Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [224,2,Mod(29,224)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(224, base_ring=CyclotomicField(8))
chi = DirichletCharacter(H, H._module([0, 3, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("224.29");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 224 = 2^{5} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 224.u (of order \(8\), degree \(4\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(1.78864900528\) |
Analytic rank: | \(0\) |
Dimension: | \(52\) |
Relative dimension: | \(13\) over \(\Q(\zeta_{8})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{8}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
29.1 | −1.33683 | + | 0.461403i | −0.825255 | − | 0.341832i | 1.57421 | − | 1.23363i | −0.175588 | − | 0.423906i | 1.26095 | + | 0.0761946i | 0.707107 | − | 0.707107i | −1.53525 | + | 2.37550i | −1.55712 | − | 1.55712i | 0.430322 | + | 0.485673i |
29.2 | −1.24749 | − | 0.666168i | 2.18713 | + | 0.905938i | 1.11244 | + | 1.66207i | 0.797931 | + | 1.92638i | −2.12490 | − | 2.58714i | 0.707107 | − | 0.707107i | −0.280536 | − | 2.81448i | 1.84149 | + | 1.84149i | 0.287882 | − | 2.93468i |
29.3 | −1.03545 | + | 0.963248i | 2.47594 | + | 1.02557i | 0.144306 | − | 1.99479i | −1.23251 | − | 2.97553i | −3.55158 | + | 1.32302i | 0.707107 | − | 0.707107i | 1.77205 | + | 2.20450i | 2.95715 | + | 2.95715i | 4.14237 | + | 1.89380i |
29.4 | −0.926451 | − | 1.06850i | −1.34443 | − | 0.556881i | −0.283377 | + | 1.97982i | 0.598728 | + | 1.44546i | 0.650522 | + | 1.95244i | 0.707107 | − | 0.707107i | 2.37797 | − | 1.53142i | −0.623944 | − | 0.623944i | 0.989776 | − | 1.97888i |
29.5 | −0.742328 | + | 1.20372i | −2.57348 | − | 1.06597i | −0.897897 | − | 1.78712i | 0.224493 | + | 0.541974i | 3.19350 | − | 2.30646i | 0.707107 | − | 0.707107i | 2.81773 | + | 0.245807i | 3.36518 | + | 3.36518i | −0.819034 | − | 0.132095i |
29.6 | −0.729813 | + | 1.21135i | 1.74965 | + | 0.724727i | −0.934745 | − | 1.76812i | 1.44353 | + | 3.48498i | −2.15481 | + | 1.59052i | 0.707107 | − | 0.707107i | 2.82401 | + | 0.158094i | 0.414709 | + | 0.414709i | −5.27504 | − | 0.794768i |
29.7 | −0.0564658 | − | 1.41309i | −2.95511 | − | 1.22405i | −1.99362 | + | 0.159582i | −1.21151 | − | 2.92484i | −1.56282 | + | 4.24494i | 0.707107 | − | 0.707107i | 0.338075 | + | 2.80815i | 5.11306 | + | 5.11306i | −4.06464 | + | 1.87712i |
29.8 | 0.171231 | + | 1.40381i | −0.380077 | − | 0.157433i | −1.94136 | + | 0.480752i | −1.58477 | − | 3.82598i | 0.155925 | − | 0.560513i | 0.707107 | − | 0.707107i | −1.00731 | − | 2.64298i | −2.00165 | − | 2.00165i | 5.09958 | − | 2.87984i |
29.9 | 0.631975 | − | 1.26515i | 2.91760 | + | 1.20851i | −1.20122 | − | 1.59909i | −0.629460 | − | 1.51965i | 3.37279 | − | 2.92745i | 0.707107 | − | 0.707107i | −2.78223 | + | 0.509137i | 4.93055 | + | 4.93055i | −2.32039 | − | 0.164019i |
29.10 | 0.863963 | − | 1.11963i | −0.301186 | − | 0.124755i | −0.507135 | − | 1.93464i | −0.107860 | − | 0.260396i | −0.399893 | + | 0.229432i | 0.707107 | − | 0.707107i | −2.60422 | − | 1.10365i | −2.04617 | − | 2.04617i | −0.384733 | − | 0.104210i |
29.11 | 0.875361 | + | 1.11074i | 0.999166 | + | 0.413868i | −0.467486 | + | 1.94460i | 0.523077 | + | 1.26282i | 0.414931 | + | 1.47210i | 0.707107 | − | 0.707107i | −2.56916 | + | 1.18297i | −1.29427 | − | 1.29427i | −0.944783 | + | 1.68643i |
29.12 | 1.41113 | − | 0.0933551i | −2.44686 | − | 1.01352i | 1.98257 | − | 0.263472i | 1.68815 | + | 4.07556i | −3.54745 | − | 1.20178i | 0.707107 | − | 0.707107i | 2.77306 | − | 0.556876i | 2.83858 | + | 2.83858i | 2.76268 | + | 5.59355i |
29.13 | 1.41405 | − | 0.0212810i | 0.496926 | + | 0.205834i | 1.99909 | − | 0.0601851i | −0.334218 | − | 0.806875i | 0.707060 | + | 0.280485i | 0.707107 | − | 0.707107i | 2.82555 | − | 0.127648i | −1.91675 | − | 1.91675i | −0.489774 | − | 1.13385i |
85.1 | −1.33683 | − | 0.461403i | −0.825255 | + | 0.341832i | 1.57421 | + | 1.23363i | −0.175588 | + | 0.423906i | 1.26095 | − | 0.0761946i | 0.707107 | + | 0.707107i | −1.53525 | − | 2.37550i | −1.55712 | + | 1.55712i | 0.430322 | − | 0.485673i |
85.2 | −1.24749 | + | 0.666168i | 2.18713 | − | 0.905938i | 1.11244 | − | 1.66207i | 0.797931 | − | 1.92638i | −2.12490 | + | 2.58714i | 0.707107 | + | 0.707107i | −0.280536 | + | 2.81448i | 1.84149 | − | 1.84149i | 0.287882 | + | 2.93468i |
85.3 | −1.03545 | − | 0.963248i | 2.47594 | − | 1.02557i | 0.144306 | + | 1.99479i | −1.23251 | + | 2.97553i | −3.55158 | − | 1.32302i | 0.707107 | + | 0.707107i | 1.77205 | − | 2.20450i | 2.95715 | − | 2.95715i | 4.14237 | − | 1.89380i |
85.4 | −0.926451 | + | 1.06850i | −1.34443 | + | 0.556881i | −0.283377 | − | 1.97982i | 0.598728 | − | 1.44546i | 0.650522 | − | 1.95244i | 0.707107 | + | 0.707107i | 2.37797 | + | 1.53142i | −0.623944 | + | 0.623944i | 0.989776 | + | 1.97888i |
85.5 | −0.742328 | − | 1.20372i | −2.57348 | + | 1.06597i | −0.897897 | + | 1.78712i | 0.224493 | − | 0.541974i | 3.19350 | + | 2.30646i | 0.707107 | + | 0.707107i | 2.81773 | − | 0.245807i | 3.36518 | − | 3.36518i | −0.819034 | + | 0.132095i |
85.6 | −0.729813 | − | 1.21135i | 1.74965 | − | 0.724727i | −0.934745 | + | 1.76812i | 1.44353 | − | 3.48498i | −2.15481 | − | 1.59052i | 0.707107 | + | 0.707107i | 2.82401 | − | 0.158094i | 0.414709 | − | 0.414709i | −5.27504 | + | 0.794768i |
85.7 | −0.0564658 | + | 1.41309i | −2.95511 | + | 1.22405i | −1.99362 | − | 0.159582i | −1.21151 | + | 2.92484i | −1.56282 | − | 4.24494i | 0.707107 | + | 0.707107i | 0.338075 | − | 2.80815i | 5.11306 | − | 5.11306i | −4.06464 | − | 1.87712i |
See all 52 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
32.g | even | 8 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 224.2.u.c | ✓ | 52 |
4.b | odd | 2 | 1 | 896.2.u.c | 52 | ||
32.g | even | 8 | 1 | inner | 224.2.u.c | ✓ | 52 |
32.h | odd | 8 | 1 | 896.2.u.c | 52 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
224.2.u.c | ✓ | 52 | 1.a | even | 1 | 1 | trivial |
224.2.u.c | ✓ | 52 | 32.g | even | 8 | 1 | inner |
896.2.u.c | 52 | 4.b | odd | 2 | 1 | ||
896.2.u.c | 52 | 32.h | odd | 8 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{52} + 8 T_{3}^{49} - 72 T_{3}^{47} - 40 T_{3}^{46} - 88 T_{3}^{45} + 16440 T_{3}^{44} + \cdots + 151519232 \) acting on \(S_{2}^{\mathrm{new}}(224, [\chi])\).