Properties

Label 224.4.t.a.177.8
Level $224$
Weight $4$
Character 224.177
Analytic conductor $13.216$
Analytic rank $0$
Dimension $44$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [224,4,Mod(81,224)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(224, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 4]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("224.81");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 224 = 2^{5} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 224.t (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.2164278413\)
Analytic rank: \(0\)
Dimension: \(44\)
Relative dimension: \(22\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 56)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 177.8
Character \(\chi\) \(=\) 224.177
Dual form 224.4.t.a.81.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.65541 + 1.53310i) q^{3} +(-7.57927 - 4.37589i) q^{5} +(-17.7736 + 5.20552i) q^{7} +(-8.79921 + 15.2407i) q^{9} +(46.4189 - 26.8000i) q^{11} -32.2514i q^{13} +26.8347 q^{15} +(31.9026 + 55.2570i) q^{17} +(74.9753 + 43.2870i) q^{19} +(39.2157 - 41.0716i) q^{21} +(64.1008 - 111.026i) q^{23} +(-24.2031 - 41.9211i) q^{25} -136.748i q^{27} -82.8256i q^{29} +(118.872 + 205.892i) q^{31} +(-82.1740 + 142.330i) q^{33} +(157.490 + 38.3215i) q^{35} +(183.998 + 106.231i) q^{37} +(49.4447 + 85.6407i) q^{39} +348.562 q^{41} -221.770i q^{43} +(133.383 - 77.0088i) q^{45} +(-123.164 + 213.326i) q^{47} +(288.805 - 185.042i) q^{49} +(-169.429 - 97.8198i) q^{51} +(403.213 - 232.795i) q^{53} -469.095 q^{55} -265.453 q^{57} +(-163.759 + 94.5465i) q^{59} +(-162.805 - 93.9955i) q^{61} +(77.0584 - 316.687i) q^{63} +(-141.129 + 244.442i) q^{65} +(-155.578 + 89.8230i) q^{67} +393.092i q^{69} +394.379 q^{71} +(-428.204 - 741.671i) q^{73} +(128.538 + 74.2116i) q^{75} +(-685.525 + 717.967i) q^{77} +(44.9579 - 77.8694i) q^{79} +(-27.9308 - 48.3776i) q^{81} -199.293i q^{83} -558.410i q^{85} +(126.980 + 219.936i) q^{87} +(-508.742 + 881.168i) q^{89} +(167.886 + 573.225i) q^{91} +(-631.306 - 364.485i) q^{93} +(-378.839 - 656.168i) q^{95} +196.625 q^{97} +943.274i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 44 q + 4 q^{7} + 160 q^{9} + 116 q^{15} - 2 q^{17} - 162 q^{23} + 348 q^{25} + 374 q^{31} - 110 q^{33} - 52 q^{39} - 8 q^{41} + 738 q^{47} + 356 q^{49} + 2268 q^{55} - 452 q^{57} - 668 q^{63} + 248 q^{65}+ \cdots + 1672 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/224\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(129\) \(197\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.65541 + 1.53310i −0.511033 + 0.295045i −0.733258 0.679950i \(-0.762001\pi\)
0.222225 + 0.974995i \(0.428668\pi\)
\(4\) 0 0
\(5\) −7.57927 4.37589i −0.677910 0.391392i 0.121157 0.992633i \(-0.461340\pi\)
−0.799067 + 0.601242i \(0.794673\pi\)
\(6\) 0 0
\(7\) −17.7736 + 5.20552i −0.959687 + 0.281072i
\(8\) 0 0
\(9\) −8.79921 + 15.2407i −0.325897 + 0.564470i
\(10\) 0 0
\(11\) 46.4189 26.8000i 1.27235 0.734590i 0.296918 0.954903i \(-0.404041\pi\)
0.975429 + 0.220313i \(0.0707079\pi\)
\(12\) 0 0
\(13\) 32.2514i 0.688072i −0.938956 0.344036i \(-0.888206\pi\)
0.938956 0.344036i \(-0.111794\pi\)
\(14\) 0 0
\(15\) 26.8347 0.461913
\(16\) 0 0
\(17\) 31.9026 + 55.2570i 0.455149 + 0.788340i 0.998697 0.0510376i \(-0.0162528\pi\)
−0.543548 + 0.839378i \(0.682920\pi\)
\(18\) 0 0
\(19\) 74.9753 + 43.2870i 0.905291 + 0.522670i 0.878913 0.476982i \(-0.158269\pi\)
0.0263778 + 0.999652i \(0.491603\pi\)
\(20\) 0 0
\(21\) 39.2157 41.0716i 0.407503 0.426788i
\(22\) 0 0
\(23\) 64.1008 111.026i 0.581128 1.00654i −0.414218 0.910178i \(-0.635945\pi\)
0.995346 0.0963651i \(-0.0307216\pi\)
\(24\) 0 0
\(25\) −24.2031 41.9211i −0.193625 0.335368i
\(26\) 0 0
\(27\) 136.748i 0.974707i
\(28\) 0 0
\(29\) 82.8256i 0.530356i −0.964199 0.265178i \(-0.914569\pi\)
0.964199 0.265178i \(-0.0854307\pi\)
\(30\) 0 0
\(31\) 118.872 + 205.892i 0.688710 + 1.19288i 0.972255 + 0.233922i \(0.0751559\pi\)
−0.283546 + 0.958959i \(0.591511\pi\)
\(32\) 0 0
\(33\) −82.1740 + 142.330i −0.433474 + 0.750800i
\(34\) 0 0
\(35\) 157.490 + 38.3215i 0.760591 + 0.185072i
\(36\) 0 0
\(37\) 183.998 + 106.231i 0.817542 + 0.472008i 0.849568 0.527479i \(-0.176863\pi\)
−0.0320263 + 0.999487i \(0.510196\pi\)
\(38\) 0 0
\(39\) 49.4447 + 85.6407i 0.203012 + 0.351628i
\(40\) 0 0
\(41\) 348.562 1.32771 0.663856 0.747860i \(-0.268919\pi\)
0.663856 + 0.747860i \(0.268919\pi\)
\(42\) 0 0
\(43\) 221.770i 0.786504i −0.919431 0.393252i \(-0.871350\pi\)
0.919431 0.393252i \(-0.128650\pi\)
\(44\) 0 0
\(45\) 133.383 77.0088i 0.441857 0.255106i
\(46\) 0 0
\(47\) −123.164 + 213.326i −0.382239 + 0.662058i −0.991382 0.131003i \(-0.958180\pi\)
0.609143 + 0.793061i \(0.291514\pi\)
\(48\) 0 0
\(49\) 288.805 185.042i 0.841997 0.539482i
\(50\) 0 0
\(51\) −169.429 97.8198i −0.465192 0.268579i
\(52\) 0 0
\(53\) 403.213 232.795i 1.04501 0.603338i 0.123763 0.992312i \(-0.460504\pi\)
0.921249 + 0.388974i \(0.127171\pi\)
\(54\) 0 0
\(55\) −469.095 −1.15005
\(56\) 0 0
\(57\) −265.453 −0.616845
\(58\) 0 0
\(59\) −163.759 + 94.5465i −0.361350 + 0.208626i −0.669673 0.742656i \(-0.733566\pi\)
0.308323 + 0.951282i \(0.400232\pi\)
\(60\) 0 0
\(61\) −162.805 93.9955i −0.341722 0.197293i 0.319311 0.947650i \(-0.396548\pi\)
−0.661033 + 0.750357i \(0.729882\pi\)
\(62\) 0 0
\(63\) 77.0584 316.687i 0.154102 0.633314i
\(64\) 0 0
\(65\) −141.129 + 244.442i −0.269306 + 0.466451i
\(66\) 0 0
\(67\) −155.578 + 89.8230i −0.283685 + 0.163786i −0.635090 0.772438i \(-0.719037\pi\)
0.351406 + 0.936223i \(0.385704\pi\)
\(68\) 0 0
\(69\) 393.092i 0.685836i
\(70\) 0 0
\(71\) 394.379 0.659214 0.329607 0.944118i \(-0.393084\pi\)
0.329607 + 0.944118i \(0.393084\pi\)
\(72\) 0 0
\(73\) −428.204 741.671i −0.686541 1.18912i −0.972950 0.231016i \(-0.925795\pi\)
0.286409 0.958107i \(-0.407538\pi\)
\(74\) 0 0
\(75\) 128.538 + 74.2116i 0.197898 + 0.114256i
\(76\) 0 0
\(77\) −685.525 + 717.967i −1.01458 + 1.06260i
\(78\) 0 0
\(79\) 44.9579 77.8694i 0.0640273 0.110899i −0.832235 0.554423i \(-0.812939\pi\)
0.896262 + 0.443525i \(0.146272\pi\)
\(80\) 0 0
\(81\) −27.9308 48.3776i −0.0383139 0.0663616i
\(82\) 0 0
\(83\) 199.293i 0.263557i −0.991279 0.131778i \(-0.957931\pi\)
0.991279 0.131778i \(-0.0420688\pi\)
\(84\) 0 0
\(85\) 558.410i 0.712565i
\(86\) 0 0
\(87\) 126.980 + 219.936i 0.156479 + 0.271030i
\(88\) 0 0
\(89\) −508.742 + 881.168i −0.605917 + 1.04948i 0.385989 + 0.922503i \(0.373860\pi\)
−0.991906 + 0.126975i \(0.959473\pi\)
\(90\) 0 0
\(91\) 167.886 + 573.225i 0.193398 + 0.660334i
\(92\) 0 0
\(93\) −631.306 364.485i −0.703907 0.406401i
\(94\) 0 0
\(95\) −378.839 656.168i −0.409137 0.708647i
\(96\) 0 0
\(97\) 196.625 0.205816 0.102908 0.994691i \(-0.467185\pi\)
0.102908 + 0.994691i \(0.467185\pi\)
\(98\) 0 0
\(99\) 943.274i 0.957602i
\(100\) 0 0
\(101\) −1741.62 + 1005.52i −1.71582 + 0.990627i −0.789609 + 0.613610i \(0.789717\pi\)
−0.926207 + 0.377017i \(0.876950\pi\)
\(102\) 0 0
\(103\) 298.306 516.681i 0.285369 0.494273i −0.687330 0.726345i \(-0.741217\pi\)
0.972698 + 0.232073i \(0.0745507\pi\)
\(104\) 0 0
\(105\) −476.951 + 139.689i −0.443292 + 0.129831i
\(106\) 0 0
\(107\) −355.200 205.075i −0.320920 0.185283i 0.330882 0.943672i \(-0.392654\pi\)
−0.651803 + 0.758389i \(0.725987\pi\)
\(108\) 0 0
\(109\) 755.806 436.365i 0.664156 0.383451i −0.129702 0.991553i \(-0.541402\pi\)
0.793859 + 0.608102i \(0.208069\pi\)
\(110\) 0 0
\(111\) −651.452 −0.557055
\(112\) 0 0
\(113\) 1088.92 0.906521 0.453261 0.891378i \(-0.350261\pi\)
0.453261 + 0.891378i \(0.350261\pi\)
\(114\) 0 0
\(115\) −971.674 + 560.996i −0.787905 + 0.454897i
\(116\) 0 0
\(117\) 491.534 + 283.787i 0.388396 + 0.224240i
\(118\) 0 0
\(119\) −854.668 816.048i −0.658380 0.628630i
\(120\) 0 0
\(121\) 770.975 1335.37i 0.579245 1.00328i
\(122\) 0 0
\(123\) −925.573 + 534.380i −0.678505 + 0.391735i
\(124\) 0 0
\(125\) 1517.61i 1.08592i
\(126\) 0 0
\(127\) 1223.26 0.854699 0.427349 0.904087i \(-0.359447\pi\)
0.427349 + 0.904087i \(0.359447\pi\)
\(128\) 0 0
\(129\) 339.996 + 588.891i 0.232054 + 0.401930i
\(130\) 0 0
\(131\) 2126.40 + 1227.68i 1.41820 + 0.818798i 0.996141 0.0877697i \(-0.0279740\pi\)
0.422060 + 0.906568i \(0.361307\pi\)
\(132\) 0 0
\(133\) −1557.92 379.083i −1.01570 0.247148i
\(134\) 0 0
\(135\) −598.393 + 1036.45i −0.381492 + 0.660764i
\(136\) 0 0
\(137\) −1219.84 2112.83i −0.760716 1.31760i −0.942482 0.334257i \(-0.891515\pi\)
0.181766 0.983342i \(-0.441819\pi\)
\(138\) 0 0
\(139\) 2783.96i 1.69879i −0.527756 0.849396i \(-0.676967\pi\)
0.527756 0.849396i \(-0.323033\pi\)
\(140\) 0 0
\(141\) 755.288i 0.451112i
\(142\) 0 0
\(143\) −864.337 1497.07i −0.505451 0.875466i
\(144\) 0 0
\(145\) −362.436 + 627.757i −0.207577 + 0.359534i
\(146\) 0 0
\(147\) −483.207 + 934.129i −0.271117 + 0.524120i
\(148\) 0 0
\(149\) 1086.95 + 627.552i 0.597628 + 0.345041i 0.768108 0.640320i \(-0.221198\pi\)
−0.170480 + 0.985361i \(0.554532\pi\)
\(150\) 0 0
\(151\) 1374.36 + 2380.46i 0.740689 + 1.28291i 0.952182 + 0.305531i \(0.0988340\pi\)
−0.211493 + 0.977379i \(0.567833\pi\)
\(152\) 0 0
\(153\) −1122.87 −0.593325
\(154\) 0 0
\(155\) 2080.68i 1.07822i
\(156\) 0 0
\(157\) 2173.05 1254.61i 1.10464 0.637764i 0.167204 0.985922i \(-0.446526\pi\)
0.937436 + 0.348158i \(0.113193\pi\)
\(158\) 0 0
\(159\) −713.797 + 1236.33i −0.356024 + 0.616651i
\(160\) 0 0
\(161\) −561.357 + 2307.01i −0.274790 + 1.12930i
\(162\) 0 0
\(163\) −2259.90 1304.75i −1.08594 0.626971i −0.153451 0.988156i \(-0.549039\pi\)
−0.932494 + 0.361186i \(0.882372\pi\)
\(164\) 0 0
\(165\) 1245.64 719.169i 0.587714 0.339317i
\(166\) 0 0
\(167\) 695.155 0.322112 0.161056 0.986945i \(-0.448510\pi\)
0.161056 + 0.986945i \(0.448510\pi\)
\(168\) 0 0
\(169\) 1156.85 0.526557
\(170\) 0 0
\(171\) −1319.45 + 761.783i −0.590062 + 0.340673i
\(172\) 0 0
\(173\) 1543.24 + 890.989i 0.678209 + 0.391564i 0.799180 0.601092i \(-0.205267\pi\)
−0.120971 + 0.992656i \(0.538601\pi\)
\(174\) 0 0
\(175\) 648.399 + 619.100i 0.280082 + 0.267426i
\(176\) 0 0
\(177\) 289.899 502.119i 0.123108 0.213229i
\(178\) 0 0
\(179\) 2087.67 1205.32i 0.871730 0.503293i 0.00380701 0.999993i \(-0.498788\pi\)
0.867923 + 0.496699i \(0.165455\pi\)
\(180\) 0 0
\(181\) 2234.05i 0.917435i −0.888582 0.458717i \(-0.848309\pi\)
0.888582 0.458717i \(-0.151691\pi\)
\(182\) 0 0
\(183\) 576.418 0.232842
\(184\) 0 0
\(185\) −929.712 1610.31i −0.369480 0.639958i
\(186\) 0 0
\(187\) 2961.77 + 1709.98i 1.15821 + 0.668695i
\(188\) 0 0
\(189\) 711.843 + 2430.50i 0.273963 + 0.935414i
\(190\) 0 0
\(191\) −364.827 + 631.899i −0.138209 + 0.239385i −0.926819 0.375509i \(-0.877468\pi\)
0.788610 + 0.614894i \(0.210801\pi\)
\(192\) 0 0
\(193\) 2388.81 + 4137.54i 0.890934 + 1.54314i 0.838757 + 0.544506i \(0.183283\pi\)
0.0521772 + 0.998638i \(0.483384\pi\)
\(194\) 0 0
\(195\) 865.458i 0.317829i
\(196\) 0 0
\(197\) 2330.88i 0.842987i −0.906832 0.421493i \(-0.861506\pi\)
0.906832 0.421493i \(-0.138494\pi\)
\(198\) 0 0
\(199\) −1720.27 2979.60i −0.612799 1.06140i −0.990766 0.135580i \(-0.956710\pi\)
0.377967 0.925819i \(-0.376623\pi\)
\(200\) 0 0
\(201\) 275.415 477.033i 0.0966483 0.167400i
\(202\) 0 0
\(203\) 431.150 + 1472.11i 0.149068 + 0.508976i
\(204\) 0 0
\(205\) −2641.84 1525.27i −0.900070 0.519656i
\(206\) 0 0
\(207\) 1128.07 + 1953.88i 0.378775 + 0.656058i
\(208\) 0 0
\(209\) 4640.36 1.53579
\(210\) 0 0
\(211\) 4280.43i 1.39657i −0.715818 0.698287i \(-0.753946\pi\)
0.715818 0.698287i \(-0.246054\pi\)
\(212\) 0 0
\(213\) −1047.24 + 604.623i −0.336880 + 0.194498i
\(214\) 0 0
\(215\) −970.443 + 1680.86i −0.307831 + 0.533179i
\(216\) 0 0
\(217\) −3184.56 3040.66i −0.996231 0.951215i
\(218\) 0 0
\(219\) 2274.11 + 1312.96i 0.701690 + 0.405121i
\(220\) 0 0
\(221\) 1782.12 1028.91i 0.542435 0.313175i
\(222\) 0 0
\(223\) 3964.54 1.19052 0.595258 0.803535i \(-0.297050\pi\)
0.595258 + 0.803535i \(0.297050\pi\)
\(224\) 0 0
\(225\) 851.874 0.252407
\(226\) 0 0
\(227\) 1560.76 901.104i 0.456349 0.263473i −0.254159 0.967162i \(-0.581799\pi\)
0.710508 + 0.703689i \(0.248465\pi\)
\(228\) 0 0
\(229\) 3326.21 + 1920.39i 0.959835 + 0.554161i 0.896122 0.443807i \(-0.146373\pi\)
0.0637125 + 0.997968i \(0.479706\pi\)
\(230\) 0 0
\(231\) 719.632 2957.47i 0.204971 0.842370i
\(232\) 0 0
\(233\) −282.326 + 489.004i −0.0793812 + 0.137492i −0.902983 0.429676i \(-0.858628\pi\)
0.823602 + 0.567168i \(0.191961\pi\)
\(234\) 0 0
\(235\) 1866.98 1077.90i 0.518248 0.299211i
\(236\) 0 0
\(237\) 275.700i 0.0755638i
\(238\) 0 0
\(239\) −1560.15 −0.422250 −0.211125 0.977459i \(-0.567713\pi\)
−0.211125 + 0.977459i \(0.567713\pi\)
\(240\) 0 0
\(241\) 2108.53 + 3652.08i 0.563578 + 0.976147i 0.997180 + 0.0750420i \(0.0239091\pi\)
−0.433602 + 0.901105i \(0.642758\pi\)
\(242\) 0 0
\(243\) 3345.86 + 1931.73i 0.883281 + 0.509962i
\(244\) 0 0
\(245\) −2998.66 + 138.705i −0.781947 + 0.0361695i
\(246\) 0 0
\(247\) 1396.07 2418.06i 0.359634 0.622905i
\(248\) 0 0
\(249\) 305.536 + 529.204i 0.0777612 + 0.134686i
\(250\) 0 0
\(251\) 6029.33i 1.51621i 0.652134 + 0.758104i \(0.273874\pi\)
−0.652134 + 0.758104i \(0.726126\pi\)
\(252\) 0 0
\(253\) 6871.59i 1.70756i
\(254\) 0 0
\(255\) 856.098 + 1482.81i 0.210239 + 0.364145i
\(256\) 0 0
\(257\) −1537.80 + 2663.55i −0.373250 + 0.646489i −0.990064 0.140621i \(-0.955090\pi\)
0.616813 + 0.787110i \(0.288423\pi\)
\(258\) 0 0
\(259\) −3823.30 930.311i −0.917252 0.223192i
\(260\) 0 0
\(261\) 1262.32 + 728.800i 0.299370 + 0.172841i
\(262\) 0 0
\(263\) 208.250 + 360.700i 0.0488260 + 0.0845691i 0.889406 0.457119i \(-0.151119\pi\)
−0.840579 + 0.541688i \(0.817785\pi\)
\(264\) 0 0
\(265\) −4074.75 −0.944565
\(266\) 0 0
\(267\) 3119.81i 0.715091i
\(268\) 0 0
\(269\) −6849.24 + 3954.41i −1.55244 + 0.896300i −0.554495 + 0.832187i \(0.687089\pi\)
−0.997943 + 0.0641134i \(0.979578\pi\)
\(270\) 0 0
\(271\) 100.871 174.714i 0.0226107 0.0391629i −0.854499 0.519454i \(-0.826136\pi\)
0.877109 + 0.480291i \(0.159469\pi\)
\(272\) 0 0
\(273\) −1324.62 1264.76i −0.293661 0.280391i
\(274\) 0 0
\(275\) −2246.96 1297.29i −0.492717 0.284470i
\(276\) 0 0
\(277\) −2478.67 + 1431.06i −0.537650 + 0.310413i −0.744126 0.668039i \(-0.767134\pi\)
0.206476 + 0.978452i \(0.433801\pi\)
\(278\) 0 0
\(279\) −4183.91 −0.897793
\(280\) 0 0
\(281\) −3676.81 −0.780569 −0.390284 0.920694i \(-0.627623\pi\)
−0.390284 + 0.920694i \(0.627623\pi\)
\(282\) 0 0
\(283\) −5065.23 + 2924.41i −1.06395 + 0.614270i −0.926521 0.376243i \(-0.877216\pi\)
−0.137425 + 0.990512i \(0.543883\pi\)
\(284\) 0 0
\(285\) 2011.94 + 1161.60i 0.418166 + 0.241428i
\(286\) 0 0
\(287\) −6195.21 + 1814.45i −1.27419 + 0.373182i
\(288\) 0 0
\(289\) 420.944 729.097i 0.0856797 0.148402i
\(290\) 0 0
\(291\) −522.118 + 301.445i −0.105179 + 0.0607252i
\(292\) 0 0
\(293\) 1025.09i 0.204391i −0.994764 0.102196i \(-0.967413\pi\)
0.994764 0.102196i \(-0.0325867\pi\)
\(294\) 0 0
\(295\) 1654.90 0.326617
\(296\) 0 0
\(297\) −3664.83 6347.67i −0.716010 1.24017i
\(298\) 0 0
\(299\) −3580.74 2067.34i −0.692574 0.399858i
\(300\) 0 0
\(301\) 1154.43 + 3941.67i 0.221064 + 0.754797i
\(302\) 0 0
\(303\) 3083.13 5340.15i 0.584559 1.01249i
\(304\) 0 0
\(305\) 822.628 + 1424.83i 0.154438 + 0.267494i
\(306\) 0 0
\(307\) 2028.66i 0.377140i −0.982060 0.188570i \(-0.939615\pi\)
0.982060 0.188570i \(-0.0603852\pi\)
\(308\) 0 0
\(309\) 1829.33i 0.336787i
\(310\) 0 0
\(311\) 1802.47 + 3121.96i 0.328644 + 0.569229i 0.982243 0.187612i \(-0.0600749\pi\)
−0.653599 + 0.756841i \(0.726742\pi\)
\(312\) 0 0
\(313\) 1447.00 2506.27i 0.261307 0.452597i −0.705283 0.708926i \(-0.749180\pi\)
0.966589 + 0.256330i \(0.0825132\pi\)
\(314\) 0 0
\(315\) −1969.83 + 2063.06i −0.352341 + 0.369016i
\(316\) 0 0
\(317\) −1058.34 611.032i −0.187515 0.108262i 0.403304 0.915066i \(-0.367862\pi\)
−0.590819 + 0.806804i \(0.701195\pi\)
\(318\) 0 0
\(319\) −2219.72 3844.67i −0.389594 0.674797i
\(320\) 0 0
\(321\) 1257.60 0.218668
\(322\) 0 0
\(323\) 5523.88i 0.951570i
\(324\) 0 0
\(325\) −1352.01 + 780.586i −0.230758 + 0.133228i
\(326\) 0 0
\(327\) −1337.98 + 2317.45i −0.226271 + 0.391912i
\(328\) 0 0
\(329\) 1078.59 4432.70i 0.180744 0.742805i
\(330\) 0 0
\(331\) 332.286 + 191.845i 0.0551785 + 0.0318573i 0.527335 0.849657i \(-0.323191\pi\)
−0.472157 + 0.881514i \(0.656524\pi\)
\(332\) 0 0
\(333\) −3238.07 + 1869.50i −0.532868 + 0.307652i
\(334\) 0 0
\(335\) 1572.22 0.256417
\(336\) 0 0
\(337\) 7826.94 1.26517 0.632583 0.774493i \(-0.281995\pi\)
0.632583 + 0.774493i \(0.281995\pi\)
\(338\) 0 0
\(339\) −2891.52 + 1669.42i −0.463263 + 0.267465i
\(340\) 0 0
\(341\) 11035.8 + 6371.52i 1.75256 + 1.01184i
\(342\) 0 0
\(343\) −4169.88 + 4792.26i −0.656421 + 0.754395i
\(344\) 0 0
\(345\) 1720.13 2979.35i 0.268430 0.464935i
\(346\) 0 0
\(347\) 584.362 337.382i 0.0904040 0.0521948i −0.454116 0.890942i \(-0.650045\pi\)
0.544520 + 0.838748i \(0.316712\pi\)
\(348\) 0 0
\(349\) 7024.54i 1.07741i −0.842496 0.538703i \(-0.818914\pi\)
0.842496 0.538703i \(-0.181086\pi\)
\(350\) 0 0
\(351\) −4410.31 −0.670669
\(352\) 0 0
\(353\) −1569.65 2718.71i −0.236668 0.409921i 0.723088 0.690756i \(-0.242722\pi\)
−0.959756 + 0.280835i \(0.909389\pi\)
\(354\) 0 0
\(355\) −2989.11 1725.76i −0.446888 0.258011i
\(356\) 0 0
\(357\) 3520.57 + 856.649i 0.521929 + 0.126999i
\(358\) 0 0
\(359\) 535.877 928.166i 0.0787814 0.136453i −0.823943 0.566673i \(-0.808230\pi\)
0.902724 + 0.430219i \(0.141564\pi\)
\(360\) 0 0
\(361\) 318.035 + 550.853i 0.0463676 + 0.0803110i
\(362\) 0 0
\(363\) 4727.92i 0.683614i
\(364\) 0 0
\(365\) 7495.09i 1.07483i
\(366\) 0 0
\(367\) −885.623 1533.94i −0.125965 0.218178i 0.796145 0.605106i \(-0.206869\pi\)
−0.922110 + 0.386928i \(0.873536\pi\)
\(368\) 0 0
\(369\) −3067.07 + 5312.32i −0.432697 + 0.749453i
\(370\) 0 0
\(371\) −5954.75 + 6236.56i −0.833302 + 0.872738i
\(372\) 0 0
\(373\) −9657.76 5575.91i −1.34064 0.774021i −0.353741 0.935343i \(-0.615091\pi\)
−0.986902 + 0.161323i \(0.948424\pi\)
\(374\) 0 0
\(375\) −2326.65 4029.88i −0.320394 0.554939i
\(376\) 0 0
\(377\) −2671.24 −0.364923
\(378\) 0 0
\(379\) 11982.3i 1.62399i −0.583667 0.811993i \(-0.698383\pi\)
0.583667 0.811993i \(-0.301617\pi\)
\(380\) 0 0
\(381\) −3248.25 + 1875.38i −0.436780 + 0.252175i
\(382\) 0 0
\(383\) −168.027 + 291.031i −0.0224172 + 0.0388277i −0.877016 0.480460i \(-0.840470\pi\)
0.854599 + 0.519288i \(0.173803\pi\)
\(384\) 0 0
\(385\) 8337.53 2441.88i 1.10369 0.323246i
\(386\) 0 0
\(387\) 3379.93 + 1951.40i 0.443957 + 0.256319i
\(388\) 0 0
\(389\) −3352.87 + 1935.78i −0.437010 + 0.252308i −0.702329 0.711853i \(-0.747856\pi\)
0.265318 + 0.964161i \(0.414523\pi\)
\(390\) 0 0
\(391\) 8179.93 1.05800
\(392\) 0 0
\(393\) −7528.60 −0.966330
\(394\) 0 0
\(395\) −681.496 + 393.462i −0.0868096 + 0.0501195i
\(396\) 0 0
\(397\) −5876.75 3392.94i −0.742936 0.428934i 0.0801996 0.996779i \(-0.474444\pi\)
−0.823136 + 0.567844i \(0.807778\pi\)
\(398\) 0 0
\(399\) 4718.08 1381.82i 0.591978 0.173378i
\(400\) 0 0
\(401\) −6141.21 + 10636.9i −0.764782 + 1.32464i 0.175581 + 0.984465i \(0.443820\pi\)
−0.940362 + 0.340175i \(0.889514\pi\)
\(402\) 0 0
\(403\) 6640.31 3833.78i 0.820788 0.473882i
\(404\) 0 0
\(405\) 488.889i 0.0599830i
\(406\) 0 0
\(407\) 11388.0 1.38693
\(408\) 0 0
\(409\) −1572.28 2723.27i −0.190084 0.329234i 0.755194 0.655501i \(-0.227543\pi\)
−0.945278 + 0.326267i \(0.894209\pi\)
\(410\) 0 0
\(411\) 6478.35 + 3740.28i 0.777502 + 0.448891i
\(412\) 0 0
\(413\) 2418.44 2532.89i 0.288144 0.301781i
\(414\) 0 0
\(415\) −872.084 + 1510.49i −0.103154 + 0.178668i
\(416\) 0 0
\(417\) 4268.08 + 7392.53i 0.501220 + 0.868139i
\(418\) 0 0
\(419\) 2133.06i 0.248704i 0.992238 + 0.124352i \(0.0396852\pi\)
−0.992238 + 0.124352i \(0.960315\pi\)
\(420\) 0 0
\(421\) 4230.88i 0.489787i −0.969550 0.244893i \(-0.921247\pi\)
0.969550 0.244893i \(-0.0787530\pi\)
\(422\) 0 0
\(423\) −2167.48 3754.19i −0.249141 0.431525i
\(424\) 0 0
\(425\) 1544.29 2674.78i 0.176256 0.305285i
\(426\) 0 0
\(427\) 3382.93 + 823.158i 0.383400 + 0.0932913i
\(428\) 0 0
\(429\) 4590.33 + 2650.23i 0.516604 + 0.298262i
\(430\) 0 0
\(431\) 92.2433 + 159.770i 0.0103091 + 0.0178558i 0.871134 0.491046i \(-0.163385\pi\)
−0.860825 + 0.508901i \(0.830052\pi\)
\(432\) 0 0
\(433\) −5972.94 −0.662912 −0.331456 0.943471i \(-0.607540\pi\)
−0.331456 + 0.943471i \(0.607540\pi\)
\(434\) 0 0
\(435\) 2222.60i 0.244978i
\(436\) 0 0
\(437\) 9611.96 5549.47i 1.05218 0.607476i
\(438\) 0 0
\(439\) −5535.24 + 9587.32i −0.601783 + 1.04232i 0.390768 + 0.920489i \(0.372209\pi\)
−0.992551 + 0.121829i \(0.961124\pi\)
\(440\) 0 0
\(441\) 278.913 + 6029.81i 0.0301169 + 0.651097i
\(442\) 0 0
\(443\) −1854.17 1070.51i −0.198858 0.114811i 0.397264 0.917704i \(-0.369960\pi\)
−0.596123 + 0.802893i \(0.703293\pi\)
\(444\) 0 0
\(445\) 7711.79 4452.40i 0.821514 0.474302i
\(446\) 0 0
\(447\) −3848.40 −0.407211
\(448\) 0 0
\(449\) 5106.95 0.536775 0.268387 0.963311i \(-0.413509\pi\)
0.268387 + 0.963311i \(0.413509\pi\)
\(450\) 0 0
\(451\) 16179.8 9341.44i 1.68931 0.975324i
\(452\) 0 0
\(453\) −7298.98 4214.07i −0.757033 0.437073i
\(454\) 0 0
\(455\) 1235.92 5079.28i 0.127343 0.523341i
\(456\) 0 0
\(457\) −3095.20 + 5361.05i −0.316822 + 0.548751i −0.979823 0.199867i \(-0.935949\pi\)
0.663001 + 0.748618i \(0.269282\pi\)
\(458\) 0 0
\(459\) 7556.26 4362.61i 0.768401 0.443637i
\(460\) 0 0
\(461\) 10592.5i 1.07016i −0.844803 0.535078i \(-0.820282\pi\)
0.844803 0.535078i \(-0.179718\pi\)
\(462\) 0 0
\(463\) 4511.99 0.452894 0.226447 0.974023i \(-0.427289\pi\)
0.226447 + 0.974023i \(0.427289\pi\)
\(464\) 0 0
\(465\) 3189.89 + 5525.05i 0.318124 + 0.551007i
\(466\) 0 0
\(467\) 3025.77 + 1746.93i 0.299820 + 0.173101i 0.642362 0.766401i \(-0.277955\pi\)
−0.342542 + 0.939502i \(0.611288\pi\)
\(468\) 0 0
\(469\) 2297.61 2406.35i 0.226213 0.236919i
\(470\) 0 0
\(471\) −3846.89 + 6663.01i −0.376338 + 0.651837i
\(472\) 0 0
\(473\) −5943.44 10294.3i −0.577758 1.00071i
\(474\) 0 0
\(475\) 4190.73i 0.404808i
\(476\) 0 0
\(477\) 8193.66i 0.786503i
\(478\) 0 0
\(479\) 1024.99 + 1775.34i 0.0977729 + 0.169348i 0.910762 0.412931i \(-0.135495\pi\)
−0.812990 + 0.582278i \(0.802161\pi\)
\(480\) 0 0
\(481\) 3426.11 5934.19i 0.324775 0.562528i
\(482\) 0 0
\(483\) −2046.25 6986.67i −0.192769 0.658187i
\(484\) 0 0
\(485\) −1490.27 860.408i −0.139525 0.0805549i
\(486\) 0 0
\(487\) −3873.91 6709.80i −0.360459 0.624333i 0.627577 0.778554i \(-0.284047\pi\)
−0.988036 + 0.154221i \(0.950713\pi\)
\(488\) 0 0
\(489\) 8001.27 0.739939
\(490\) 0 0
\(491\) 10491.3i 0.964291i 0.876091 + 0.482146i \(0.160142\pi\)
−0.876091 + 0.482146i \(0.839858\pi\)
\(492\) 0 0
\(493\) 4576.69 2642.35i 0.418101 0.241391i
\(494\) 0 0
\(495\) 4127.66 7149.32i 0.374797 0.649168i
\(496\) 0 0
\(497\) −7009.56 + 2052.95i −0.632639 + 0.185286i
\(498\) 0 0
\(499\) −1725.97 996.491i −0.154840 0.0893969i 0.420578 0.907256i \(-0.361827\pi\)
−0.575418 + 0.817859i \(0.695161\pi\)
\(500\) 0 0
\(501\) −1845.92 + 1065.74i −0.164610 + 0.0950377i
\(502\) 0 0
\(503\) −3940.26 −0.349279 −0.174640 0.984632i \(-0.555876\pi\)
−0.174640 + 0.984632i \(0.555876\pi\)
\(504\) 0 0
\(505\) 17600.2 1.55089
\(506\) 0 0
\(507\) −3071.90 + 1773.56i −0.269088 + 0.155358i
\(508\) 0 0
\(509\) 5019.62 + 2898.08i 0.437114 + 0.252368i 0.702373 0.711810i \(-0.252124\pi\)
−0.265259 + 0.964177i \(0.585457\pi\)
\(510\) 0 0
\(511\) 11471.5 + 10953.2i 0.993093 + 0.948219i
\(512\) 0 0
\(513\) 5919.40 10252.7i 0.509450 0.882394i
\(514\) 0 0
\(515\) −4521.88 + 2610.71i −0.386909 + 0.223382i
\(516\) 0 0
\(517\) 13203.1i 1.12316i
\(518\) 0 0
\(519\) −5463.90 −0.462117
\(520\) 0 0
\(521\) 7361.53 + 12750.5i 0.619030 + 1.07219i 0.989663 + 0.143412i \(0.0458074\pi\)
−0.370633 + 0.928779i \(0.620859\pi\)
\(522\) 0 0
\(523\) −14898.2 8601.49i −1.24561 0.719153i −0.275379 0.961336i \(-0.588803\pi\)
−0.970231 + 0.242183i \(0.922137\pi\)
\(524\) 0 0
\(525\) −2670.91 649.902i −0.222034 0.0540268i
\(526\) 0 0
\(527\) −7584.65 + 13137.0i −0.626931 + 1.08588i
\(528\) 0 0
\(529\) −2134.32 3696.75i −0.175419 0.303834i
\(530\) 0 0
\(531\) 3327.74i 0.271962i
\(532\) 0 0
\(533\) 11241.6i 0.913562i
\(534\) 0 0
\(535\) 1794.77 + 3108.63i 0.145037 + 0.251211i
\(536\) 0 0
\(537\) −3695.74 + 6401.21i −0.296989 + 0.514399i
\(538\) 0 0
\(539\) 8446.88 16329.4i 0.675015 1.30493i
\(540\) 0 0
\(541\) 12396.0 + 7156.85i 0.985114 + 0.568756i 0.903810 0.427934i \(-0.140758\pi\)
0.0813037 + 0.996689i \(0.474092\pi\)
\(542\) 0 0
\(543\) 3425.02 + 5932.31i 0.270685 + 0.468840i
\(544\) 0 0
\(545\) −7637.94 −0.600318
\(546\) 0 0
\(547\) 18243.6i 1.42604i 0.701145 + 0.713018i \(0.252672\pi\)
−0.701145 + 0.713018i \(0.747328\pi\)
\(548\) 0 0
\(549\) 2865.11 1654.17i 0.222732 0.128594i
\(550\) 0 0
\(551\) 3585.27 6209.88i 0.277201 0.480126i
\(552\) 0 0
\(553\) −393.715 + 1618.05i −0.0302757 + 0.124424i
\(554\) 0 0
\(555\) 4937.53 + 2850.68i 0.377633 + 0.218027i
\(556\) 0 0
\(557\) 16086.0 9287.24i 1.22367 0.706486i 0.257972 0.966152i \(-0.416946\pi\)
0.965698 + 0.259666i \(0.0836125\pi\)
\(558\) 0 0
\(559\) −7152.41 −0.541171
\(560\) 0 0
\(561\) −10486.3 −0.789181
\(562\) 0 0
\(563\) −4972.40 + 2870.82i −0.372224 + 0.214903i −0.674429 0.738339i \(-0.735610\pi\)
0.302206 + 0.953243i \(0.402277\pi\)
\(564\) 0 0
\(565\) −8253.21 4764.99i −0.614540 0.354805i
\(566\) 0 0
\(567\) 748.264 + 714.452i 0.0554217 + 0.0529174i
\(568\) 0 0
\(569\) 3623.14 6275.46i 0.266942 0.462356i −0.701129 0.713035i \(-0.747320\pi\)
0.968070 + 0.250678i \(0.0806536\pi\)
\(570\) 0 0
\(571\) −7153.20 + 4129.90i −0.524259 + 0.302681i −0.738676 0.674061i \(-0.764548\pi\)
0.214416 + 0.976742i \(0.431215\pi\)
\(572\) 0 0
\(573\) 2237.26i 0.163112i
\(574\) 0 0
\(575\) −6205.76 −0.450084
\(576\) 0 0
\(577\) 1280.85 + 2218.49i 0.0924132 + 0.160064i 0.908526 0.417828i \(-0.137209\pi\)
−0.816113 + 0.577893i \(0.803875\pi\)
\(578\) 0 0
\(579\) −12686.5 7324.57i −0.910594 0.525732i
\(580\) 0 0
\(581\) 1037.42 + 3542.16i 0.0740784 + 0.252932i
\(582\) 0 0
\(583\) 12477.8 21612.2i 0.886411 1.53531i
\(584\) 0 0
\(585\) −2483.64 4301.80i −0.175532 0.304030i
\(586\) 0 0
\(587\) 2146.44i 0.150925i −0.997149 0.0754624i \(-0.975957\pi\)
0.997149 0.0754624i \(-0.0240433\pi\)
\(588\) 0 0
\(589\) 20582.4i 1.43987i
\(590\) 0 0
\(591\) 3573.47 + 6189.44i 0.248719 + 0.430794i
\(592\) 0 0
\(593\) 7900.80 13684.6i 0.547128 0.947653i −0.451342 0.892351i \(-0.649055\pi\)
0.998470 0.0553020i \(-0.0176122\pi\)
\(594\) 0 0
\(595\) 2906.82 + 9924.98i 0.200282 + 0.683840i
\(596\) 0 0
\(597\) 9136.06 + 5274.70i 0.626321 + 0.361607i
\(598\) 0 0
\(599\) 11161.4 + 19332.1i 0.761339 + 1.31868i 0.942160 + 0.335162i \(0.108791\pi\)
−0.180821 + 0.983516i \(0.557876\pi\)
\(600\) 0 0
\(601\) −12041.0 −0.817242 −0.408621 0.912704i \(-0.633990\pi\)
−0.408621 + 0.912704i \(0.633990\pi\)
\(602\) 0 0
\(603\) 3161.49i 0.213509i
\(604\) 0 0
\(605\) −11686.8 + 6747.40i −0.785352 + 0.453423i
\(606\) 0 0
\(607\) 3607.64 6248.62i 0.241235 0.417832i −0.719831 0.694149i \(-0.755781\pi\)
0.961066 + 0.276318i \(0.0891141\pi\)
\(608\) 0 0
\(609\) −3401.78 3248.06i −0.226350 0.216122i
\(610\) 0 0
\(611\) 6880.05 + 3972.20i 0.455544 + 0.263008i
\(612\) 0 0
\(613\) −24381.6 + 14076.7i −1.60646 + 0.927493i −0.616312 + 0.787502i \(0.711374\pi\)
−0.990153 + 0.139991i \(0.955293\pi\)
\(614\) 0 0
\(615\) 9353.56 0.613288
\(616\) 0 0
\(617\) −8547.35 −0.557704 −0.278852 0.960334i \(-0.589954\pi\)
−0.278852 + 0.960334i \(0.589954\pi\)
\(618\) 0 0
\(619\) 4572.60 2639.99i 0.296912 0.171422i −0.344143 0.938917i \(-0.611830\pi\)
0.641055 + 0.767495i \(0.278497\pi\)
\(620\) 0 0
\(621\) −15182.5 8765.63i −0.981085 0.566429i
\(622\) 0 0
\(623\) 4455.27 18309.8i 0.286511 1.17748i
\(624\) 0 0
\(625\) 3615.52 6262.27i 0.231394 0.400785i
\(626\) 0 0
\(627\) −12322.0 + 7114.14i −0.784841 + 0.453128i
\(628\) 0 0
\(629\) 13556.2i 0.859335i
\(630\) 0 0
\(631\) −26983.8 −1.70239 −0.851194 0.524852i \(-0.824121\pi\)
−0.851194 + 0.524852i \(0.824121\pi\)
\(632\) 0 0
\(633\) 6562.33 + 11366.3i 0.412053 + 0.713696i
\(634\) 0 0
\(635\) −9271.41 5352.85i −0.579409 0.334522i
\(636\) 0 0
\(637\) −5967.88 9314.38i −0.371202 0.579355i
\(638\) 0 0
\(639\) −3470.22 + 6010.61i −0.214836 + 0.372106i
\(640\) 0 0
\(641\) −11038.3 19118.9i −0.680166 1.17808i −0.974930 0.222512i \(-0.928574\pi\)
0.294764 0.955570i \(-0.404759\pi\)
\(642\) 0 0
\(643\) 7248.12i 0.444538i 0.974985 + 0.222269i \(0.0713464\pi\)
−0.974985 + 0.222269i \(0.928654\pi\)
\(644\) 0 0
\(645\) 5951.15i 0.363296i
\(646\) 0 0
\(647\) −13986.9 24226.0i −0.849893 1.47206i −0.881303 0.472551i \(-0.843333\pi\)
0.0314105 0.999507i \(-0.490000\pi\)
\(648\) 0 0
\(649\) −5067.69 + 8777.49i −0.306509 + 0.530888i
\(650\) 0 0
\(651\) 13117.9 + 3191.94i 0.789758 + 0.192169i
\(652\) 0 0
\(653\) −16345.2 9436.90i −0.979536 0.565535i −0.0774060 0.997000i \(-0.524664\pi\)
−0.902130 + 0.431464i \(0.857997\pi\)
\(654\) 0 0
\(655\) −10744.4 18609.8i −0.640942 1.11014i
\(656\) 0 0
\(657\) 15071.4 0.894965
\(658\) 0 0
\(659\) 12594.1i 0.744455i 0.928141 + 0.372228i \(0.121406\pi\)
−0.928141 + 0.372228i \(0.878594\pi\)
\(660\) 0 0
\(661\) 16194.5 9349.92i 0.952941 0.550181i 0.0589480 0.998261i \(-0.481225\pi\)
0.893993 + 0.448080i \(0.147892\pi\)
\(662\) 0 0
\(663\) −3154.83 + 5464.32i −0.184802 + 0.320086i
\(664\) 0 0
\(665\) 10149.0 + 9690.45i 0.591824 + 0.565082i
\(666\) 0 0
\(667\) −9195.78 5309.18i −0.533826 0.308205i
\(668\) 0 0
\(669\) −10527.5 + 6078.03i −0.608393 + 0.351256i
\(670\) 0 0
\(671\) −10076.3 −0.579719
\(672\) 0 0
\(673\) −26792.3 −1.53457 −0.767286 0.641305i \(-0.778393\pi\)
−0.767286 + 0.641305i \(0.778393\pi\)
\(674\) 0 0
\(675\) −5732.61 + 3309.72i −0.326886 + 0.188728i
\(676\) 0 0
\(677\) −9315.61 5378.37i −0.528845 0.305329i 0.211701 0.977334i \(-0.432100\pi\)
−0.740546 + 0.672006i \(0.765433\pi\)
\(678\) 0 0
\(679\) −3494.74 + 1023.53i −0.197519 + 0.0578492i
\(680\) 0 0
\(681\) −2762.96 + 4785.59i −0.155473 + 0.269287i
\(682\) 0 0
\(683\) −27340.4 + 15785.0i −1.53170 + 0.884328i −0.532417 + 0.846482i \(0.678716\pi\)
−0.999284 + 0.0378455i \(0.987951\pi\)
\(684\) 0 0
\(685\) 21351.6i 1.19095i
\(686\) 0 0
\(687\) −11776.6 −0.654010
\(688\) 0 0
\(689\) −7507.98 13004.2i −0.415140 0.719043i
\(690\) 0 0
\(691\) 24576.0 + 14189.0i 1.35299 + 0.781149i 0.988667 0.150123i \(-0.0479671\pi\)
0.364323 + 0.931273i \(0.381300\pi\)
\(692\) 0 0
\(693\) −4910.23 16765.4i −0.269155 0.918998i
\(694\) 0 0
\(695\) −12182.3 + 21100.3i −0.664893 + 1.15163i
\(696\) 0 0
\(697\) 11120.0 + 19260.5i 0.604306 + 1.04669i
\(698\) 0 0
\(699\) 1731.34i 0.0936841i
\(700\) 0 0
\(701\) 3313.45i 0.178527i 0.996008 + 0.0892634i \(0.0284513\pi\)
−0.996008 + 0.0892634i \(0.971549\pi\)
\(702\) 0 0
\(703\) 9196.86 + 15929.4i 0.493409 + 0.854609i
\(704\) 0 0
\(705\) −3305.06 + 5724.53i −0.176561 + 0.305813i
\(706\) 0 0
\(707\) 25720.6 26937.8i 1.36821 1.43296i
\(708\) 0 0
\(709\) 11822.5 + 6825.73i 0.626239 + 0.361559i 0.779294 0.626658i \(-0.215578\pi\)
−0.153055 + 0.988218i \(0.548911\pi\)
\(710\) 0 0
\(711\) 791.188 + 1370.38i 0.0417326 + 0.0722830i
\(712\) 0 0
\(713\) 30479.1 1.60091
\(714\) 0 0
\(715\) 15129.0i 0.791317i
\(716\) 0 0
\(717\) 4142.84 2391.87i 0.215784 0.124583i
\(718\) 0 0
\(719\) 17155.5 29714.1i 0.889834 1.54124i 0.0497630 0.998761i \(-0.484153\pi\)
0.840071 0.542477i \(-0.182513\pi\)
\(720\) 0 0
\(721\) −2612.39 + 10736.1i −0.134938 + 0.554556i
\(722\) 0 0
\(723\) −11198.0 6465.18i −0.576015 0.332562i
\(724\) 0 0
\(725\) −3472.14 + 2004.64i −0.177865 + 0.102690i
\(726\) 0 0
\(727\) 5988.54 0.305506 0.152753 0.988264i \(-0.451186\pi\)
0.152753 + 0.988264i \(0.451186\pi\)
\(728\) 0 0
\(729\) −10337.9 −0.525220
\(730\) 0 0
\(731\) 12254.4 7075.06i 0.620033 0.357976i
\(732\) 0 0
\(733\) −30860.2 17817.1i −1.55504 0.897804i −0.997719 0.0675083i \(-0.978495\pi\)
−0.557323 0.830296i \(-0.688172\pi\)
\(734\) 0 0
\(735\) 7750.00 4965.56i 0.388929 0.249194i
\(736\) 0 0
\(737\) −4814.51 + 8338.97i −0.240630 + 0.416784i
\(738\) 0 0
\(739\) −16663.6 + 9620.75i −0.829474 + 0.478897i −0.853673 0.520810i \(-0.825630\pi\)
0.0241983 + 0.999707i \(0.492297\pi\)
\(740\) 0 0
\(741\) 8561.25i 0.424434i
\(742\) 0 0
\(743\) 33062.3 1.63249 0.816244 0.577707i \(-0.196052\pi\)
0.816244 + 0.577707i \(0.196052\pi\)
\(744\) 0 0
\(745\) −5492.20 9512.77i −0.270092 0.467814i
\(746\) 0 0
\(747\) 3037.36 + 1753.62i 0.148770 + 0.0858923i
\(748\) 0 0
\(749\) 7380.72 + 1795.92i 0.360061 + 0.0876124i
\(750\) 0 0
\(751\) −653.983 + 1132.73i −0.0317765 + 0.0550386i −0.881476 0.472228i \(-0.843450\pi\)
0.849700 + 0.527267i \(0.176783\pi\)
\(752\) 0 0
\(753\) −9243.57 16010.3i −0.447350 0.774833i
\(754\) 0 0
\(755\) 24056.2i 1.15960i
\(756\) 0 0
\(757\) 22928.8i 1.10087i 0.834877 + 0.550437i \(0.185539\pi\)
−0.834877 + 0.550437i \(0.814461\pi\)
\(758\) 0 0
\(759\) 10534.8 + 18246.9i 0.503808 + 0.872621i
\(760\) 0 0
\(761\) 12998.0 22513.1i 0.619154 1.07241i −0.370487 0.928838i \(-0.620809\pi\)
0.989640 0.143568i \(-0.0458576\pi\)
\(762\) 0 0
\(763\) −11161.9 + 11690.2i −0.529605 + 0.554668i
\(764\) 0 0
\(765\) 8510.55 + 4913.57i 0.402221 + 0.232223i
\(766\) 0 0
\(767\) 3049.26 + 5281.47i 0.143549 + 0.248635i
\(768\) 0 0
\(769\) −7834.78 −0.367398 −0.183699 0.982982i \(-0.558807\pi\)
−0.183699 + 0.982982i \(0.558807\pi\)
\(770\) 0 0
\(771\) 9430.41i 0.440503i
\(772\) 0 0
\(773\) 5328.06 3076.15i 0.247913 0.143133i −0.370895 0.928675i \(-0.620949\pi\)
0.618808 + 0.785542i \(0.287616\pi\)
\(774\) 0 0
\(775\) 5754.14 9966.46i 0.266703 0.461943i
\(776\) 0 0
\(777\) 11578.7 3391.15i 0.534598 0.156572i
\(778\) 0 0
\(779\) 26133.5 + 15088.2i 1.20197 + 0.693955i
\(780\) 0 0
\(781\) 18306.6 10569.3i 0.838749 0.484252i
\(782\) 0 0
\(783\) −11326.2 −0.516942
\(784\) 0 0
\(785\) −21960.2 −0.998462
\(786\) 0 0
\(787\) 9159.31 5288.13i 0.414859 0.239519i −0.278016 0.960576i \(-0.589677\pi\)
0.692875 + 0.721057i \(0.256344\pi\)
\(788\) 0 0
\(789\) −1105.98 638.536i −0.0499034 0.0288118i
\(790\) 0 0
\(791\) −19354.1 + 5668.39i −0.869977 + 0.254798i
\(792\) 0 0
\(793\) −3031.49 + 5250.69i −0.135752 + 0.235129i
\(794\) 0 0
\(795\) 10820.1 6247.00i 0.482704 0.278689i
\(796\) 0 0
\(797\) 11570.5i 0.514241i 0.966379 + 0.257120i \(0.0827737\pi\)
−0.966379 + 0.257120i \(0.917226\pi\)
\(798\) 0 0
\(799\) −15717.0 −0.695903
\(800\) 0 0
\(801\) −8953.06 15507.2i −0.394933 0.684043i
\(802\) 0 0
\(803\) −39753.5 22951.7i −1.74704 1.00865i
\(804\) 0 0
\(805\) 14349.9 15029.0i 0.628283 0.658017i
\(806\) 0 0
\(807\) 12125.0 21001.1i 0.528898 0.916079i
\(808\) 0 0
\(809\) 20835.6 + 36088.3i 0.905488 + 1.56835i 0.820261 + 0.571989i \(0.193828\pi\)
0.0852262 + 0.996362i \(0.472839\pi\)
\(810\) 0 0
\(811\) 4576.16i 0.198139i 0.995081 + 0.0990696i \(0.0315866\pi\)
−0.995081 + 0.0990696i \(0.968413\pi\)
\(812\) 0 0
\(813\) 618.583i 0.0266847i
\(814\) 0 0
\(815\) 11418.9 + 19778.2i 0.490782 + 0.850060i
\(816\) 0 0
\(817\) 9599.78 16627.3i 0.411082 0.712015i
\(818\) 0 0
\(819\) −10213.6 2485.24i −0.435766 0.106033i
\(820\) 0 0
\(821\) 16660.8 + 9619.13i 0.708242 + 0.408904i 0.810410 0.585863i \(-0.199244\pi\)
−0.102168 + 0.994767i \(0.532578\pi\)
\(822\) 0 0
\(823\) 5624.38 + 9741.71i 0.238218 + 0.412606i 0.960203 0.279303i \(-0.0901033\pi\)
−0.721985 + 0.691909i \(0.756770\pi\)
\(824\) 0 0
\(825\) 7955.47 0.335726
\(826\) 0 0
\(827\) 17626.7i 0.741163i 0.928800 + 0.370582i \(0.120842\pi\)
−0.928800 + 0.370582i \(0.879158\pi\)
\(828\) 0 0
\(829\) 28478.1 16441.8i 1.19310 0.688839i 0.234095 0.972214i \(-0.424787\pi\)
0.959009 + 0.283374i \(0.0914539\pi\)
\(830\) 0 0
\(831\) 4387.93 7600.11i 0.183171 0.317262i
\(832\) 0 0
\(833\) 19438.5 + 10055.2i 0.808529 + 0.418236i
\(834\) 0 0
\(835\) −5268.77 3041.92i −0.218363 0.126072i
\(836\) 0 0
\(837\) 28155.2 16255.4i 1.16271 0.671291i
\(838\) 0 0
\(839\) −8483.06 −0.349068 −0.174534 0.984651i \(-0.555842\pi\)
−0.174534 + 0.984651i \(0.555842\pi\)
\(840\) 0 0
\(841\) 17528.9 0.718723
\(842\) 0 0
\(843\) 9763.41 5636.91i 0.398897 0.230303i
\(844\) 0 0
\(845\) −8768.04 5062.23i −0.356958 0.206090i
\(846\) 0 0
\(847\) −6751.75 + 27747.7i −0.273899 + 1.12565i
\(848\) 0 0
\(849\) 8966.83 15531.0i 0.362475 0.627824i
\(850\) 0 0
\(851\) 23588.8 13619.0i 0.950192 0.548594i
\(852\) 0 0
\(853\) 1148.92i 0.0461176i −0.999734 0.0230588i \(-0.992660\pi\)
0.999734 0.0230588i \(-0.00734049\pi\)
\(854\) 0 0
\(855\) 13333.9 0.533346
\(856\) 0 0
\(857\) 19525.6 + 33819.3i 0.778275 + 1.34801i 0.932935 + 0.360044i \(0.117238\pi\)
−0.154661 + 0.987968i \(0.549428\pi\)
\(858\) 0 0
\(859\) 12358.3 + 7135.08i 0.490874 + 0.283406i 0.724937 0.688815i \(-0.241869\pi\)
−0.234063 + 0.972221i \(0.575202\pi\)
\(860\) 0 0
\(861\) 13669.1 14316.0i 0.541047 0.566652i
\(862\) 0 0
\(863\) 3995.09 6919.69i 0.157583 0.272942i −0.776413 0.630224i \(-0.782963\pi\)
0.933997 + 0.357282i \(0.116296\pi\)
\(864\) 0 0
\(865\) −7797.74 13506.1i −0.306510 0.530891i
\(866\) 0 0
\(867\) 2581.40i 0.101118i
\(868\) 0 0
\(869\) 4819.48i 0.188135i
\(870\) 0 0
\(871\) 2896.92 + 5017.61i 0.112696 + 0.195196i
\(872\) 0 0
\(873\) −1730.14 + 2996.69i −0.0670749 + 0.116177i
\(874\) 0 0
\(875\) −7899.97 26973.5i −0.305220 1.04214i
\(876\) 0 0
\(877\) 9621.74 + 5555.12i 0.370471 + 0.213892i 0.673664 0.739038i \(-0.264719\pi\)
−0.303193 + 0.952929i \(0.598053\pi\)
\(878\) 0 0
\(879\) 1571.57 + 2722.04i 0.0603046 + 0.104451i
\(880\) 0 0
\(881\) −17590.4 −0.672683 −0.336342 0.941740i \(-0.609190\pi\)
−0.336342 + 0.941740i \(0.609190\pi\)
\(882\) 0 0
\(883\) 22009.6i 0.838826i −0.907796 0.419413i \(-0.862236\pi\)
0.907796 0.419413i \(-0.137764\pi\)
\(884\) 0 0
\(885\) −4394.44 + 2537.13i −0.166912 + 0.0963669i
\(886\) 0 0
\(887\) −22650.3 + 39231.5i −0.857410 + 1.48508i 0.0169818 + 0.999856i \(0.494594\pi\)
−0.874391 + 0.485221i \(0.838739\pi\)
\(888\) 0 0
\(889\) −21741.8 + 6367.71i −0.820243 + 0.240232i
\(890\) 0 0
\(891\) −2593.04 1497.09i −0.0974972 0.0562900i
\(892\) 0 0
\(893\) −18468.5 + 10662.8i −0.692075 + 0.399570i
\(894\) 0 0
\(895\) −21097.3 −0.787939
\(896\) 0 0
\(897\) 12677.8 0.471904
\(898\) 0 0
\(899\) 17053.1 9845.63i 0.632651 0.365261i
\(900\) 0 0
\(901\) 25727.1 + 14853.6i 0.951271 + 0.549216i
\(902\) 0 0
\(903\) −9108.45 8696.88i −0.335670 0.320503i
\(904\) 0 0
\(905\) −9775.97 + 16932.5i −0.359076 + 0.621938i
\(906\) 0 0
\(907\) −9627.87 + 5558.65i −0.352468 + 0.203497i −0.665772 0.746156i \(-0.731897\pi\)
0.313304 + 0.949653i \(0.398564\pi\)
\(908\) 0 0
\(909\) 35391.2i 1.29137i
\(910\) 0 0
\(911\) −4926.27 −0.179160 −0.0895800 0.995980i \(-0.528552\pi\)
−0.0895800 + 0.995980i \(0.528552\pi\)
\(912\) 0 0
\(913\) −5341.04 9250.95i −0.193606 0.335336i
\(914\) 0 0
\(915\) −4368.83 2522.34i −0.157846 0.0911323i
\(916\) 0 0
\(917\) −44184.5 10751.3i −1.59117 0.387174i
\(918\) 0 0
\(919\) −12450.7 + 21565.2i −0.446910 + 0.774070i −0.998183 0.0602546i \(-0.980809\pi\)
0.551274 + 0.834325i \(0.314142\pi\)
\(920\) 0 0
\(921\) 3110.14 + 5386.93i 0.111273 + 0.192731i
\(922\) 0 0
\(923\) 12719.3i 0.453587i
\(924\) 0 0
\(925\) 10284.5i 0.365570i
\(926\) 0 0
\(927\) 5249.71 + 9092.77i 0.186001 + 0.322164i
\(928\) 0 0
\(929\) −5730.85 + 9926.12i −0.202393 + 0.350555i −0.949299 0.314375i \(-0.898205\pi\)
0.746906 + 0.664930i \(0.231538\pi\)
\(930\) 0 0
\(931\) 29663.2 1372.09i 1.04422 0.0483012i
\(932\) 0 0
\(933\) −9572.56 5526.72i −0.335896 0.193930i
\(934\) 0 0
\(935\) −14965.4 25920.8i −0.523443 0.906630i
\(936\) 0 0
\(937\) −5527.69 −0.192723 −0.0963617 0.995346i \(-0.530721\pi\)
−0.0963617 + 0.995346i \(0.530721\pi\)
\(938\) 0 0
\(939\) 8873.55i 0.308389i
\(940\) 0 0
\(941\) −1517.92 + 876.373i −0.0525854 + 0.0303602i −0.526062 0.850446i \(-0.676332\pi\)
0.473477 + 0.880806i \(0.342999\pi\)
\(942\) 0 0
\(943\) 22343.1 38699.4i 0.771570 1.33640i
\(944\) 0 0
\(945\) 5240.38 21536.4i 0.180391 0.741353i
\(946\) 0 0
\(947\) 17093.0 + 9868.64i 0.586533 + 0.338635i 0.763726 0.645541i \(-0.223368\pi\)
−0.177192 + 0.984176i \(0.556701\pi\)
\(948\) 0 0
\(949\) −23919.9 + 13810.2i −0.818202 + 0.472389i
\(950\) 0 0
\(951\) 3747.09 0.127768
\(952\) 0 0
\(953\) 17751.6 0.603389 0.301694 0.953405i \(-0.402448\pi\)
0.301694 + 0.953405i \(0.402448\pi\)
\(954\) 0 0
\(955\) 5530.24 3192.89i 0.187387 0.108188i
\(956\) 0 0
\(957\) 11788.5 + 6806.11i 0.398191 + 0.229896i
\(958\) 0 0
\(959\) 32679.4 + 31202.7i 1.10039 + 1.05067i
\(960\) 0 0
\(961\) −13365.5 + 23149.7i −0.448642 + 0.777072i
\(962\) 0 0
\(963\) 6250.96 3608.99i 0.209174 0.120766i
\(964\) 0 0
\(965\) 41812.7i 1.39482i
\(966\) 0 0
\(967\) 31083.0 1.03367 0.516836 0.856085i \(-0.327110\pi\)
0.516836 + 0.856085i \(0.327110\pi\)
\(968\) 0 0
\(969\) −8468.66 14668.2i −0.280756 0.486284i
\(970\) 0 0
\(971\) −10899.2 6292.63i −0.360217 0.207971i 0.308959 0.951075i \(-0.400019\pi\)
−0.669176 + 0.743104i \(0.733353\pi\)
\(972\) 0 0
\(973\) 14491.9 + 49481.0i 0.477482 + 1.63031i
\(974\) 0 0
\(975\) 2393.43 4145.54i 0.0786166 0.136168i
\(976\) 0 0
\(977\) −10203.6 17673.1i −0.334126 0.578722i 0.649191 0.760625i \(-0.275108\pi\)
−0.983316 + 0.181903i \(0.941774\pi\)
\(978\) 0 0
\(979\) 54537.1i 1.78040i
\(980\) 0 0
\(981\) 15358.7i 0.499861i
\(982\) 0 0
\(983\) −23381.3 40497.5i −0.758643 1.31401i −0.943543 0.331251i \(-0.892529\pi\)
0.184900 0.982757i \(-0.440804\pi\)
\(984\) 0 0
\(985\) −10199.7 + 17666.4i −0.329938 + 0.571469i
\(986\) 0 0
\(987\) 3931.67 + 13424.2i 0.126795 + 0.432926i
\(988\) 0 0
\(989\) −24622.2 14215.7i −0.791650 0.457059i
\(990\) 0 0
\(991\) −3271.64 5666.64i −0.104871 0.181641i 0.808815 0.588064i \(-0.200110\pi\)
−0.913685 + 0.406422i \(0.866776\pi\)
\(992\) 0 0
\(993\) −1176.47 −0.0375974
\(994\) 0 0
\(995\) 30110.9i 0.959378i
\(996\) 0 0
\(997\) −11066.6 + 6389.30i −0.351537 + 0.202960i −0.665362 0.746521i \(-0.731723\pi\)
0.313825 + 0.949481i \(0.398389\pi\)
\(998\) 0 0
\(999\) 14526.9 25161.3i 0.460070 0.796864i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 224.4.t.a.177.8 44
4.3 odd 2 56.4.p.a.37.22 yes 44
7.4 even 3 inner 224.4.t.a.81.15 44
8.3 odd 2 56.4.p.a.37.8 44
8.5 even 2 inner 224.4.t.a.177.15 44
28.11 odd 6 56.4.p.a.53.8 yes 44
56.11 odd 6 56.4.p.a.53.22 yes 44
56.53 even 6 inner 224.4.t.a.81.8 44
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
56.4.p.a.37.8 44 8.3 odd 2
56.4.p.a.37.22 yes 44 4.3 odd 2
56.4.p.a.53.8 yes 44 28.11 odd 6
56.4.p.a.53.22 yes 44 56.11 odd 6
224.4.t.a.81.8 44 56.53 even 6 inner
224.4.t.a.81.15 44 7.4 even 3 inner
224.4.t.a.177.8 44 1.1 even 1 trivial
224.4.t.a.177.15 44 8.5 even 2 inner