Properties

Label 2205.4.a.c.1.1
Level $2205$
Weight $4$
Character 2205.1
Self dual yes
Analytic conductor $130.099$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2205,4,Mod(1,2205)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2205, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2205.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2205 = 3^{2} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2205.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(130.099211563\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 15)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 2205.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.00000 q^{2} +1.00000 q^{4} -5.00000 q^{5} +21.0000 q^{8} +15.0000 q^{10} +24.0000 q^{11} -74.0000 q^{13} -71.0000 q^{16} +54.0000 q^{17} +124.000 q^{19} -5.00000 q^{20} -72.0000 q^{22} +120.000 q^{23} +25.0000 q^{25} +222.000 q^{26} +78.0000 q^{29} -200.000 q^{31} +45.0000 q^{32} -162.000 q^{34} -70.0000 q^{37} -372.000 q^{38} -105.000 q^{40} +330.000 q^{41} +92.0000 q^{43} +24.0000 q^{44} -360.000 q^{46} -24.0000 q^{47} -75.0000 q^{50} -74.0000 q^{52} -450.000 q^{53} -120.000 q^{55} -234.000 q^{58} +24.0000 q^{59} +322.000 q^{61} +600.000 q^{62} +433.000 q^{64} +370.000 q^{65} -196.000 q^{67} +54.0000 q^{68} +288.000 q^{71} +430.000 q^{73} +210.000 q^{74} +124.000 q^{76} -520.000 q^{79} +355.000 q^{80} -990.000 q^{82} +156.000 q^{83} -270.000 q^{85} -276.000 q^{86} +504.000 q^{88} +1026.00 q^{89} +120.000 q^{92} +72.0000 q^{94} -620.000 q^{95} +286.000 q^{97} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.00000 −1.06066 −0.530330 0.847791i \(-0.677932\pi\)
−0.530330 + 0.847791i \(0.677932\pi\)
\(3\) 0 0
\(4\) 1.00000 0.125000
\(5\) −5.00000 −0.447214
\(6\) 0 0
\(7\) 0 0
\(8\) 21.0000 0.928078
\(9\) 0 0
\(10\) 15.0000 0.474342
\(11\) 24.0000 0.657843 0.328921 0.944357i \(-0.393315\pi\)
0.328921 + 0.944357i \(0.393315\pi\)
\(12\) 0 0
\(13\) −74.0000 −1.57876 −0.789381 0.613904i \(-0.789598\pi\)
−0.789381 + 0.613904i \(0.789598\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −71.0000 −1.10938
\(17\) 54.0000 0.770407 0.385204 0.922832i \(-0.374131\pi\)
0.385204 + 0.922832i \(0.374131\pi\)
\(18\) 0 0
\(19\) 124.000 1.49724 0.748620 0.663000i \(-0.230717\pi\)
0.748620 + 0.663000i \(0.230717\pi\)
\(20\) −5.00000 −0.0559017
\(21\) 0 0
\(22\) −72.0000 −0.697748
\(23\) 120.000 1.08790 0.543951 0.839117i \(-0.316928\pi\)
0.543951 + 0.839117i \(0.316928\pi\)
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) 222.000 1.67453
\(27\) 0 0
\(28\) 0 0
\(29\) 78.0000 0.499456 0.249728 0.968316i \(-0.419659\pi\)
0.249728 + 0.968316i \(0.419659\pi\)
\(30\) 0 0
\(31\) −200.000 −1.15874 −0.579372 0.815063i \(-0.696702\pi\)
−0.579372 + 0.815063i \(0.696702\pi\)
\(32\) 45.0000 0.248592
\(33\) 0 0
\(34\) −162.000 −0.817140
\(35\) 0 0
\(36\) 0 0
\(37\) −70.0000 −0.311025 −0.155513 0.987834i \(-0.549703\pi\)
−0.155513 + 0.987834i \(0.549703\pi\)
\(38\) −372.000 −1.58806
\(39\) 0 0
\(40\) −105.000 −0.415049
\(41\) 330.000 1.25701 0.628504 0.777806i \(-0.283668\pi\)
0.628504 + 0.777806i \(0.283668\pi\)
\(42\) 0 0
\(43\) 92.0000 0.326276 0.163138 0.986603i \(-0.447838\pi\)
0.163138 + 0.986603i \(0.447838\pi\)
\(44\) 24.0000 0.0822304
\(45\) 0 0
\(46\) −360.000 −1.15389
\(47\) −24.0000 −0.0744843 −0.0372421 0.999306i \(-0.511857\pi\)
−0.0372421 + 0.999306i \(0.511857\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) −75.0000 −0.212132
\(51\) 0 0
\(52\) −74.0000 −0.197345
\(53\) −450.000 −1.16627 −0.583134 0.812376i \(-0.698174\pi\)
−0.583134 + 0.812376i \(0.698174\pi\)
\(54\) 0 0
\(55\) −120.000 −0.294196
\(56\) 0 0
\(57\) 0 0
\(58\) −234.000 −0.529754
\(59\) 24.0000 0.0529582 0.0264791 0.999649i \(-0.491570\pi\)
0.0264791 + 0.999649i \(0.491570\pi\)
\(60\) 0 0
\(61\) 322.000 0.675867 0.337933 0.941170i \(-0.390272\pi\)
0.337933 + 0.941170i \(0.390272\pi\)
\(62\) 600.000 1.22903
\(63\) 0 0
\(64\) 433.000 0.845703
\(65\) 370.000 0.706044
\(66\) 0 0
\(67\) −196.000 −0.357391 −0.178696 0.983904i \(-0.557188\pi\)
−0.178696 + 0.983904i \(0.557188\pi\)
\(68\) 54.0000 0.0963009
\(69\) 0 0
\(70\) 0 0
\(71\) 288.000 0.481399 0.240699 0.970600i \(-0.422623\pi\)
0.240699 + 0.970600i \(0.422623\pi\)
\(72\) 0 0
\(73\) 430.000 0.689420 0.344710 0.938709i \(-0.387977\pi\)
0.344710 + 0.938709i \(0.387977\pi\)
\(74\) 210.000 0.329892
\(75\) 0 0
\(76\) 124.000 0.187155
\(77\) 0 0
\(78\) 0 0
\(79\) −520.000 −0.740564 −0.370282 0.928919i \(-0.620739\pi\)
−0.370282 + 0.928919i \(0.620739\pi\)
\(80\) 355.000 0.496128
\(81\) 0 0
\(82\) −990.000 −1.33326
\(83\) 156.000 0.206304 0.103152 0.994666i \(-0.467107\pi\)
0.103152 + 0.994666i \(0.467107\pi\)
\(84\) 0 0
\(85\) −270.000 −0.344537
\(86\) −276.000 −0.346068
\(87\) 0 0
\(88\) 504.000 0.610529
\(89\) 1026.00 1.22198 0.610988 0.791640i \(-0.290773\pi\)
0.610988 + 0.791640i \(0.290773\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 120.000 0.135988
\(93\) 0 0
\(94\) 72.0000 0.0790025
\(95\) −620.000 −0.669586
\(96\) 0 0
\(97\) 286.000 0.299370 0.149685 0.988734i \(-0.452174\pi\)
0.149685 + 0.988734i \(0.452174\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 25.0000 0.0250000
\(101\) −1734.00 −1.70831 −0.854156 0.520017i \(-0.825925\pi\)
−0.854156 + 0.520017i \(0.825925\pi\)
\(102\) 0 0
\(103\) −452.000 −0.432397 −0.216198 0.976349i \(-0.569366\pi\)
−0.216198 + 0.976349i \(0.569366\pi\)
\(104\) −1554.00 −1.46521
\(105\) 0 0
\(106\) 1350.00 1.23702
\(107\) 1404.00 1.26850 0.634251 0.773127i \(-0.281308\pi\)
0.634251 + 0.773127i \(0.281308\pi\)
\(108\) 0 0
\(109\) −1474.00 −1.29526 −0.647631 0.761954i \(-0.724240\pi\)
−0.647631 + 0.761954i \(0.724240\pi\)
\(110\) 360.000 0.312042
\(111\) 0 0
\(112\) 0 0
\(113\) −1086.00 −0.904091 −0.452046 0.891995i \(-0.649306\pi\)
−0.452046 + 0.891995i \(0.649306\pi\)
\(114\) 0 0
\(115\) −600.000 −0.486524
\(116\) 78.0000 0.0624321
\(117\) 0 0
\(118\) −72.0000 −0.0561707
\(119\) 0 0
\(120\) 0 0
\(121\) −755.000 −0.567243
\(122\) −966.000 −0.716865
\(123\) 0 0
\(124\) −200.000 −0.144843
\(125\) −125.000 −0.0894427
\(126\) 0 0
\(127\) 1244.00 0.869190 0.434595 0.900626i \(-0.356891\pi\)
0.434595 + 0.900626i \(0.356891\pi\)
\(128\) −1659.00 −1.14560
\(129\) 0 0
\(130\) −1110.00 −0.748873
\(131\) 2328.00 1.55266 0.776329 0.630327i \(-0.217079\pi\)
0.776329 + 0.630327i \(0.217079\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 588.000 0.379071
\(135\) 0 0
\(136\) 1134.00 0.714998
\(137\) −2118.00 −1.32082 −0.660412 0.750903i \(-0.729618\pi\)
−0.660412 + 0.750903i \(0.729618\pi\)
\(138\) 0 0
\(139\) −2324.00 −1.41812 −0.709062 0.705147i \(-0.750881\pi\)
−0.709062 + 0.705147i \(0.750881\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −864.000 −0.510600
\(143\) −1776.00 −1.03858
\(144\) 0 0
\(145\) −390.000 −0.223364
\(146\) −1290.00 −0.731241
\(147\) 0 0
\(148\) −70.0000 −0.0388781
\(149\) −258.000 −0.141854 −0.0709268 0.997482i \(-0.522596\pi\)
−0.0709268 + 0.997482i \(0.522596\pi\)
\(150\) 0 0
\(151\) −808.000 −0.435458 −0.217729 0.976009i \(-0.569865\pi\)
−0.217729 + 0.976009i \(0.569865\pi\)
\(152\) 2604.00 1.38955
\(153\) 0 0
\(154\) 0 0
\(155\) 1000.00 0.518206
\(156\) 0 0
\(157\) −2378.00 −1.20882 −0.604411 0.796673i \(-0.706592\pi\)
−0.604411 + 0.796673i \(0.706592\pi\)
\(158\) 1560.00 0.785487
\(159\) 0 0
\(160\) −225.000 −0.111174
\(161\) 0 0
\(162\) 0 0
\(163\) −52.0000 −0.0249874 −0.0124937 0.999922i \(-0.503977\pi\)
−0.0124937 + 0.999922i \(0.503977\pi\)
\(164\) 330.000 0.157126
\(165\) 0 0
\(166\) −468.000 −0.218818
\(167\) −3720.00 −1.72373 −0.861863 0.507141i \(-0.830702\pi\)
−0.861863 + 0.507141i \(0.830702\pi\)
\(168\) 0 0
\(169\) 3279.00 1.49249
\(170\) 810.000 0.365436
\(171\) 0 0
\(172\) 92.0000 0.0407845
\(173\) 426.000 0.187215 0.0936075 0.995609i \(-0.470160\pi\)
0.0936075 + 0.995609i \(0.470160\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −1704.00 −0.729795
\(177\) 0 0
\(178\) −3078.00 −1.29610
\(179\) 1440.00 0.601289 0.300644 0.953736i \(-0.402798\pi\)
0.300644 + 0.953736i \(0.402798\pi\)
\(180\) 0 0
\(181\) 3130.00 1.28537 0.642683 0.766133i \(-0.277821\pi\)
0.642683 + 0.766133i \(0.277821\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 2520.00 1.00966
\(185\) 350.000 0.139095
\(186\) 0 0
\(187\) 1296.00 0.506807
\(188\) −24.0000 −0.00931053
\(189\) 0 0
\(190\) 1860.00 0.710203
\(191\) −3576.00 −1.35471 −0.677357 0.735655i \(-0.736875\pi\)
−0.677357 + 0.735655i \(0.736875\pi\)
\(192\) 0 0
\(193\) 2666.00 0.994315 0.497158 0.867660i \(-0.334377\pi\)
0.497158 + 0.867660i \(0.334377\pi\)
\(194\) −858.000 −0.317530
\(195\) 0 0
\(196\) 0 0
\(197\) 2718.00 0.982992 0.491496 0.870880i \(-0.336450\pi\)
0.491496 + 0.870880i \(0.336450\pi\)
\(198\) 0 0
\(199\) 3832.00 1.36504 0.682521 0.730866i \(-0.260884\pi\)
0.682521 + 0.730866i \(0.260884\pi\)
\(200\) 525.000 0.185616
\(201\) 0 0
\(202\) 5202.00 1.81194
\(203\) 0 0
\(204\) 0 0
\(205\) −1650.00 −0.562151
\(206\) 1356.00 0.458626
\(207\) 0 0
\(208\) 5254.00 1.75144
\(209\) 2976.00 0.984948
\(210\) 0 0
\(211\) 1100.00 0.358896 0.179448 0.983767i \(-0.442569\pi\)
0.179448 + 0.983767i \(0.442569\pi\)
\(212\) −450.000 −0.145784
\(213\) 0 0
\(214\) −4212.00 −1.34545
\(215\) −460.000 −0.145915
\(216\) 0 0
\(217\) 0 0
\(218\) 4422.00 1.37383
\(219\) 0 0
\(220\) −120.000 −0.0367745
\(221\) −3996.00 −1.21629
\(222\) 0 0
\(223\) −1964.00 −0.589772 −0.294886 0.955532i \(-0.595282\pi\)
−0.294886 + 0.955532i \(0.595282\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 3258.00 0.958933
\(227\) 660.000 0.192977 0.0964884 0.995334i \(-0.469239\pi\)
0.0964884 + 0.995334i \(0.469239\pi\)
\(228\) 0 0
\(229\) 1906.00 0.550009 0.275004 0.961443i \(-0.411321\pi\)
0.275004 + 0.961443i \(0.411321\pi\)
\(230\) 1800.00 0.516037
\(231\) 0 0
\(232\) 1638.00 0.463534
\(233\) 1458.00 0.409943 0.204972 0.978768i \(-0.434290\pi\)
0.204972 + 0.978768i \(0.434290\pi\)
\(234\) 0 0
\(235\) 120.000 0.0333104
\(236\) 24.0000 0.00661978
\(237\) 0 0
\(238\) 0 0
\(239\) −1176.00 −0.318281 −0.159140 0.987256i \(-0.550872\pi\)
−0.159140 + 0.987256i \(0.550872\pi\)
\(240\) 0 0
\(241\) −866.000 −0.231469 −0.115734 0.993280i \(-0.536922\pi\)
−0.115734 + 0.993280i \(0.536922\pi\)
\(242\) 2265.00 0.601652
\(243\) 0 0
\(244\) 322.000 0.0844834
\(245\) 0 0
\(246\) 0 0
\(247\) −9176.00 −2.36379
\(248\) −4200.00 −1.07540
\(249\) 0 0
\(250\) 375.000 0.0948683
\(251\) 432.000 0.108636 0.0543179 0.998524i \(-0.482702\pi\)
0.0543179 + 0.998524i \(0.482702\pi\)
\(252\) 0 0
\(253\) 2880.00 0.715668
\(254\) −3732.00 −0.921915
\(255\) 0 0
\(256\) 1513.00 0.369385
\(257\) 2526.00 0.613103 0.306552 0.951854i \(-0.400825\pi\)
0.306552 + 0.951854i \(0.400825\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 370.000 0.0882555
\(261\) 0 0
\(262\) −6984.00 −1.64684
\(263\) −5448.00 −1.27733 −0.638666 0.769484i \(-0.720513\pi\)
−0.638666 + 0.769484i \(0.720513\pi\)
\(264\) 0 0
\(265\) 2250.00 0.521571
\(266\) 0 0
\(267\) 0 0
\(268\) −196.000 −0.0446739
\(269\) −2574.00 −0.583418 −0.291709 0.956507i \(-0.594224\pi\)
−0.291709 + 0.956507i \(0.594224\pi\)
\(270\) 0 0
\(271\) 3184.00 0.713706 0.356853 0.934161i \(-0.383850\pi\)
0.356853 + 0.934161i \(0.383850\pi\)
\(272\) −3834.00 −0.854671
\(273\) 0 0
\(274\) 6354.00 1.40095
\(275\) 600.000 0.131569
\(276\) 0 0
\(277\) 3962.00 0.859399 0.429699 0.902972i \(-0.358620\pi\)
0.429699 + 0.902972i \(0.358620\pi\)
\(278\) 6972.00 1.50415
\(279\) 0 0
\(280\) 0 0
\(281\) 8286.00 1.75908 0.879540 0.475825i \(-0.157851\pi\)
0.879540 + 0.475825i \(0.157851\pi\)
\(282\) 0 0
\(283\) 2716.00 0.570493 0.285246 0.958454i \(-0.407925\pi\)
0.285246 + 0.958454i \(0.407925\pi\)
\(284\) 288.000 0.0601748
\(285\) 0 0
\(286\) 5328.00 1.10158
\(287\) 0 0
\(288\) 0 0
\(289\) −1997.00 −0.406473
\(290\) 1170.00 0.236913
\(291\) 0 0
\(292\) 430.000 0.0861776
\(293\) 6018.00 1.19992 0.599958 0.800032i \(-0.295184\pi\)
0.599958 + 0.800032i \(0.295184\pi\)
\(294\) 0 0
\(295\) −120.000 −0.0236836
\(296\) −1470.00 −0.288655
\(297\) 0 0
\(298\) 774.000 0.150458
\(299\) −8880.00 −1.71754
\(300\) 0 0
\(301\) 0 0
\(302\) 2424.00 0.461873
\(303\) 0 0
\(304\) −8804.00 −1.66100
\(305\) −1610.00 −0.302257
\(306\) 0 0
\(307\) −9236.00 −1.71702 −0.858512 0.512793i \(-0.828611\pi\)
−0.858512 + 0.512793i \(0.828611\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −3000.00 −0.549640
\(311\) 1536.00 0.280060 0.140030 0.990147i \(-0.455280\pi\)
0.140030 + 0.990147i \(0.455280\pi\)
\(312\) 0 0
\(313\) 7342.00 1.32586 0.662930 0.748681i \(-0.269313\pi\)
0.662930 + 0.748681i \(0.269313\pi\)
\(314\) 7134.00 1.28215
\(315\) 0 0
\(316\) −520.000 −0.0925705
\(317\) 3894.00 0.689933 0.344967 0.938615i \(-0.387890\pi\)
0.344967 + 0.938615i \(0.387890\pi\)
\(318\) 0 0
\(319\) 1872.00 0.328564
\(320\) −2165.00 −0.378210
\(321\) 0 0
\(322\) 0 0
\(323\) 6696.00 1.15348
\(324\) 0 0
\(325\) −1850.00 −0.315752
\(326\) 156.000 0.0265032
\(327\) 0 0
\(328\) 6930.00 1.16660
\(329\) 0 0
\(330\) 0 0
\(331\) 3692.00 0.613084 0.306542 0.951857i \(-0.400828\pi\)
0.306542 + 0.951857i \(0.400828\pi\)
\(332\) 156.000 0.0257880
\(333\) 0 0
\(334\) 11160.0 1.82829
\(335\) 980.000 0.159830
\(336\) 0 0
\(337\) −8998.00 −1.45446 −0.727229 0.686395i \(-0.759192\pi\)
−0.727229 + 0.686395i \(0.759192\pi\)
\(338\) −9837.00 −1.58302
\(339\) 0 0
\(340\) −270.000 −0.0430671
\(341\) −4800.00 −0.762271
\(342\) 0 0
\(343\) 0 0
\(344\) 1932.00 0.302809
\(345\) 0 0
\(346\) −1278.00 −0.198571
\(347\) −5244.00 −0.811276 −0.405638 0.914034i \(-0.632951\pi\)
−0.405638 + 0.914034i \(0.632951\pi\)
\(348\) 0 0
\(349\) −6302.00 −0.966585 −0.483293 0.875459i \(-0.660559\pi\)
−0.483293 + 0.875459i \(0.660559\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 1080.00 0.163535
\(353\) 3414.00 0.514756 0.257378 0.966311i \(-0.417141\pi\)
0.257378 + 0.966311i \(0.417141\pi\)
\(354\) 0 0
\(355\) −1440.00 −0.215288
\(356\) 1026.00 0.152747
\(357\) 0 0
\(358\) −4320.00 −0.637763
\(359\) −4824.00 −0.709195 −0.354597 0.935019i \(-0.615382\pi\)
−0.354597 + 0.935019i \(0.615382\pi\)
\(360\) 0 0
\(361\) 8517.00 1.24173
\(362\) −9390.00 −1.36334
\(363\) 0 0
\(364\) 0 0
\(365\) −2150.00 −0.308318
\(366\) 0 0
\(367\) 3508.00 0.498954 0.249477 0.968381i \(-0.419741\pi\)
0.249477 + 0.968381i \(0.419741\pi\)
\(368\) −8520.00 −1.20689
\(369\) 0 0
\(370\) −1050.00 −0.147532
\(371\) 0 0
\(372\) 0 0
\(373\) 10802.0 1.49948 0.749740 0.661732i \(-0.230178\pi\)
0.749740 + 0.661732i \(0.230178\pi\)
\(374\) −3888.00 −0.537550
\(375\) 0 0
\(376\) −504.000 −0.0691272
\(377\) −5772.00 −0.788523
\(378\) 0 0
\(379\) 1460.00 0.197876 0.0989382 0.995094i \(-0.468455\pi\)
0.0989382 + 0.995094i \(0.468455\pi\)
\(380\) −620.000 −0.0836982
\(381\) 0 0
\(382\) 10728.0 1.43689
\(383\) −4872.00 −0.649994 −0.324997 0.945715i \(-0.605363\pi\)
−0.324997 + 0.945715i \(0.605363\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −7998.00 −1.05463
\(387\) 0 0
\(388\) 286.000 0.0374213
\(389\) 14046.0 1.83075 0.915373 0.402606i \(-0.131896\pi\)
0.915373 + 0.402606i \(0.131896\pi\)
\(390\) 0 0
\(391\) 6480.00 0.838127
\(392\) 0 0
\(393\) 0 0
\(394\) −8154.00 −1.04262
\(395\) 2600.00 0.331190
\(396\) 0 0
\(397\) 2734.00 0.345631 0.172816 0.984954i \(-0.444714\pi\)
0.172816 + 0.984954i \(0.444714\pi\)
\(398\) −11496.0 −1.44785
\(399\) 0 0
\(400\) −1775.00 −0.221875
\(401\) 15942.0 1.98530 0.992650 0.121019i \(-0.0386161\pi\)
0.992650 + 0.121019i \(0.0386161\pi\)
\(402\) 0 0
\(403\) 14800.0 1.82938
\(404\) −1734.00 −0.213539
\(405\) 0 0
\(406\) 0 0
\(407\) −1680.00 −0.204606
\(408\) 0 0
\(409\) −8714.00 −1.05350 −0.526748 0.850022i \(-0.676589\pi\)
−0.526748 + 0.850022i \(0.676589\pi\)
\(410\) 4950.00 0.596251
\(411\) 0 0
\(412\) −452.000 −0.0540496
\(413\) 0 0
\(414\) 0 0
\(415\) −780.000 −0.0922619
\(416\) −3330.00 −0.392468
\(417\) 0 0
\(418\) −8928.00 −1.04470
\(419\) 11976.0 1.39634 0.698169 0.715933i \(-0.253998\pi\)
0.698169 + 0.715933i \(0.253998\pi\)
\(420\) 0 0
\(421\) 11054.0 1.27967 0.639833 0.768514i \(-0.279004\pi\)
0.639833 + 0.768514i \(0.279004\pi\)
\(422\) −3300.00 −0.380667
\(423\) 0 0
\(424\) −9450.00 −1.08239
\(425\) 1350.00 0.154081
\(426\) 0 0
\(427\) 0 0
\(428\) 1404.00 0.158563
\(429\) 0 0
\(430\) 1380.00 0.154766
\(431\) −720.000 −0.0804668 −0.0402334 0.999190i \(-0.512810\pi\)
−0.0402334 + 0.999190i \(0.512810\pi\)
\(432\) 0 0
\(433\) 15622.0 1.73382 0.866912 0.498462i \(-0.166102\pi\)
0.866912 + 0.498462i \(0.166102\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −1474.00 −0.161908
\(437\) 14880.0 1.62885
\(438\) 0 0
\(439\) 9880.00 1.07414 0.537069 0.843538i \(-0.319531\pi\)
0.537069 + 0.843538i \(0.319531\pi\)
\(440\) −2520.00 −0.273037
\(441\) 0 0
\(442\) 11988.0 1.29007
\(443\) 16116.0 1.72843 0.864215 0.503123i \(-0.167816\pi\)
0.864215 + 0.503123i \(0.167816\pi\)
\(444\) 0 0
\(445\) −5130.00 −0.546484
\(446\) 5892.00 0.625548
\(447\) 0 0
\(448\) 0 0
\(449\) −9018.00 −0.947852 −0.473926 0.880565i \(-0.657164\pi\)
−0.473926 + 0.880565i \(0.657164\pi\)
\(450\) 0 0
\(451\) 7920.00 0.826914
\(452\) −1086.00 −0.113011
\(453\) 0 0
\(454\) −1980.00 −0.204683
\(455\) 0 0
\(456\) 0 0
\(457\) −3670.00 −0.375657 −0.187829 0.982202i \(-0.560145\pi\)
−0.187829 + 0.982202i \(0.560145\pi\)
\(458\) −5718.00 −0.583372
\(459\) 0 0
\(460\) −600.000 −0.0608155
\(461\) 17562.0 1.77428 0.887141 0.461499i \(-0.152688\pi\)
0.887141 + 0.461499i \(0.152688\pi\)
\(462\) 0 0
\(463\) 1172.00 0.117640 0.0588202 0.998269i \(-0.481266\pi\)
0.0588202 + 0.998269i \(0.481266\pi\)
\(464\) −5538.00 −0.554084
\(465\) 0 0
\(466\) −4374.00 −0.434810
\(467\) 6876.00 0.681335 0.340667 0.940184i \(-0.389347\pi\)
0.340667 + 0.940184i \(0.389347\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −360.000 −0.0353310
\(471\) 0 0
\(472\) 504.000 0.0491493
\(473\) 2208.00 0.214638
\(474\) 0 0
\(475\) 3100.00 0.299448
\(476\) 0 0
\(477\) 0 0
\(478\) 3528.00 0.337588
\(479\) 2280.00 0.217486 0.108743 0.994070i \(-0.465317\pi\)
0.108743 + 0.994070i \(0.465317\pi\)
\(480\) 0 0
\(481\) 5180.00 0.491035
\(482\) 2598.00 0.245510
\(483\) 0 0
\(484\) −755.000 −0.0709053
\(485\) −1430.00 −0.133882
\(486\) 0 0
\(487\) −3076.00 −0.286215 −0.143108 0.989707i \(-0.545710\pi\)
−0.143108 + 0.989707i \(0.545710\pi\)
\(488\) 6762.00 0.627257
\(489\) 0 0
\(490\) 0 0
\(491\) 18912.0 1.73826 0.869131 0.494582i \(-0.164679\pi\)
0.869131 + 0.494582i \(0.164679\pi\)
\(492\) 0 0
\(493\) 4212.00 0.384785
\(494\) 27528.0 2.50717
\(495\) 0 0
\(496\) 14200.0 1.28548
\(497\) 0 0
\(498\) 0 0
\(499\) 9956.00 0.893170 0.446585 0.894741i \(-0.352640\pi\)
0.446585 + 0.894741i \(0.352640\pi\)
\(500\) −125.000 −0.0111803
\(501\) 0 0
\(502\) −1296.00 −0.115226
\(503\) −10656.0 −0.944588 −0.472294 0.881441i \(-0.656574\pi\)
−0.472294 + 0.881441i \(0.656574\pi\)
\(504\) 0 0
\(505\) 8670.00 0.763980
\(506\) −8640.00 −0.759081
\(507\) 0 0
\(508\) 1244.00 0.108649
\(509\) −2766.00 −0.240866 −0.120433 0.992721i \(-0.538428\pi\)
−0.120433 + 0.992721i \(0.538428\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 8733.00 0.753804
\(513\) 0 0
\(514\) −7578.00 −0.650294
\(515\) 2260.00 0.193374
\(516\) 0 0
\(517\) −576.000 −0.0489989
\(518\) 0 0
\(519\) 0 0
\(520\) 7770.00 0.655264
\(521\) 10530.0 0.885466 0.442733 0.896654i \(-0.354009\pi\)
0.442733 + 0.896654i \(0.354009\pi\)
\(522\) 0 0
\(523\) −12692.0 −1.06115 −0.530576 0.847637i \(-0.678024\pi\)
−0.530576 + 0.847637i \(0.678024\pi\)
\(524\) 2328.00 0.194082
\(525\) 0 0
\(526\) 16344.0 1.35481
\(527\) −10800.0 −0.892705
\(528\) 0 0
\(529\) 2233.00 0.183529
\(530\) −6750.00 −0.553210
\(531\) 0 0
\(532\) 0 0
\(533\) −24420.0 −1.98452
\(534\) 0 0
\(535\) −7020.00 −0.567292
\(536\) −4116.00 −0.331687
\(537\) 0 0
\(538\) 7722.00 0.618809
\(539\) 0 0
\(540\) 0 0
\(541\) 18110.0 1.43920 0.719602 0.694386i \(-0.244324\pi\)
0.719602 + 0.694386i \(0.244324\pi\)
\(542\) −9552.00 −0.756999
\(543\) 0 0
\(544\) 2430.00 0.191517
\(545\) 7370.00 0.579259
\(546\) 0 0
\(547\) 3620.00 0.282962 0.141481 0.989941i \(-0.454814\pi\)
0.141481 + 0.989941i \(0.454814\pi\)
\(548\) −2118.00 −0.165103
\(549\) 0 0
\(550\) −1800.00 −0.139550
\(551\) 9672.00 0.747806
\(552\) 0 0
\(553\) 0 0
\(554\) −11886.0 −0.911530
\(555\) 0 0
\(556\) −2324.00 −0.177265
\(557\) 14166.0 1.07762 0.538809 0.842428i \(-0.318875\pi\)
0.538809 + 0.842428i \(0.318875\pi\)
\(558\) 0 0
\(559\) −6808.00 −0.515112
\(560\) 0 0
\(561\) 0 0
\(562\) −24858.0 −1.86579
\(563\) −13404.0 −1.00339 −0.501697 0.865043i \(-0.667291\pi\)
−0.501697 + 0.865043i \(0.667291\pi\)
\(564\) 0 0
\(565\) 5430.00 0.404322
\(566\) −8148.00 −0.605099
\(567\) 0 0
\(568\) 6048.00 0.446775
\(569\) 18654.0 1.37437 0.687185 0.726483i \(-0.258846\pi\)
0.687185 + 0.726483i \(0.258846\pi\)
\(570\) 0 0
\(571\) −7684.00 −0.563162 −0.281581 0.959537i \(-0.590859\pi\)
−0.281581 + 0.959537i \(0.590859\pi\)
\(572\) −1776.00 −0.129822
\(573\) 0 0
\(574\) 0 0
\(575\) 3000.00 0.217580
\(576\) 0 0
\(577\) 1726.00 0.124531 0.0622654 0.998060i \(-0.480167\pi\)
0.0622654 + 0.998060i \(0.480167\pi\)
\(578\) 5991.00 0.431129
\(579\) 0 0
\(580\) −390.000 −0.0279205
\(581\) 0 0
\(582\) 0 0
\(583\) −10800.0 −0.767222
\(584\) 9030.00 0.639836
\(585\) 0 0
\(586\) −18054.0 −1.27270
\(587\) 10596.0 0.745049 0.372524 0.928022i \(-0.378492\pi\)
0.372524 + 0.928022i \(0.378492\pi\)
\(588\) 0 0
\(589\) −24800.0 −1.73492
\(590\) 360.000 0.0251203
\(591\) 0 0
\(592\) 4970.00 0.345043
\(593\) 2862.00 0.198193 0.0990963 0.995078i \(-0.468405\pi\)
0.0990963 + 0.995078i \(0.468405\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −258.000 −0.0177317
\(597\) 0 0
\(598\) 26640.0 1.82172
\(599\) 23592.0 1.60925 0.804627 0.593781i \(-0.202365\pi\)
0.804627 + 0.593781i \(0.202365\pi\)
\(600\) 0 0
\(601\) 9574.00 0.649803 0.324902 0.945748i \(-0.394669\pi\)
0.324902 + 0.945748i \(0.394669\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −808.000 −0.0544322
\(605\) 3775.00 0.253679
\(606\) 0 0
\(607\) −17444.0 −1.16644 −0.583221 0.812314i \(-0.698208\pi\)
−0.583221 + 0.812314i \(0.698208\pi\)
\(608\) 5580.00 0.372202
\(609\) 0 0
\(610\) 4830.00 0.320592
\(611\) 1776.00 0.117593
\(612\) 0 0
\(613\) −2374.00 −0.156419 −0.0782096 0.996937i \(-0.524920\pi\)
−0.0782096 + 0.996937i \(0.524920\pi\)
\(614\) 27708.0 1.82118
\(615\) 0 0
\(616\) 0 0
\(617\) 12162.0 0.793555 0.396778 0.917915i \(-0.370128\pi\)
0.396778 + 0.917915i \(0.370128\pi\)
\(618\) 0 0
\(619\) −8804.00 −0.571668 −0.285834 0.958279i \(-0.592271\pi\)
−0.285834 + 0.958279i \(0.592271\pi\)
\(620\) 1000.00 0.0647758
\(621\) 0 0
\(622\) −4608.00 −0.297048
\(623\) 0 0
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) −22026.0 −1.40629
\(627\) 0 0
\(628\) −2378.00 −0.151103
\(629\) −3780.00 −0.239616
\(630\) 0 0
\(631\) −12688.0 −0.800478 −0.400239 0.916411i \(-0.631073\pi\)
−0.400239 + 0.916411i \(0.631073\pi\)
\(632\) −10920.0 −0.687301
\(633\) 0 0
\(634\) −11682.0 −0.731785
\(635\) −6220.00 −0.388714
\(636\) 0 0
\(637\) 0 0
\(638\) −5616.00 −0.348495
\(639\) 0 0
\(640\) 8295.00 0.512326
\(641\) 9150.00 0.563812 0.281906 0.959442i \(-0.409033\pi\)
0.281906 + 0.959442i \(0.409033\pi\)
\(642\) 0 0
\(643\) −25292.0 −1.55120 −0.775598 0.631227i \(-0.782552\pi\)
−0.775598 + 0.631227i \(0.782552\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −20088.0 −1.22345
\(647\) −2736.00 −0.166249 −0.0831246 0.996539i \(-0.526490\pi\)
−0.0831246 + 0.996539i \(0.526490\pi\)
\(648\) 0 0
\(649\) 576.000 0.0348382
\(650\) 5550.00 0.334906
\(651\) 0 0
\(652\) −52.0000 −0.00312343
\(653\) −22218.0 −1.33148 −0.665741 0.746183i \(-0.731884\pi\)
−0.665741 + 0.746183i \(0.731884\pi\)
\(654\) 0 0
\(655\) −11640.0 −0.694370
\(656\) −23430.0 −1.39449
\(657\) 0 0
\(658\) 0 0
\(659\) −14520.0 −0.858299 −0.429149 0.903234i \(-0.641187\pi\)
−0.429149 + 0.903234i \(0.641187\pi\)
\(660\) 0 0
\(661\) 10618.0 0.624799 0.312400 0.949951i \(-0.398867\pi\)
0.312400 + 0.949951i \(0.398867\pi\)
\(662\) −11076.0 −0.650273
\(663\) 0 0
\(664\) 3276.00 0.191466
\(665\) 0 0
\(666\) 0 0
\(667\) 9360.00 0.543359
\(668\) −3720.00 −0.215466
\(669\) 0 0
\(670\) −2940.00 −0.169526
\(671\) 7728.00 0.444614
\(672\) 0 0
\(673\) 1370.00 0.0784690 0.0392345 0.999230i \(-0.487508\pi\)
0.0392345 + 0.999230i \(0.487508\pi\)
\(674\) 26994.0 1.54269
\(675\) 0 0
\(676\) 3279.00 0.186561
\(677\) −13758.0 −0.781038 −0.390519 0.920595i \(-0.627704\pi\)
−0.390519 + 0.920595i \(0.627704\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −5670.00 −0.319757
\(681\) 0 0
\(682\) 14400.0 0.808511
\(683\) −11988.0 −0.671608 −0.335804 0.941932i \(-0.609008\pi\)
−0.335804 + 0.941932i \(0.609008\pi\)
\(684\) 0 0
\(685\) 10590.0 0.590691
\(686\) 0 0
\(687\) 0 0
\(688\) −6532.00 −0.361962
\(689\) 33300.0 1.84126
\(690\) 0 0
\(691\) −32996.0 −1.81654 −0.908268 0.418388i \(-0.862595\pi\)
−0.908268 + 0.418388i \(0.862595\pi\)
\(692\) 426.000 0.0234019
\(693\) 0 0
\(694\) 15732.0 0.860488
\(695\) 11620.0 0.634204
\(696\) 0 0
\(697\) 17820.0 0.968408
\(698\) 18906.0 1.02522
\(699\) 0 0
\(700\) 0 0
\(701\) 25902.0 1.39558 0.697792 0.716300i \(-0.254166\pi\)
0.697792 + 0.716300i \(0.254166\pi\)
\(702\) 0 0
\(703\) −8680.00 −0.465679
\(704\) 10392.0 0.556340
\(705\) 0 0
\(706\) −10242.0 −0.545981
\(707\) 0 0
\(708\) 0 0
\(709\) −27394.0 −1.45106 −0.725531 0.688189i \(-0.758406\pi\)
−0.725531 + 0.688189i \(0.758406\pi\)
\(710\) 4320.00 0.228347
\(711\) 0 0
\(712\) 21546.0 1.13409
\(713\) −24000.0 −1.26060
\(714\) 0 0
\(715\) 8880.00 0.464466
\(716\) 1440.00 0.0751611
\(717\) 0 0
\(718\) 14472.0 0.752215
\(719\) 34848.0 1.80753 0.903763 0.428033i \(-0.140793\pi\)
0.903763 + 0.428033i \(0.140793\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −25551.0 −1.31705
\(723\) 0 0
\(724\) 3130.00 0.160671
\(725\) 1950.00 0.0998913
\(726\) 0 0
\(727\) −28028.0 −1.42985 −0.714925 0.699201i \(-0.753539\pi\)
−0.714925 + 0.699201i \(0.753539\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 6450.00 0.327021
\(731\) 4968.00 0.251365
\(732\) 0 0
\(733\) −18002.0 −0.907120 −0.453560 0.891226i \(-0.649846\pi\)
−0.453560 + 0.891226i \(0.649846\pi\)
\(734\) −10524.0 −0.529221
\(735\) 0 0
\(736\) 5400.00 0.270444
\(737\) −4704.00 −0.235107
\(738\) 0 0
\(739\) 15284.0 0.760800 0.380400 0.924822i \(-0.375786\pi\)
0.380400 + 0.924822i \(0.375786\pi\)
\(740\) 350.000 0.0173868
\(741\) 0 0
\(742\) 0 0
\(743\) 18768.0 0.926691 0.463345 0.886178i \(-0.346649\pi\)
0.463345 + 0.886178i \(0.346649\pi\)
\(744\) 0 0
\(745\) 1290.00 0.0634388
\(746\) −32406.0 −1.59044
\(747\) 0 0
\(748\) 1296.00 0.0633509
\(749\) 0 0
\(750\) 0 0
\(751\) 8696.00 0.422532 0.211266 0.977429i \(-0.432241\pi\)
0.211266 + 0.977429i \(0.432241\pi\)
\(752\) 1704.00 0.0826310
\(753\) 0 0
\(754\) 17316.0 0.836355
\(755\) 4040.00 0.194743
\(756\) 0 0
\(757\) −38662.0 −1.85627 −0.928134 0.372247i \(-0.878587\pi\)
−0.928134 + 0.372247i \(0.878587\pi\)
\(758\) −4380.00 −0.209880
\(759\) 0 0
\(760\) −13020.0 −0.621428
\(761\) 23874.0 1.13723 0.568615 0.822604i \(-0.307479\pi\)
0.568615 + 0.822604i \(0.307479\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −3576.00 −0.169339
\(765\) 0 0
\(766\) 14616.0 0.689422
\(767\) −1776.00 −0.0836084
\(768\) 0 0
\(769\) −23618.0 −1.10753 −0.553763 0.832675i \(-0.686808\pi\)
−0.553763 + 0.832675i \(0.686808\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 2666.00 0.124289
\(773\) 11538.0 0.536860 0.268430 0.963299i \(-0.413495\pi\)
0.268430 + 0.963299i \(0.413495\pi\)
\(774\) 0 0
\(775\) −5000.00 −0.231749
\(776\) 6006.00 0.277839
\(777\) 0 0
\(778\) −42138.0 −1.94180
\(779\) 40920.0 1.88204
\(780\) 0 0
\(781\) 6912.00 0.316685
\(782\) −19440.0 −0.888968
\(783\) 0 0
\(784\) 0 0
\(785\) 11890.0 0.540602
\(786\) 0 0
\(787\) 14884.0 0.674152 0.337076 0.941478i \(-0.390562\pi\)
0.337076 + 0.941478i \(0.390562\pi\)
\(788\) 2718.00 0.122874
\(789\) 0 0
\(790\) −7800.00 −0.351280
\(791\) 0 0
\(792\) 0 0
\(793\) −23828.0 −1.06703
\(794\) −8202.00 −0.366597
\(795\) 0 0
\(796\) 3832.00 0.170630
\(797\) −11334.0 −0.503728 −0.251864 0.967763i \(-0.581043\pi\)
−0.251864 + 0.967763i \(0.581043\pi\)
\(798\) 0 0
\(799\) −1296.00 −0.0573832
\(800\) 1125.00 0.0497184
\(801\) 0 0
\(802\) −47826.0 −2.10573
\(803\) 10320.0 0.453530
\(804\) 0 0
\(805\) 0 0
\(806\) −44400.0 −1.94035
\(807\) 0 0
\(808\) −36414.0 −1.58545
\(809\) −44730.0 −1.94391 −0.971955 0.235167i \(-0.924436\pi\)
−0.971955 + 0.235167i \(0.924436\pi\)
\(810\) 0 0
\(811\) 42748.0 1.85091 0.925453 0.378862i \(-0.123684\pi\)
0.925453 + 0.378862i \(0.123684\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 5040.00 0.217017
\(815\) 260.000 0.0111747
\(816\) 0 0
\(817\) 11408.0 0.488513
\(818\) 26142.0 1.11740
\(819\) 0 0
\(820\) −1650.00 −0.0702689
\(821\) 31686.0 1.34695 0.673477 0.739208i \(-0.264800\pi\)
0.673477 + 0.739208i \(0.264800\pi\)
\(822\) 0 0
\(823\) 11036.0 0.467425 0.233713 0.972306i \(-0.424913\pi\)
0.233713 + 0.972306i \(0.424913\pi\)
\(824\) −9492.00 −0.401298
\(825\) 0 0
\(826\) 0 0
\(827\) −25884.0 −1.08836 −0.544181 0.838968i \(-0.683159\pi\)
−0.544181 + 0.838968i \(0.683159\pi\)
\(828\) 0 0
\(829\) −15950.0 −0.668234 −0.334117 0.942532i \(-0.608438\pi\)
−0.334117 + 0.942532i \(0.608438\pi\)
\(830\) 2340.00 0.0978585
\(831\) 0 0
\(832\) −32042.0 −1.33516
\(833\) 0 0
\(834\) 0 0
\(835\) 18600.0 0.770874
\(836\) 2976.00 0.123119
\(837\) 0 0
\(838\) −35928.0 −1.48104
\(839\) 13800.0 0.567853 0.283927 0.958846i \(-0.408363\pi\)
0.283927 + 0.958846i \(0.408363\pi\)
\(840\) 0 0
\(841\) −18305.0 −0.750543
\(842\) −33162.0 −1.35729
\(843\) 0 0
\(844\) 1100.00 0.0448620
\(845\) −16395.0 −0.667462
\(846\) 0 0
\(847\) 0 0
\(848\) 31950.0 1.29383
\(849\) 0 0
\(850\) −4050.00 −0.163428
\(851\) −8400.00 −0.338365
\(852\) 0 0
\(853\) 27862.0 1.11838 0.559189 0.829040i \(-0.311113\pi\)
0.559189 + 0.829040i \(0.311113\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 29484.0 1.17727
\(857\) −7314.00 −0.291530 −0.145765 0.989319i \(-0.546564\pi\)
−0.145765 + 0.989319i \(0.546564\pi\)
\(858\) 0 0
\(859\) 28780.0 1.14314 0.571572 0.820552i \(-0.306334\pi\)
0.571572 + 0.820552i \(0.306334\pi\)
\(860\) −460.000 −0.0182394
\(861\) 0 0
\(862\) 2160.00 0.0853479
\(863\) 32688.0 1.28935 0.644677 0.764455i \(-0.276992\pi\)
0.644677 + 0.764455i \(0.276992\pi\)
\(864\) 0 0
\(865\) −2130.00 −0.0837251
\(866\) −46866.0 −1.83900
\(867\) 0 0
\(868\) 0 0
\(869\) −12480.0 −0.487175
\(870\) 0 0
\(871\) 14504.0 0.564236
\(872\) −30954.0 −1.20210
\(873\) 0 0
\(874\) −44640.0 −1.72766
\(875\) 0 0
\(876\) 0 0
\(877\) 36650.0 1.41115 0.705577 0.708633i \(-0.250688\pi\)
0.705577 + 0.708633i \(0.250688\pi\)
\(878\) −29640.0 −1.13930
\(879\) 0 0
\(880\) 8520.00 0.326374
\(881\) −2646.00 −0.101187 −0.0505936 0.998719i \(-0.516111\pi\)
−0.0505936 + 0.998719i \(0.516111\pi\)
\(882\) 0 0
\(883\) 10892.0 0.415113 0.207557 0.978223i \(-0.433449\pi\)
0.207557 + 0.978223i \(0.433449\pi\)
\(884\) −3996.00 −0.152036
\(885\) 0 0
\(886\) −48348.0 −1.83328
\(887\) −43464.0 −1.64530 −0.822648 0.568550i \(-0.807504\pi\)
−0.822648 + 0.568550i \(0.807504\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 15390.0 0.579634
\(891\) 0 0
\(892\) −1964.00 −0.0737215
\(893\) −2976.00 −0.111521
\(894\) 0 0
\(895\) −7200.00 −0.268904
\(896\) 0 0
\(897\) 0 0
\(898\) 27054.0 1.00535
\(899\) −15600.0 −0.578742
\(900\) 0 0
\(901\) −24300.0 −0.898502
\(902\) −23760.0 −0.877075
\(903\) 0 0
\(904\) −22806.0 −0.839067
\(905\) −15650.0 −0.574833
\(906\) 0 0
\(907\) −14884.0 −0.544890 −0.272445 0.962171i \(-0.587832\pi\)
−0.272445 + 0.962171i \(0.587832\pi\)
\(908\) 660.000 0.0241221
\(909\) 0 0
\(910\) 0 0
\(911\) 1248.00 0.0453876 0.0226938 0.999742i \(-0.492776\pi\)
0.0226938 + 0.999742i \(0.492776\pi\)
\(912\) 0 0
\(913\) 3744.00 0.135716
\(914\) 11010.0 0.398445
\(915\) 0 0
\(916\) 1906.00 0.0687511
\(917\) 0 0
\(918\) 0 0
\(919\) −6640.00 −0.238339 −0.119169 0.992874i \(-0.538023\pi\)
−0.119169 + 0.992874i \(0.538023\pi\)
\(920\) −12600.0 −0.451532
\(921\) 0 0
\(922\) −52686.0 −1.88191
\(923\) −21312.0 −0.760014
\(924\) 0 0
\(925\) −1750.00 −0.0622050
\(926\) −3516.00 −0.124776
\(927\) 0 0
\(928\) 3510.00 0.124161
\(929\) 29946.0 1.05758 0.528792 0.848751i \(-0.322645\pi\)
0.528792 + 0.848751i \(0.322645\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 1458.00 0.0512429
\(933\) 0 0
\(934\) −20628.0 −0.722665
\(935\) −6480.00 −0.226651
\(936\) 0 0
\(937\) −45002.0 −1.56900 −0.784499 0.620130i \(-0.787080\pi\)
−0.784499 + 0.620130i \(0.787080\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 120.000 0.00416380
\(941\) 6090.00 0.210976 0.105488 0.994421i \(-0.466360\pi\)
0.105488 + 0.994421i \(0.466360\pi\)
\(942\) 0 0
\(943\) 39600.0 1.36750
\(944\) −1704.00 −0.0587505
\(945\) 0 0
\(946\) −6624.00 −0.227658
\(947\) −56388.0 −1.93491 −0.967457 0.253035i \(-0.918571\pi\)
−0.967457 + 0.253035i \(0.918571\pi\)
\(948\) 0 0
\(949\) −31820.0 −1.08843
\(950\) −9300.00 −0.317612
\(951\) 0 0
\(952\) 0 0
\(953\) −10854.0 −0.368936 −0.184468 0.982839i \(-0.559056\pi\)
−0.184468 + 0.982839i \(0.559056\pi\)
\(954\) 0 0
\(955\) 17880.0 0.605846
\(956\) −1176.00 −0.0397851
\(957\) 0 0
\(958\) −6840.00 −0.230679
\(959\) 0 0
\(960\) 0 0
\(961\) 10209.0 0.342687
\(962\) −15540.0 −0.520821
\(963\) 0 0
\(964\) −866.000 −0.0289336
\(965\) −13330.0 −0.444671
\(966\) 0 0
\(967\) −42316.0 −1.40723 −0.703615 0.710582i \(-0.748432\pi\)
−0.703615 + 0.710582i \(0.748432\pi\)
\(968\) −15855.0 −0.526445
\(969\) 0 0
\(970\) 4290.00 0.142004
\(971\) 24480.0 0.809063 0.404532 0.914524i \(-0.367435\pi\)
0.404532 + 0.914524i \(0.367435\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 9228.00 0.303577
\(975\) 0 0
\(976\) −22862.0 −0.749790
\(977\) 6906.00 0.226144 0.113072 0.993587i \(-0.463931\pi\)
0.113072 + 0.993587i \(0.463931\pi\)
\(978\) 0 0
\(979\) 24624.0 0.803868
\(980\) 0 0
\(981\) 0 0
\(982\) −56736.0 −1.84371
\(983\) 6960.00 0.225829 0.112914 0.993605i \(-0.463981\pi\)
0.112914 + 0.993605i \(0.463981\pi\)
\(984\) 0 0
\(985\) −13590.0 −0.439608
\(986\) −12636.0 −0.408126
\(987\) 0 0
\(988\) −9176.00 −0.295473
\(989\) 11040.0 0.354956
\(990\) 0 0
\(991\) 47792.0 1.53195 0.765975 0.642870i \(-0.222256\pi\)
0.765975 + 0.642870i \(0.222256\pi\)
\(992\) −9000.00 −0.288055
\(993\) 0 0
\(994\) 0 0
\(995\) −19160.0 −0.610465
\(996\) 0 0
\(997\) −9938.00 −0.315687 −0.157843 0.987464i \(-0.550454\pi\)
−0.157843 + 0.987464i \(0.550454\pi\)
\(998\) −29868.0 −0.947350
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2205.4.a.c.1.1 1
3.2 odd 2 735.4.a.i.1.1 1
7.6 odd 2 45.4.a.b.1.1 1
21.20 even 2 15.4.a.b.1.1 1
28.27 even 2 720.4.a.r.1.1 1
35.13 even 4 225.4.b.d.199.2 2
35.27 even 4 225.4.b.d.199.1 2
35.34 odd 2 225.4.a.g.1.1 1
63.13 odd 6 405.4.e.k.136.1 2
63.20 even 6 405.4.e.d.271.1 2
63.34 odd 6 405.4.e.k.271.1 2
63.41 even 6 405.4.e.d.136.1 2
84.83 odd 2 240.4.a.f.1.1 1
105.62 odd 4 75.4.b.a.49.2 2
105.83 odd 4 75.4.b.a.49.1 2
105.104 even 2 75.4.a.a.1.1 1
168.83 odd 2 960.4.a.l.1.1 1
168.125 even 2 960.4.a.bi.1.1 1
231.230 odd 2 1815.4.a.a.1.1 1
420.83 even 4 1200.4.f.m.49.2 2
420.167 even 4 1200.4.f.m.49.1 2
420.419 odd 2 1200.4.a.o.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
15.4.a.b.1.1 1 21.20 even 2
45.4.a.b.1.1 1 7.6 odd 2
75.4.a.a.1.1 1 105.104 even 2
75.4.b.a.49.1 2 105.83 odd 4
75.4.b.a.49.2 2 105.62 odd 4
225.4.a.g.1.1 1 35.34 odd 2
225.4.b.d.199.1 2 35.27 even 4
225.4.b.d.199.2 2 35.13 even 4
240.4.a.f.1.1 1 84.83 odd 2
405.4.e.d.136.1 2 63.41 even 6
405.4.e.d.271.1 2 63.20 even 6
405.4.e.k.136.1 2 63.13 odd 6
405.4.e.k.271.1 2 63.34 odd 6
720.4.a.r.1.1 1 28.27 even 2
735.4.a.i.1.1 1 3.2 odd 2
960.4.a.l.1.1 1 168.83 odd 2
960.4.a.bi.1.1 1 168.125 even 2
1200.4.a.o.1.1 1 420.419 odd 2
1200.4.f.m.49.1 2 420.167 even 4
1200.4.f.m.49.2 2 420.83 even 4
1815.4.a.a.1.1 1 231.230 odd 2
2205.4.a.c.1.1 1 1.1 even 1 trivial