Properties

Label 2205.4.a.v
Level 22052205
Weight 44
Character orbit 2205.a
Self dual yes
Analytic conductor 130.099130.099
Analytic rank 00
Dimension 22
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2205,4,Mod(1,2205)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2205, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2205.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 2205=32572 2205 = 3^{2} \cdot 5 \cdot 7^{2}
Weight: k k == 4 4
Character orbit: [χ][\chi] == 2205.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 130.099211563130.099211563
Analytic rank: 00
Dimension: 22
Coefficient field: Q(41)\Q(\sqrt{41})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2x10 x^{2} - x - 10 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 105)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of β=12(1+41)\beta = \frac{1}{2}(1 + \sqrt{41}). We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β1)q2+(3β+3)q45q5+(β25)q8+(5β+5)q10+(2β32)q11+(10β2)q13+(3β+11)q16+(12β+26)q17++(278β+474)q97+O(q100) q + ( - \beta - 1) q^{2} + (3 \beta + 3) q^{4} - 5 q^{5} + ( - \beta - 25) q^{8} + (5 \beta + 5) q^{10} + (2 \beta - 32) q^{11} + (10 \beta - 2) q^{13} + (3 \beta + 11) q^{16} + ( - 12 \beta + 26) q^{17}+ \cdots + ( - 278 \beta + 474) q^{97}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q3q2+9q410q551q8+15q1062q11+6q13+25q16+40q17+122q1945q20+52q2216q23+50q25214q26352q2966q31++670q97+O(q100) 2 q - 3 q^{2} + 9 q^{4} - 10 q^{5} - 51 q^{8} + 15 q^{10} - 62 q^{11} + 6 q^{13} + 25 q^{16} + 40 q^{17} + 122 q^{19} - 45 q^{20} + 52 q^{22} - 16 q^{23} + 50 q^{25} - 214 q^{26} - 352 q^{29} - 66 q^{31}+ \cdots + 670 q^{97}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
3.70156
−2.70156
−4.70156 0 14.1047 −5.00000 0 0 −28.7016 0 23.5078
1.2 1.70156 0 −5.10469 −5.00000 0 0 −22.2984 0 −8.50781
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
33 1 -1
55 +1 +1
77 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2205.4.a.v 2
3.b odd 2 1 735.4.a.q 2
7.b odd 2 1 315.4.a.g 2
21.c even 2 1 105.4.a.g 2
35.c odd 2 1 1575.4.a.y 2
84.h odd 2 1 1680.4.a.y 2
105.g even 2 1 525.4.a.i 2
105.k odd 4 2 525.4.d.j 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
105.4.a.g 2 21.c even 2 1
315.4.a.g 2 7.b odd 2 1
525.4.a.i 2 105.g even 2 1
525.4.d.j 4 105.k odd 4 2
735.4.a.q 2 3.b odd 2 1
1575.4.a.y 2 35.c odd 2 1
1680.4.a.y 2 84.h odd 2 1
2205.4.a.v 2 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(Γ0(2205))S_{4}^{\mathrm{new}}(\Gamma_0(2205)):

T22+3T28 T_{2}^{2} + 3T_{2} - 8 Copy content Toggle raw display
T112+62T11+920 T_{11}^{2} + 62T_{11} + 920 Copy content Toggle raw display
T1326T131016 T_{13}^{2} - 6T_{13} - 1016 Copy content Toggle raw display
T17240T171076 T_{17}^{2} - 40T_{17} - 1076 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2+3T8 T^{2} + 3T - 8 Copy content Toggle raw display
33 T2 T^{2} Copy content Toggle raw display
55 (T+5)2 (T + 5)^{2} Copy content Toggle raw display
77 T2 T^{2} Copy content Toggle raw display
1111 T2+62T+920 T^{2} + 62T + 920 Copy content Toggle raw display
1313 T26T1016 T^{2} - 6T - 1016 Copy content Toggle raw display
1717 T240T1076 T^{2} - 40T - 1076 Copy content Toggle raw display
1919 T2122T+3680 T^{2} - 122T + 3680 Copy content Toggle raw display
2323 T2+16T23552 T^{2} + 16T - 23552 Copy content Toggle raw display
2929 T2+352T+29500 T^{2} + 352T + 29500 Copy content Toggle raw display
3131 T2+66T13712 T^{2} + 66T - 13712 Copy content Toggle raw display
3737 T2+188T56764 T^{2} + 188T - 56764 Copy content Toggle raw display
4141 T216T119492 T^{2} - 16T - 119492 Copy content Toggle raw display
4343 T2+396T63296 T^{2} + 396T - 63296 Copy content Toggle raw display
4747 T2+188T192064 T^{2} + 188T - 192064 Copy content Toggle raw display
5353 T2+982T+206600 T^{2} + 982T + 206600 Copy content Toggle raw display
5959 T2516T+7360 T^{2} - 516T + 7360 Copy content Toggle raw display
6161 T2880T+121276 T^{2} - 880T + 121276 Copy content Toggle raw display
6767 T2+356T501152 T^{2} + 356T - 501152 Copy content Toggle raw display
7171 T2+310T51784 T^{2} + 310T - 51784 Copy content Toggle raw display
7373 T2+326T+11768 T^{2} + 326T + 11768 Copy content Toggle raw display
7979 T21832T+838400 T^{2} - 1832 T + 838400 Copy content Toggle raw display
8383 T2+680T398704 T^{2} + 680T - 398704 Copy content Toggle raw display
8989 T2796T998780 T^{2} - 796T - 998780 Copy content Toggle raw display
9797 T2670T679936 T^{2} - 670T - 679936 Copy content Toggle raw display
show more
show less