 −0.760040 0.649876i \(-0.774821\pi\)
−0.760040 + 0.649876i \(0.774821\pi\)
\(752\) 6.00000 0.218797
\(753\) 0 0
\(754\) −0.343146 −0.0124966
\(755\) 0.343146 0.0124884
\(756\) 0 0
\(757\) 19.4558 0.707135 0.353567 0.935409i \(-0.384969\pi\)
0.353567 + 0.935409i \(0.384969\pi\)
\(758\) 8.76955 0.318524
\(759\) 0 0
\(760\) −4.48528 −0.162698
\(761\) −13.3137 −0.482622 −0.241311 0.970448i \(-0.577577\pi\)
−0.241311 + 0.970448i \(0.577577\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −13.1127 −0.474401
\(765\) 0 0
\(766\) 7.00000 0.252920
\(767\) 10.3431 0.373469
\(768\) 0 0
\(769\) −44.6274 −1.60931 −0.804653 0.593745i \(-0.797649\pi\)
−0.804653 + 0.593745i \(0.797649\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 3.65685 0.131613
\(773\) 25.1127 0.903241 0.451620 0.892210i \(-0.350846\pi\)
0.451620 + 0.892210i \(0.350846\pi\)
\(774\) 0 0
\(775\) 6.00000 0.215526
\(776\) 0.544156 0.0195341
\(777\) 0 0
\(778\) −5.11270 −0.183299
\(779\) −6.14214 −0.220065
\(780\) 0 0
\(781\) −60.2843 −2.15714
\(782\) −0.828427 −0.0296245
\(783\) 0 0
\(784\) 0 0
\(785\) 5.31371 0.189654
\(786\) 0 0
\(787\) 28.5563 1.01792 0.508962 0.860789i \(-0.330029\pi\)
0.508962 + 0.860789i \(0.330029\pi\)
\(788\) −43.2548 −1.54089
\(789\) 0 0
\(790\) 3.79899 0.135162
\(791\) 0 0
\(792\) 0 0
\(793\) −9.51472 −0.337878
\(794\) −11.8579 −0.420820
\(795\) 0 0
\(796\) 3.02944 0.107376
\(797\) −8.00000 −0.283375 −0.141687 0.989911i \(-0.545253\pi\)
−0.141687 + 0.989911i \(0.545253\pi\)
\(798\) 0 0
\(799\) −1.65685 −0.0586153
\(800\) 4.41421 0.156066
\(801\) 0 0
\(802\) −3.18377 −0.112423
\(803\) 23.3137 0.822723
\(804\) 0 0
\(805\) 0 0
\(806\) −2.05887 −0.0725208
\(807\) 0 0
\(808\) −19.5269 −0.686954
\(809\) 9.62742 0.338482 0.169241 0.985575i \(-0.445868\pi\)
0.169241 + 0.985575i \(0.445868\pi\)
\(810\) 0 0
\(811\) −24.6274 −0.864786 −0.432393 0.901685i \(-0.642331\pi\)
−0.432393 + 0.901685i \(0.642331\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 23.6569 0.828663
\(816\) 0 0
\(817\) 18.1421 0.634713
\(818\) −10.2721 −0.359155
\(819\) 0 0
\(820\) 3.97056 0.138658
\(821\) 19.9411 0.695950 0.347975 0.937504i \(-0.386869\pi\)
0.347975 + 0.937504i \(0.386869\pi\)
\(822\) 0 0
\(823\) −12.0711 −0.420771 −0.210385 0.977619i \(-0.567472\pi\)
−0.210385 + 0.977619i \(0.567472\pi\)
\(824\) 0.656854 0.0228826
\(825\) 0 0
\(826\) 0 0
\(827\) −16.2132 −0.563788 −0.281894 0.959446i \(-0.590963\pi\)
−0.281894 + 0.959446i \(0.590963\pi\)
\(828\) 0 0
\(829\) −6.68629 −0.232225 −0.116112 0.993236i \(-0.537043\pi\)
−0.116112 + 0.993236i \(0.537043\pi\)
\(830\) −4.85786 −0.168619
\(831\) 0 0
\(832\) 3.45584 0.119810
\(833\) 0 0
\(834\) 0 0
\(835\) 19.5858 0.677794
\(836\) 24.9706 0.863625
\(837\) 0 0
\(838\) −9.65685 −0.333590
\(839\) 20.8284 0.719077 0.359539 0.933130i \(-0.382934\pi\)
0.359539 + 0.933130i \(0.382934\pi\)
\(840\) 0 0
\(841\) −28.0000 −0.965517
\(842\) −1.44365 −0.0497515
\(843\) 0 0
\(844\) −6.42641 −0.221206
\(845\) −12.3137 −0.423604
\(846\) 0 0
\(847\) 0 0
\(848\) 20.4853 0.703467
\(849\) 0 0
\(850\) −0.343146 −0.0117698
\(851\) 0 0
\(852\) 0 0
\(853\) −53.4558 −1.83029 −0.915147 0.403121i \(-0.867925\pi\)
−0.915147 + 0.403121i \(0.867925\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 4.37258 0.149452
\(857\) −22.2843 −0.761216 −0.380608 0.924736i \(-0.624285\pi\)
−0.380608 + 0.924736i \(0.624285\pi\)
\(858\) 0 0
\(859\) −46.6274 −1.59091 −0.795453 0.606015i \(-0.792767\pi\)
−0.795453 + 0.606015i \(0.792767\pi\)
\(860\) −11.7279 −0.399919
\(861\) 0 0
\(862\) 9.02944 0.307544
\(863\) 16.5563 0.563585 0.281792 0.959475i \(-0.409071\pi\)
0.281792 + 0.959475i \(0.409071\pi\)
\(864\) 0 0
\(865\) −19.3137 −0.656686
\(866\) 13.1716 0.447588
\(867\) 0 0
\(868\) 0 0
\(869\) −44.2843 −1.50224
\(870\) 0 0
\(871\) −10.2843 −0.348469
\(872\) −5.52691 −0.187165
\(873\) 0 0
\(874\) 2.82843 0.0956730
\(875\) 0 0
\(876\) 0 0
\(877\) 30.8284 1.04100 0.520501 0.853861i \(-0.325745\pi\)
0.520501 + 0.853861i \(0.325745\pi\)
\(878\) −14.0589 −0.474464
\(879\) 0 0
\(880\) −14.4853 −0.488299
\(881\) −3.82843 −0.128983 −0.0644915 0.997918i \(-0.520543\pi\)
−0.0644915 + 0.997918i \(0.520543\pi\)
\(882\) 0 0
\(883\) −38.2843 −1.28837 −0.644184 0.764870i \(-0.722803\pi\)
−0.644184 + 0.764870i \(0.722803\pi\)
\(884\) −1.25483 −0.0422046
\(885\) 0 0
\(886\) 5.05887 0.169956
\(887\) 44.0711 1.47976 0.739881 0.672738i \(-0.234882\pi\)
0.739881 + 0.672738i \(0.234882\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 1.10051 0.0368890
\(891\) 0 0
\(892\) 21.3137 0.713636
\(893\) 5.65685 0.189299
\(894\) 0 0
\(895\) 10.0000 0.334263
\(896\) 0 0
\(897\) 0 0
\(898\) 0.757359 0.0252734
\(899\) 6.00000 0.200111
\(900\) 0 0
\(901\) −5.65685 −0.188457
\(902\) 4.34315 0.144611
\(903\) 0 0
\(904\) 19.7990 0.658505
\(905\) 8.65685 0.287764
\(906\) 0 0
\(907\) 28.2132 0.936804 0.468402 0.883515i \(-0.344830\pi\)
0.468402 + 0.883515i \(0.344830\pi\)
\(908\) −49.3137 −1.63653
\(909\) 0 0
\(910\) 0 0
\(911\) 49.7990 1.64991 0.824957 0.565195i \(-0.191199\pi\)
0.824957 + 0.565195i \(0.191199\pi\)
\(912\) 0 0
\(913\) 56.6274 1.87409
\(914\) −13.3726 −0.442326
\(915\) 0 0
\(916\) −0.627417 −0.0207304
\(917\) 0 0
\(918\) 0 0
\(919\) 19.1127 0.630470 0.315235 0.949014i \(-0.397917\pi\)
0.315235 + 0.949014i \(0.397917\pi\)
\(920\) −3.82843 −0.126220
\(921\) 0 0
\(922\) 7.74012 0.254907
\(923\) −10.3431 −0.340449
\(924\) 0 0
\(925\) 0 0
\(926\) 4.57359 0.150298
\(927\) 0 0
\(928\) 4.41421 0.144904
\(929\) −11.4853 −0.376820 −0.188410 0.982090i \(-0.560333\pi\)
−0.188410 + 0.982090i \(0.560333\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −20.4264 −0.669089
\(933\) 0 0
\(934\) −9.48528 −0.310368
\(935\) 4.00000 0.130814
\(936\) 0 0
\(937\) 10.6274 0.347183 0.173591 0.984818i \(-0.444463\pi\)
0.173591 + 0.984818i \(0.444463\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −3.65685 −0.119273
\(941\) 10.2843 0.335258 0.167629 0.985850i \(-0.446389\pi\)
0.167629 + 0.985850i \(0.446389\pi\)
\(942\) 0 0
\(943\) −5.24264 −0.170724
\(944\) −37.4558 −1.21908
\(945\) 0 0
\(946\) −12.8284 −0.417088
\(947\) 43.1838 1.40328 0.701642 0.712530i \(-0.252451\pi\)
0.701642 + 0.712530i \(0.252451\pi\)
\(948\) 0 0
\(949\) 4.00000 0.129845
\(950\) 1.17157 0.0380108
\(951\) 0 0
\(952\) 0 0
\(953\) 2.34315 0.0759019 0.0379510 0.999280i \(-0.487917\pi\)
0.0379510 + 0.999280i \(0.487917\pi\)
\(954\) 0 0
\(955\) 7.17157 0.232067
\(956\) 2.40202 0.0776869
\(957\) 0 0
\(958\) −10.0833 −0.325775
\(959\) 0 0
\(960\) 0 0
\(961\) 5.00000 0.161290
\(962\) 0 0
\(963\) 0 0
\(964\) 29.8823 0.962442
\(965\) −2.00000 −0.0643823
\(966\) 0 0
\(967\) −27.5269 −0.885206 −0.442603 0.896718i \(-0.645945\pi\)
−0.442603 + 0.896718i \(0.645945\pi\)
\(968\) −19.5269 −0.627619
\(969\) 0 0
\(970\) −0.142136 −0.00456370
\(971\) −24.0000 −0.770197 −0.385098 0.922876i \(-0.625832\pi\)
−0.385098 + 0.922876i \(0.625832\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 6.48528 0.207802
\(975\) 0 0
\(976\) 34.4558 1.10290
\(977\) −21.3137 −0.681886 −0.340943 0.940084i \(-0.610746\pi\)
−0.340943 + 0.940084i \(0.610746\pi\)
\(978\) 0 0
\(979\) −12.8284 −0.409998
\(980\) 0 0
\(981\) 0 0
\(982\) 5.51472 0.175982
\(983\) −14.2132 −0.453331 −0.226665 0.973973i \(-0.572782\pi\)
−0.226665 + 0.973973i \(0.572782\pi\)
\(984\) 0 0
\(985\) 23.6569 0.753770
\(986\) −0.343146 −0.0109280
\(987\) 0 0
\(988\) 4.28427 0.136301
\(989\) 15.4853 0.492403
\(990\) 0 0
\(991\) −15.6569 −0.497356 −0.248678 0.968586i \(-0.579996\pi\)
−0.248678 + 0.968586i \(0.579996\pi\)
\(992\) 26.4853 0.840909
\(993\) 0 0
\(994\) 0 0
\(995\) −1.65685 −0.0525258
\(996\) 0 0
\(997\) 17.4558 0.552832 0.276416 0.961038i \(-0.410853\pi\)
0.276416 + 0.961038i \(0.410853\pi\)
\(998\) 2.00000 0.0633089
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2205.2.a.q.1.2 2
3.2 odd 2 245.2.a.g.1.1 2
7.3 odd 6 315.2.j.e.226.1 4
7.5 odd 6 315.2.j.e.46.1 4
7.6 odd 2 2205.2.a.n.1.2 2
12.11 even 2 3920.2.a.bv.1.2 2
15.2 even 4 1225.2.b.h.99.2 4
15.8 even 4 1225.2.b.h.99.3 4
15.14 odd 2 1225.2.a.m.1.2 2
21.2 odd 6 245.2.e.e.116.2 4
21.5 even 6 35.2.e.a.11.2 4
21.11 odd 6 245.2.e.e.226.2 4
21.17 even 6 35.2.e.a.16.2 yes 4
21.20 even 2 245.2.a.h.1.1 2
84.47 odd 6 560.2.q.k.81.2 4
84.59 odd 6 560.2.q.k.401.2 4
84.83 odd 2 3920.2.a.bq.1.1 2
105.17 odd 12 175.2.k.a.149.3 8
105.38 odd 12 175.2.k.a.149.2 8
105.47 odd 12 175.2.k.a.74.2 8
105.59 even 6 175.2.e.c.51.1 4
105.62 odd 4 1225.2.b.g.99.2 4
105.68 odd 12 175.2.k.a.74.3 8
105.83 odd 4 1225.2.b.g.99.3 4
105.89 even 6 175.2.e.c.151.1 4
105.104 even 2 1225.2.a.k.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
35.2.e.a.11.2 4 21.5 even 6
35.2.e.a.16.2 yes 4 21.17 even 6
175.2.e.c.51.1 4 105.59 even 6
175.2.e.c.151.1 4 105.89 even 6
175.2.k.a.74.2 8 105.47 odd 12
175.2.k.a.74.3 8 105.68 odd 12
175.2.k.a.149.2 8 105.38 odd 12
175.2.k.a.149.3 8 105.17 odd 12
245.2.a.g.1.1 2 3.2 odd 2
245.2.a.h.1.1 2 21.20 even 2
245.2.e.e.116.2 4 21.2 odd 6
245.2.e.e.226.2 4 21.11 odd 6
315.2.j.e.46.1 4 7.5 odd 6
315.2.j.e.226.1 4 7.3 odd 6
560.2.q.k.81.2 4 84.47 odd 6
560.2.q.k.401.2 4 84.59 odd 6
1225.2.a.k.1.2 2 105.104 even 2
1225.2.a.m.1.2 2 15.14 odd 2
1225.2.b.g.99.2 4 105.62 odd 4
1225.2.b.g.99.3 4 105.83 odd 4
1225.2.b.h.99.2 4 15.2 even 4
1225.2.b.h.99.3 4 15.8 even 4
2205.2.a.n.1.2 2 7.6 odd 2
2205.2.a.q.1.2 2 1.1 even 1 trivial
3920.2.a.bq.1.1 2 84.83 odd 2
3920.2.a.bv.1.2 2 12.11 even 2