Properties

Label 224.4.t.a.81.17
Level $224$
Weight $4$
Character 224.81
Analytic conductor $13.216$
Analytic rank $0$
Dimension $44$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [224,4,Mod(81,224)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(224, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 4]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("224.81");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 224 = 2^{5} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 224.t (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.2164278413\)
Analytic rank: \(0\)
Dimension: \(44\)
Relative dimension: \(22\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 56)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 81.17
Character \(\chi\) \(=\) 224.81
Dual form 224.4.t.a.177.17

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(4.43871 + 2.56269i) q^{3} +(-13.1631 + 7.59971i) q^{5} +(-1.45519 - 18.4630i) q^{7} +(-0.365251 - 0.632633i) q^{9} +(-35.5292 - 20.5128i) q^{11} -15.1225i q^{13} -77.9028 q^{15} +(27.3391 - 47.3526i) q^{17} +(37.1763 - 21.4637i) q^{19} +(40.8558 - 85.6811i) q^{21} +(-69.1294 - 119.736i) q^{23} +(53.0113 - 91.8183i) q^{25} -142.129i q^{27} +271.056i q^{29} +(-9.18381 + 15.9068i) q^{31} +(-105.136 - 182.100i) q^{33} +(159.468 + 231.971i) q^{35} +(202.736 - 117.050i) q^{37} +(38.7541 - 67.1242i) q^{39} -347.517 q^{41} +314.997i q^{43} +(9.61566 + 5.55160i) q^{45} +(-196.536 - 340.410i) q^{47} +(-338.765 + 53.7343i) q^{49} +(242.700 - 140.123i) q^{51} +(-439.900 - 253.976i) q^{53} +623.565 q^{55} +220.020 q^{57} +(-640.900 - 370.024i) q^{59} +(198.404 - 114.549i) q^{61} +(-11.1488 + 7.66422i) q^{63} +(114.926 + 199.058i) q^{65} +(-262.711 - 151.676i) q^{67} -708.629i q^{69} -82.4824 q^{71} +(135.675 - 234.997i) q^{73} +(470.603 - 271.703i) q^{75} +(-327.026 + 685.825i) q^{77} +(304.852 + 528.019i) q^{79} +(354.371 - 613.789i) q^{81} +587.294i q^{83} +831.076i q^{85} +(-694.633 + 1203.14i) q^{87} +(804.220 + 1392.95i) q^{89} +(-279.206 + 22.0060i) q^{91} +(-81.5285 + 47.0705i) q^{93} +(-326.237 + 565.058i) q^{95} -339.739 q^{97} +29.9692i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 44 q + 4 q^{7} + 160 q^{9} + 116 q^{15} - 2 q^{17} - 162 q^{23} + 348 q^{25} + 374 q^{31} - 110 q^{33} - 52 q^{39} - 8 q^{41} + 738 q^{47} + 356 q^{49} + 2268 q^{55} - 452 q^{57} - 668 q^{63} + 248 q^{65}+ \cdots + 1672 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/224\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(129\) \(197\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 4.43871 + 2.56269i 0.854230 + 0.493190i 0.862076 0.506780i \(-0.169164\pi\)
−0.00784607 + 0.999969i \(0.502498\pi\)
\(4\) 0 0
\(5\) −13.1631 + 7.59971i −1.17734 + 0.679739i −0.955398 0.295320i \(-0.904574\pi\)
−0.221944 + 0.975059i \(0.571240\pi\)
\(6\) 0 0
\(7\) −1.45519 18.4630i −0.0785728 0.996908i
\(8\) 0 0
\(9\) −0.365251 0.632633i −0.0135278 0.0234308i
\(10\) 0 0
\(11\) −35.5292 20.5128i −0.973859 0.562258i −0.0734485 0.997299i \(-0.523400\pi\)
−0.900411 + 0.435041i \(0.856734\pi\)
\(12\) 0 0
\(13\) 15.1225i 0.322632i −0.986903 0.161316i \(-0.948426\pi\)
0.986903 0.161316i \(-0.0515738\pi\)
\(14\) 0 0
\(15\) −77.9028 −1.34096
\(16\) 0 0
\(17\) 27.3391 47.3526i 0.390041 0.675571i −0.602414 0.798184i \(-0.705794\pi\)
0.992455 + 0.122613i \(0.0391275\pi\)
\(18\) 0 0
\(19\) 37.1763 21.4637i 0.448886 0.259164i −0.258474 0.966018i \(-0.583220\pi\)
0.707359 + 0.706854i \(0.249886\pi\)
\(20\) 0 0
\(21\) 40.8558 85.6811i 0.424546 0.890340i
\(22\) 0 0
\(23\) −69.1294 119.736i −0.626717 1.08550i −0.988206 0.153129i \(-0.951065\pi\)
0.361490 0.932376i \(-0.382268\pi\)
\(24\) 0 0
\(25\) 53.0113 91.8183i 0.424090 0.734546i
\(26\) 0 0
\(27\) 142.129i 1.01307i
\(28\) 0 0
\(29\) 271.056i 1.73565i 0.496869 + 0.867826i \(0.334483\pi\)
−0.496869 + 0.867826i \(0.665517\pi\)
\(30\) 0 0
\(31\) −9.18381 + 15.9068i −0.0532084 + 0.0921597i −0.891403 0.453212i \(-0.850278\pi\)
0.838194 + 0.545372i \(0.183611\pi\)
\(32\) 0 0
\(33\) −105.136 182.100i −0.554599 0.960594i
\(34\) 0 0
\(35\) 159.468 + 231.971i 0.770145 + 1.12029i
\(36\) 0 0
\(37\) 202.736 117.050i 0.900801 0.520078i 0.0233409 0.999728i \(-0.492570\pi\)
0.877460 + 0.479650i \(0.159236\pi\)
\(38\) 0 0
\(39\) 38.7541 67.1242i 0.159119 0.275602i
\(40\) 0 0
\(41\) −347.517 −1.32373 −0.661866 0.749622i \(-0.730235\pi\)
−0.661866 + 0.749622i \(0.730235\pi\)
\(42\) 0 0
\(43\) 314.997i 1.11713i 0.829460 + 0.558566i \(0.188648\pi\)
−0.829460 + 0.558566i \(0.811352\pi\)
\(44\) 0 0
\(45\) 9.61566 + 5.55160i 0.0318537 + 0.0183908i
\(46\) 0 0
\(47\) −196.536 340.410i −0.609951 1.05647i −0.991248 0.132013i \(-0.957856\pi\)
0.381297 0.924452i \(-0.375477\pi\)
\(48\) 0 0
\(49\) −338.765 + 53.7343i −0.987653 + 0.156660i
\(50\) 0 0
\(51\) 242.700 140.123i 0.666369 0.384728i
\(52\) 0 0
\(53\) −439.900 253.976i −1.14009 0.658233i −0.193639 0.981073i \(-0.562029\pi\)
−0.946454 + 0.322840i \(0.895363\pi\)
\(54\) 0 0
\(55\) 623.565 1.52875
\(56\) 0 0
\(57\) 220.020 0.511269
\(58\) 0 0
\(59\) −640.900 370.024i −1.41420 0.816491i −0.418423 0.908252i \(-0.637417\pi\)
−0.995781 + 0.0917608i \(0.970750\pi\)
\(60\) 0 0
\(61\) 198.404 114.549i 0.416443 0.240433i −0.277111 0.960838i \(-0.589377\pi\)
0.693554 + 0.720404i \(0.256044\pi\)
\(62\) 0 0
\(63\) −11.1488 + 7.66422i −0.0222955 + 0.0153270i
\(64\) 0 0
\(65\) 114.926 + 199.058i 0.219305 + 0.379848i
\(66\) 0 0
\(67\) −262.711 151.676i −0.479034 0.276570i 0.240980 0.970530i \(-0.422531\pi\)
−0.720014 + 0.693960i \(0.755865\pi\)
\(68\) 0 0
\(69\) 708.629i 1.23636i
\(70\) 0 0
\(71\) −82.4824 −0.137871 −0.0689356 0.997621i \(-0.521960\pi\)
−0.0689356 + 0.997621i \(0.521960\pi\)
\(72\) 0 0
\(73\) 135.675 234.997i 0.217529 0.376771i −0.736523 0.676412i \(-0.763534\pi\)
0.954052 + 0.299641i \(0.0968670\pi\)
\(74\) 0 0
\(75\) 470.603 271.703i 0.724541 0.418314i
\(76\) 0 0
\(77\) −327.026 + 685.825i −0.484001 + 1.01503i
\(78\) 0 0
\(79\) 304.852 + 528.019i 0.434159 + 0.751985i 0.997227 0.0744258i \(-0.0237124\pi\)
−0.563068 + 0.826411i \(0.690379\pi\)
\(80\) 0 0
\(81\) 354.371 613.789i 0.486106 0.841961i
\(82\) 0 0
\(83\) 587.294i 0.776674i 0.921518 + 0.388337i \(0.126950\pi\)
−0.921518 + 0.388337i \(0.873050\pi\)
\(84\) 0 0
\(85\) 831.076i 1.06050i
\(86\) 0 0
\(87\) −694.633 + 1203.14i −0.856005 + 1.48264i
\(88\) 0 0
\(89\) 804.220 + 1392.95i 0.957833 + 1.65902i 0.727748 + 0.685845i \(0.240567\pi\)
0.230085 + 0.973170i \(0.426100\pi\)
\(90\) 0 0
\(91\) −279.206 + 22.0060i −0.321634 + 0.0253501i
\(92\) 0 0
\(93\) −81.5285 + 47.0705i −0.0909045 + 0.0524837i
\(94\) 0 0
\(95\) −326.237 + 565.058i −0.352328 + 0.610250i
\(96\) 0 0
\(97\) −339.739 −0.355622 −0.177811 0.984065i \(-0.556901\pi\)
−0.177811 + 0.984065i \(0.556901\pi\)
\(98\) 0 0
\(99\) 29.9692i 0.0304245i
\(100\) 0 0
\(101\) 691.541 + 399.261i 0.681296 + 0.393347i 0.800343 0.599542i \(-0.204651\pi\)
−0.119047 + 0.992889i \(0.537984\pi\)
\(102\) 0 0
\(103\) −441.683 765.018i −0.422527 0.731839i 0.573658 0.819095i \(-0.305524\pi\)
−0.996186 + 0.0872555i \(0.972190\pi\)
\(104\) 0 0
\(105\) 113.363 + 1438.32i 0.105363 + 1.33682i
\(106\) 0 0
\(107\) −301.588 + 174.122i −0.272482 + 0.157318i −0.630015 0.776583i \(-0.716951\pi\)
0.357533 + 0.933901i \(0.383618\pi\)
\(108\) 0 0
\(109\) 182.882 + 105.587i 0.160706 + 0.0927836i 0.578196 0.815898i \(-0.303757\pi\)
−0.417490 + 0.908681i \(0.637090\pi\)
\(110\) 0 0
\(111\) 1199.85 1.02599
\(112\) 0 0
\(113\) 1594.12 1.32710 0.663552 0.748131i \(-0.269048\pi\)
0.663552 + 0.748131i \(0.269048\pi\)
\(114\) 0 0
\(115\) 1819.91 + 1050.73i 1.47572 + 0.852007i
\(116\) 0 0
\(117\) −9.56696 + 5.52349i −0.00755954 + 0.00436450i
\(118\) 0 0
\(119\) −914.055 435.854i −0.704129 0.335754i
\(120\) 0 0
\(121\) 176.048 + 304.924i 0.132268 + 0.229094i
\(122\) 0 0
\(123\) −1542.53 890.578i −1.13077 0.652851i
\(124\) 0 0
\(125\) 288.446i 0.206395i
\(126\) 0 0
\(127\) 1607.77 1.12336 0.561679 0.827355i \(-0.310156\pi\)
0.561679 + 0.827355i \(0.310156\pi\)
\(128\) 0 0
\(129\) −807.240 + 1398.18i −0.550958 + 0.954287i
\(130\) 0 0
\(131\) 1370.67 791.358i 0.914169 0.527796i 0.0323987 0.999475i \(-0.489685\pi\)
0.881770 + 0.471679i \(0.156352\pi\)
\(132\) 0 0
\(133\) −450.384 655.152i −0.293633 0.427135i
\(134\) 0 0
\(135\) 1080.14 + 1870.86i 0.688621 + 1.19273i
\(136\) 0 0
\(137\) 337.449 584.478i 0.210439 0.364492i −0.741413 0.671049i \(-0.765844\pi\)
0.951852 + 0.306558i \(0.0991772\pi\)
\(138\) 0 0
\(139\) 158.324i 0.0966103i 0.998833 + 0.0483051i \(0.0153820\pi\)
−0.998833 + 0.0483051i \(0.984618\pi\)
\(140\) 0 0
\(141\) 2014.64i 1.20329i
\(142\) 0 0
\(143\) −310.204 + 537.288i −0.181402 + 0.314198i
\(144\) 0 0
\(145\) −2059.95 3567.94i −1.17979 2.04346i
\(146\) 0 0
\(147\) −1641.38 629.638i −0.920945 0.353277i
\(148\) 0 0
\(149\) −2116.50 + 1221.96i −1.16369 + 0.671859i −0.952186 0.305518i \(-0.901171\pi\)
−0.211507 + 0.977376i \(0.567837\pi\)
\(150\) 0 0
\(151\) 304.069 526.663i 0.163873 0.283836i −0.772382 0.635159i \(-0.780935\pi\)
0.936254 + 0.351323i \(0.114268\pi\)
\(152\) 0 0
\(153\) −39.9424 −0.0211056
\(154\) 0 0
\(155\) 279.177i 0.144671i
\(156\) 0 0
\(157\) −1132.37 653.776i −0.575626 0.332338i 0.183767 0.982970i \(-0.441171\pi\)
−0.759393 + 0.650632i \(0.774504\pi\)
\(158\) 0 0
\(159\) −1301.73 2254.65i −0.649268 1.12456i
\(160\) 0 0
\(161\) −2110.08 + 1450.57i −1.03291 + 0.710070i
\(162\) 0 0
\(163\) −1615.48 + 932.699i −0.776284 + 0.448188i −0.835112 0.550080i \(-0.814597\pi\)
0.0588277 + 0.998268i \(0.481264\pi\)
\(164\) 0 0
\(165\) 2767.82 + 1598.00i 1.30591 + 0.753966i
\(166\) 0 0
\(167\) 417.840 0.193613 0.0968067 0.995303i \(-0.469137\pi\)
0.0968067 + 0.995303i \(0.469137\pi\)
\(168\) 0 0
\(169\) 1968.31 0.895909
\(170\) 0 0
\(171\) −27.1573 15.6793i −0.0121449 0.00701185i
\(172\) 0 0
\(173\) 1789.20 1032.99i 0.786301 0.453971i −0.0523575 0.998628i \(-0.516674\pi\)
0.838659 + 0.544657i \(0.183340\pi\)
\(174\) 0 0
\(175\) −1772.38 845.135i −0.765597 0.365064i
\(176\) 0 0
\(177\) −1896.51 3284.85i −0.805370 1.39494i
\(178\) 0 0
\(179\) 1788.56 + 1032.63i 0.746835 + 0.431185i 0.824549 0.565790i \(-0.191429\pi\)
−0.0777142 + 0.996976i \(0.524762\pi\)
\(180\) 0 0
\(181\) 1483.01i 0.609012i 0.952510 + 0.304506i \(0.0984913\pi\)
−0.952510 + 0.304506i \(0.901509\pi\)
\(182\) 0 0
\(183\) 1174.21 0.474317
\(184\) 0 0
\(185\) −1779.09 + 3081.47i −0.707034 + 1.22462i
\(186\) 0 0
\(187\) −1942.67 + 1121.60i −0.759690 + 0.438607i
\(188\) 0 0
\(189\) −2624.13 + 206.825i −1.00993 + 0.0795995i
\(190\) 0 0
\(191\) −312.673 541.565i −0.118451 0.205164i 0.800703 0.599062i \(-0.204460\pi\)
−0.919154 + 0.393898i \(0.871126\pi\)
\(192\) 0 0
\(193\) 2661.55 4609.95i 0.992657 1.71933i 0.391575 0.920146i \(-0.371930\pi\)
0.601083 0.799187i \(-0.294736\pi\)
\(194\) 0 0
\(195\) 1178.08i 0.432637i
\(196\) 0 0
\(197\) 574.940i 0.207933i −0.994581 0.103966i \(-0.966847\pi\)
0.994581 0.103966i \(-0.0331535\pi\)
\(198\) 0 0
\(199\) 1177.89 2040.17i 0.419590 0.726751i −0.576308 0.817232i \(-0.695507\pi\)
0.995898 + 0.0904813i \(0.0288405\pi\)
\(200\) 0 0
\(201\) −777.399 1346.49i −0.272803 0.472509i
\(202\) 0 0
\(203\) 5004.51 394.438i 1.73029 0.136375i
\(204\) 0 0
\(205\) 4574.40 2641.03i 1.55849 0.899793i
\(206\) 0 0
\(207\) −50.4991 + 87.4671i −0.0169562 + 0.0293690i
\(208\) 0 0
\(209\) −1761.12 −0.582869
\(210\) 0 0
\(211\) 3735.73i 1.21885i −0.792842 0.609427i \(-0.791400\pi\)
0.792842 0.609427i \(-0.208600\pi\)
\(212\) 0 0
\(213\) −366.115 211.377i −0.117774 0.0679967i
\(214\) 0 0
\(215\) −2393.89 4146.34i −0.759358 1.31525i
\(216\) 0 0
\(217\) 307.052 + 146.413i 0.0960555 + 0.0458027i
\(218\) 0 0
\(219\) 1204.45 695.388i 0.371639 0.214566i
\(220\) 0 0
\(221\) −716.088 413.434i −0.217961 0.125840i
\(222\) 0 0
\(223\) −1942.28 −0.583249 −0.291624 0.956533i \(-0.594196\pi\)
−0.291624 + 0.956533i \(0.594196\pi\)
\(224\) 0 0
\(225\) −77.4497 −0.0229480
\(226\) 0 0
\(227\) −3495.47 2018.11i −1.02204 0.590073i −0.107344 0.994222i \(-0.534235\pi\)
−0.914693 + 0.404149i \(0.867568\pi\)
\(228\) 0 0
\(229\) −2941.05 + 1698.02i −0.848690 + 0.489992i −0.860209 0.509942i \(-0.829667\pi\)
0.0115185 + 0.999934i \(0.496333\pi\)
\(230\) 0 0
\(231\) −3209.13 + 2206.11i −0.914048 + 0.628361i
\(232\) 0 0
\(233\) 2806.20 + 4860.49i 0.789015 + 1.36661i 0.926571 + 0.376120i \(0.122742\pi\)
−0.137556 + 0.990494i \(0.543925\pi\)
\(234\) 0 0
\(235\) 5174.03 + 2987.23i 1.43624 + 0.829214i
\(236\) 0 0
\(237\) 3124.96i 0.856490i
\(238\) 0 0
\(239\) 1154.25 0.312394 0.156197 0.987726i \(-0.450077\pi\)
0.156197 + 0.987726i \(0.450077\pi\)
\(240\) 0 0
\(241\) 1134.86 1965.63i 0.303330 0.525383i −0.673558 0.739134i \(-0.735235\pi\)
0.976888 + 0.213751i \(0.0685682\pi\)
\(242\) 0 0
\(243\) −177.463 + 102.458i −0.0468487 + 0.0270481i
\(244\) 0 0
\(245\) 4050.83 3281.83i 1.05632 0.855788i
\(246\) 0 0
\(247\) −324.585 562.197i −0.0836147 0.144825i
\(248\) 0 0
\(249\) −1505.05 + 2606.83i −0.383047 + 0.663458i
\(250\) 0 0
\(251\) 2730.85i 0.686733i −0.939202 0.343366i \(-0.888433\pi\)
0.939202 0.343366i \(-0.111567\pi\)
\(252\) 0 0
\(253\) 5672.15i 1.40950i
\(254\) 0 0
\(255\) −2129.79 + 3688.90i −0.523030 + 0.905914i
\(256\) 0 0
\(257\) −3236.06 5605.01i −0.785446 1.36043i −0.928732 0.370751i \(-0.879100\pi\)
0.143286 0.989681i \(-0.454233\pi\)
\(258\) 0 0
\(259\) −2456.11 3572.79i −0.589248 0.857152i
\(260\) 0 0
\(261\) 171.479 99.0035i 0.0406678 0.0234795i
\(262\) 0 0
\(263\) 622.289 1077.84i 0.145901 0.252708i −0.783808 0.621004i \(-0.786725\pi\)
0.929709 + 0.368296i \(0.120059\pi\)
\(264\) 0 0
\(265\) 7720.59 1.78971
\(266\) 0 0
\(267\) 8243.86i 1.88957i
\(268\) 0 0
\(269\) −2732.98 1577.89i −0.619453 0.357641i 0.157203 0.987566i \(-0.449752\pi\)
−0.776656 + 0.629925i \(0.783086\pi\)
\(270\) 0 0
\(271\) −997.435 1727.61i −0.223579 0.387250i 0.732313 0.680968i \(-0.238441\pi\)
−0.955892 + 0.293718i \(0.905107\pi\)
\(272\) 0 0
\(273\) −1295.71 617.840i −0.287252 0.136972i
\(274\) 0 0
\(275\) −3766.89 + 2174.82i −0.826008 + 0.476896i
\(276\) 0 0
\(277\) −1046.97 604.470i −0.227099 0.131116i 0.382134 0.924107i \(-0.375189\pi\)
−0.609233 + 0.792991i \(0.708523\pi\)
\(278\) 0 0
\(279\) 13.4176 0.00287917
\(280\) 0 0
\(281\) 4944.71 1.04974 0.524869 0.851183i \(-0.324114\pi\)
0.524869 + 0.851183i \(0.324114\pi\)
\(282\) 0 0
\(283\) −4177.28 2411.76i −0.877434 0.506587i −0.00762240 0.999971i \(-0.502426\pi\)
−0.869811 + 0.493384i \(0.835760\pi\)
\(284\) 0 0
\(285\) −2896.14 + 1672.09i −0.601938 + 0.347529i
\(286\) 0 0
\(287\) 505.703 + 6416.21i 0.104009 + 1.31964i
\(288\) 0 0
\(289\) 961.651 + 1665.63i 0.195736 + 0.339025i
\(290\) 0 0
\(291\) −1508.00 870.646i −0.303782 0.175389i
\(292\) 0 0
\(293\) 3239.94i 0.646004i −0.946398 0.323002i \(-0.895308\pi\)
0.946398 0.323002i \(-0.104692\pi\)
\(294\) 0 0
\(295\) 11248.3 2.22000
\(296\) 0 0
\(297\) −2915.47 + 5049.74i −0.569605 + 0.986584i
\(298\) 0 0
\(299\) −1810.70 + 1045.41i −0.350218 + 0.202199i
\(300\) 0 0
\(301\) 5815.80 458.380i 1.11368 0.0877761i
\(302\) 0 0
\(303\) 2046.37 + 3544.41i 0.387989 + 0.672017i
\(304\) 0 0
\(305\) −1741.07 + 3015.63i −0.326864 + 0.566145i
\(306\) 0 0
\(307\) 232.720i 0.0432640i 0.999766 + 0.0216320i \(0.00688622\pi\)
−0.999766 + 0.0216320i \(0.993114\pi\)
\(308\) 0 0
\(309\) 4527.59i 0.833545i
\(310\) 0 0
\(311\) −4470.58 + 7743.27i −0.815123 + 1.41183i 0.0941169 + 0.995561i \(0.469997\pi\)
−0.909240 + 0.416273i \(0.863336\pi\)
\(312\) 0 0
\(313\) −728.675 1262.10i −0.131588 0.227918i 0.792701 0.609611i \(-0.208674\pi\)
−0.924289 + 0.381693i \(0.875341\pi\)
\(314\) 0 0
\(315\) 88.5066 185.613i 0.0158311 0.0332003i
\(316\) 0 0
\(317\) −6186.03 + 3571.51i −1.09603 + 0.632794i −0.935176 0.354184i \(-0.884759\pi\)
−0.160856 + 0.986978i \(0.551425\pi\)
\(318\) 0 0
\(319\) 5560.12 9630.41i 0.975883 1.69028i
\(320\) 0 0
\(321\) −1784.88 −0.310350
\(322\) 0 0
\(323\) 2347.19i 0.404339i
\(324\) 0 0
\(325\) −1388.52 801.661i −0.236988 0.136825i
\(326\) 0 0
\(327\) 541.174 + 937.341i 0.0915199 + 0.158517i
\(328\) 0 0
\(329\) −5998.99 + 4124.00i −1.00527 + 0.691074i
\(330\) 0 0
\(331\) 8679.66 5011.20i 1.44132 0.832147i 0.443383 0.896332i \(-0.353778\pi\)
0.997938 + 0.0641853i \(0.0204449\pi\)
\(332\) 0 0
\(333\) −148.099 85.5051i −0.0243717 0.0140710i
\(334\) 0 0
\(335\) 4610.79 0.751983
\(336\) 0 0
\(337\) −1689.89 −0.273158 −0.136579 0.990629i \(-0.543611\pi\)
−0.136579 + 0.990629i \(0.543611\pi\)
\(338\) 0 0
\(339\) 7075.85 + 4085.25i 1.13365 + 0.654514i
\(340\) 0 0
\(341\) 652.587 376.771i 0.103635 0.0598337i
\(342\) 0 0
\(343\) 1485.06 + 6176.42i 0.233778 + 0.972290i
\(344\) 0 0
\(345\) 5385.38 + 9327.74i 0.840403 + 1.45562i
\(346\) 0 0
\(347\) −2192.29 1265.72i −0.339160 0.195814i 0.320740 0.947167i \(-0.396068\pi\)
−0.659901 + 0.751353i \(0.729402\pi\)
\(348\) 0 0
\(349\) 2583.30i 0.396221i −0.980180 0.198110i \(-0.936520\pi\)
0.980180 0.198110i \(-0.0634804\pi\)
\(350\) 0 0
\(351\) −2149.34 −0.326848
\(352\) 0 0
\(353\) 725.039 1255.80i 0.109320 0.189348i −0.806175 0.591677i \(-0.798466\pi\)
0.915495 + 0.402329i \(0.131799\pi\)
\(354\) 0 0
\(355\) 1085.72 626.843i 0.162322 0.0937165i
\(356\) 0 0
\(357\) −2940.27 4277.07i −0.435897 0.634080i
\(358\) 0 0
\(359\) −247.731 429.083i −0.0364199 0.0630811i 0.847241 0.531209i \(-0.178262\pi\)
−0.883661 + 0.468128i \(0.844929\pi\)
\(360\) 0 0
\(361\) −2508.12 + 4344.18i −0.365668 + 0.633355i
\(362\) 0 0
\(363\) 1804.63i 0.260932i
\(364\) 0 0
\(365\) 4124.38i 0.591451i
\(366\) 0 0
\(367\) 1665.41 2884.57i 0.236876 0.410281i −0.722940 0.690911i \(-0.757210\pi\)
0.959816 + 0.280629i \(0.0905431\pi\)
\(368\) 0 0
\(369\) 126.931 + 219.851i 0.0179072 + 0.0310162i
\(370\) 0 0
\(371\) −4049.03 + 8491.46i −0.566618 + 1.18829i
\(372\) 0 0
\(373\) −1973.29 + 1139.28i −0.273923 + 0.158149i −0.630669 0.776052i \(-0.717219\pi\)
0.356746 + 0.934201i \(0.383886\pi\)
\(374\) 0 0
\(375\) 739.197 1280.33i 0.101792 0.176309i
\(376\) 0 0
\(377\) 4099.04 0.559976
\(378\) 0 0
\(379\) 9424.88i 1.27737i 0.769468 + 0.638685i \(0.220521\pi\)
−0.769468 + 0.638685i \(0.779479\pi\)
\(380\) 0 0
\(381\) 7136.42 + 4120.21i 0.959606 + 0.554029i
\(382\) 0 0
\(383\) 4945.41 + 8565.70i 0.659788 + 1.14279i 0.980670 + 0.195667i \(0.0626871\pi\)
−0.320883 + 0.947119i \(0.603980\pi\)
\(384\) 0 0
\(385\) −907.404 11512.9i −0.120118 1.52403i
\(386\) 0 0
\(387\) 199.278 115.053i 0.0261753 0.0151123i
\(388\) 0 0
\(389\) 7363.48 + 4251.31i 0.959751 + 0.554113i 0.896096 0.443859i \(-0.146391\pi\)
0.0636548 + 0.997972i \(0.479724\pi\)
\(390\) 0 0
\(391\) −7559.73 −0.977780
\(392\) 0 0
\(393\) 8112.01 1.04121
\(394\) 0 0
\(395\) −8025.59 4633.58i −1.02231 0.590229i
\(396\) 0 0
\(397\) 12788.4 7383.40i 1.61671 0.933406i 0.628943 0.777452i \(-0.283488\pi\)
0.987764 0.155954i \(-0.0498453\pi\)
\(398\) 0 0
\(399\) −320.170 4062.22i −0.0401718 0.509688i
\(400\) 0 0
\(401\) −2506.57 4341.51i −0.312150 0.540660i 0.666677 0.745346i \(-0.267716\pi\)
−0.978828 + 0.204686i \(0.934383\pi\)
\(402\) 0 0
\(403\) 240.550 + 138.882i 0.0297337 + 0.0171667i
\(404\) 0 0
\(405\) 10772.5i 1.32170i
\(406\) 0 0
\(407\) −9604.07 −1.16967
\(408\) 0 0
\(409\) 699.767 1212.03i 0.0845997 0.146531i −0.820621 0.571473i \(-0.806372\pi\)
0.905221 + 0.424942i \(0.139706\pi\)
\(410\) 0 0
\(411\) 2995.67 1729.55i 0.359527 0.207573i
\(412\) 0 0
\(413\) −5899.12 + 12371.4i −0.702849 + 1.47399i
\(414\) 0 0
\(415\) −4463.27 7730.61i −0.527935 0.914411i
\(416\) 0 0
\(417\) −405.734 + 702.752i −0.0476472 + 0.0825273i
\(418\) 0 0
\(419\) 306.232i 0.0357050i 0.999841 + 0.0178525i \(0.00568293\pi\)
−0.999841 + 0.0178525i \(0.994317\pi\)
\(420\) 0 0
\(421\) 5155.25i 0.596797i −0.954441 0.298398i \(-0.903548\pi\)
0.954441 0.298398i \(-0.0964524\pi\)
\(422\) 0 0
\(423\) −143.570 + 248.670i −0.0165026 + 0.0285833i
\(424\) 0 0
\(425\) −2898.56 5020.45i −0.330825 0.573006i
\(426\) 0 0
\(427\) −2403.63 3496.44i −0.272411 0.396264i
\(428\) 0 0
\(429\) −2753.81 + 1589.91i −0.309918 + 0.178931i
\(430\) 0 0
\(431\) −3748.15 + 6491.98i −0.418891 + 0.725540i −0.995828 0.0912485i \(-0.970914\pi\)
0.576938 + 0.816788i \(0.304248\pi\)
\(432\) 0 0
\(433\) 9121.97 1.01241 0.506205 0.862413i \(-0.331048\pi\)
0.506205 + 0.862413i \(0.331048\pi\)
\(434\) 0 0
\(435\) 21116.0i 2.32744i
\(436\) 0 0
\(437\) −5139.95 2967.55i −0.562648 0.324845i
\(438\) 0 0
\(439\) −4597.08 7962.38i −0.499788 0.865658i 0.500212 0.865903i \(-0.333255\pi\)
−1.00000 0.000245077i \(0.999922\pi\)
\(440\) 0 0
\(441\) 157.728 + 194.687i 0.0170314 + 0.0210223i
\(442\) 0 0
\(443\) 1378.95 796.139i 0.147892 0.0853853i −0.424228 0.905555i \(-0.639455\pi\)
0.572120 + 0.820170i \(0.306121\pi\)
\(444\) 0 0
\(445\) −21172.0 12223.7i −2.25540 1.30215i
\(446\) 0 0
\(447\) −12526.0 −1.32542
\(448\) 0 0
\(449\) −6521.40 −0.685443 −0.342721 0.939437i \(-0.611349\pi\)
−0.342721 + 0.939437i \(0.611349\pi\)
\(450\) 0 0
\(451\) 12347.0 + 7128.54i 1.28913 + 0.744279i
\(452\) 0 0
\(453\) 2699.34 1558.47i 0.279970 0.161641i
\(454\) 0 0
\(455\) 3507.97 2411.55i 0.361442 0.248473i
\(456\) 0 0
\(457\) −1766.24 3059.22i −0.180791 0.313138i 0.761359 0.648330i \(-0.224532\pi\)
−0.942150 + 0.335192i \(0.891199\pi\)
\(458\) 0 0
\(459\) −6730.20 3885.68i −0.684398 0.395137i
\(460\) 0 0
\(461\) 16783.8i 1.69566i −0.530270 0.847829i \(-0.677910\pi\)
0.530270 0.847829i \(-0.322090\pi\)
\(462\) 0 0
\(463\) 2743.41 0.275372 0.137686 0.990476i \(-0.456033\pi\)
0.137686 + 0.990476i \(0.456033\pi\)
\(464\) 0 0
\(465\) 715.445 1239.19i 0.0713505 0.123583i
\(466\) 0 0
\(467\) 2302.88 1329.57i 0.228189 0.131745i −0.381547 0.924349i \(-0.624609\pi\)
0.609736 + 0.792604i \(0.291275\pi\)
\(468\) 0 0
\(469\) −2418.11 + 5071.15i −0.238076 + 0.499284i
\(470\) 0 0
\(471\) −3350.85 5803.84i −0.327811 0.567785i
\(472\) 0 0
\(473\) 6461.47 11191.6i 0.628116 1.08793i
\(474\) 0 0
\(475\) 4551.28i 0.439636i
\(476\) 0 0
\(477\) 371.060i 0.0356178i
\(478\) 0 0
\(479\) 4415.98 7648.70i 0.421234 0.729599i −0.574826 0.818276i \(-0.694930\pi\)
0.996061 + 0.0886762i \(0.0282636\pi\)
\(480\) 0 0
\(481\) −1770.08 3065.87i −0.167794 0.290627i
\(482\) 0 0
\(483\) −13083.4 + 1031.19i −1.23254 + 0.0971443i
\(484\) 0 0
\(485\) 4472.02 2581.92i 0.418688 0.241730i
\(486\) 0 0
\(487\) 6615.85 11459.0i 0.615591 1.06623i −0.374690 0.927150i \(-0.622251\pi\)
0.990281 0.139084i \(-0.0444158\pi\)
\(488\) 0 0
\(489\) −9560.87 −0.884166
\(490\) 0 0
\(491\) 834.685i 0.0767186i −0.999264 0.0383593i \(-0.987787\pi\)
0.999264 0.0383593i \(-0.0122131\pi\)
\(492\) 0 0
\(493\) 12835.2 + 7410.42i 1.17256 + 0.676975i
\(494\) 0 0
\(495\) −227.758 394.488i −0.0206807 0.0358200i
\(496\) 0 0
\(497\) 120.027 + 1522.87i 0.0108329 + 0.137445i
\(498\) 0 0
\(499\) −5413.50 + 3125.49i −0.485655 + 0.280393i −0.722770 0.691089i \(-0.757131\pi\)
0.237115 + 0.971482i \(0.423798\pi\)
\(500\) 0 0
\(501\) 1854.67 + 1070.79i 0.165390 + 0.0954882i
\(502\) 0 0
\(503\) 3208.62 0.284424 0.142212 0.989836i \(-0.454579\pi\)
0.142212 + 0.989836i \(0.454579\pi\)
\(504\) 0 0
\(505\) −12137.1 −1.06949
\(506\) 0 0
\(507\) 8736.76 + 5044.17i 0.765312 + 0.441853i
\(508\) 0 0
\(509\) 10253.9 5920.12i 0.892923 0.515530i 0.0180259 0.999838i \(-0.494262\pi\)
0.874898 + 0.484308i \(0.160929\pi\)
\(510\) 0 0
\(511\) −4536.18 2163.01i −0.392698 0.187252i
\(512\) 0 0
\(513\) −3050.63 5283.84i −0.262551 0.454751i
\(514\) 0 0
\(515\) 11627.8 + 6713.33i 0.994919 + 0.574417i
\(516\) 0 0
\(517\) 16126.0i 1.37180i
\(518\) 0 0
\(519\) 10589.0 0.895576
\(520\) 0 0
\(521\) −2562.84 + 4438.96i −0.215508 + 0.373272i −0.953430 0.301615i \(-0.902474\pi\)
0.737921 + 0.674887i \(0.235808\pi\)
\(522\) 0 0
\(523\) −2362.76 + 1364.14i −0.197545 + 0.114053i −0.595510 0.803348i \(-0.703050\pi\)
0.397965 + 0.917401i \(0.369717\pi\)
\(524\) 0 0
\(525\) −5701.27 8293.37i −0.473950 0.689433i
\(526\) 0 0
\(527\) 502.154 + 869.756i 0.0415069 + 0.0718921i
\(528\) 0 0
\(529\) −3474.25 + 6017.58i −0.285547 + 0.494582i
\(530\) 0 0
\(531\) 540.606i 0.0441813i
\(532\) 0 0
\(533\) 5255.31i 0.427078i
\(534\) 0 0
\(535\) 2646.55 4583.96i 0.213870 0.370433i
\(536\) 0 0
\(537\) 5292.61 + 9167.06i 0.425312 + 0.736663i
\(538\) 0 0
\(539\) 13138.3 + 5039.87i 1.04992 + 0.402751i
\(540\) 0 0
\(541\) 7335.89 4235.38i 0.582985 0.336586i −0.179334 0.983788i \(-0.557394\pi\)
0.762319 + 0.647202i \(0.224061\pi\)
\(542\) 0 0
\(543\) −3800.49 + 6582.64i −0.300358 + 0.520236i
\(544\) 0 0
\(545\) −3209.73 −0.252275
\(546\) 0 0
\(547\) 22768.8i 1.77975i 0.456205 + 0.889875i \(0.349208\pi\)
−0.456205 + 0.889875i \(0.650792\pi\)
\(548\) 0 0
\(549\) −144.934 83.6779i −0.0112671 0.00650507i
\(550\) 0 0
\(551\) 5817.88 + 10076.9i 0.449819 + 0.779109i
\(552\) 0 0
\(553\) 9305.20 6396.85i 0.715547 0.491902i
\(554\) 0 0
\(555\) −15793.7 + 9118.51i −1.20794 + 0.697404i
\(556\) 0 0
\(557\) 499.794 + 288.556i 0.0380196 + 0.0219507i 0.518889 0.854841i \(-0.326346\pi\)
−0.480870 + 0.876792i \(0.659679\pi\)
\(558\) 0 0
\(559\) 4763.53 0.360422
\(560\) 0 0
\(561\) −11497.2 −0.865266
\(562\) 0 0
\(563\) 3255.62 + 1879.63i 0.243709 + 0.140705i 0.616880 0.787057i \(-0.288396\pi\)
−0.373171 + 0.927762i \(0.621730\pi\)
\(564\) 0 0
\(565\) −20983.6 + 12114.9i −1.56245 + 0.902084i
\(566\) 0 0
\(567\) −11848.1 5649.58i −0.877552 0.418448i
\(568\) 0 0
\(569\) −9117.06 15791.2i −0.671717 1.16345i −0.977417 0.211320i \(-0.932224\pi\)
0.305700 0.952128i \(-0.401109\pi\)
\(570\) 0 0
\(571\) −14512.2 8378.64i −1.06360 0.614072i −0.137177 0.990547i \(-0.543803\pi\)
−0.926427 + 0.376474i \(0.877136\pi\)
\(572\) 0 0
\(573\) 3205.13i 0.233676i
\(574\) 0 0
\(575\) −14658.6 −1.06314
\(576\) 0 0
\(577\) 619.415 1072.86i 0.0446908 0.0774067i −0.842815 0.538204i \(-0.819103\pi\)
0.887506 + 0.460797i \(0.152436\pi\)
\(578\) 0 0
\(579\) 23627.7 13641.5i 1.69591 0.979137i
\(580\) 0 0
\(581\) 10843.2 854.624i 0.774272 0.0610254i
\(582\) 0 0
\(583\) 10419.5 + 18047.1i 0.740193 + 1.28205i
\(584\) 0 0
\(585\) 83.9538 145.412i 0.00593344 0.0102770i
\(586\) 0 0
\(587\) 18938.9i 1.33167i −0.746097 0.665837i \(-0.768075\pi\)
0.746097 0.665837i \(-0.231925\pi\)
\(588\) 0 0
\(589\) 788.476i 0.0551589i
\(590\) 0 0
\(591\) 1473.39 2551.99i 0.102550 0.177622i
\(592\) 0 0
\(593\) 9678.40 + 16763.5i 0.670226 + 1.16087i 0.977840 + 0.209355i \(0.0671363\pi\)
−0.307613 + 0.951511i \(0.599530\pi\)
\(594\) 0 0
\(595\) 15344.2 1209.37i 1.05723 0.0833268i
\(596\) 0 0
\(597\) 10456.6 6037.13i 0.716852 0.413875i
\(598\) 0 0
\(599\) −10946.0 + 18959.0i −0.746644 + 1.29323i 0.202779 + 0.979225i \(0.435003\pi\)
−0.949423 + 0.314001i \(0.898331\pi\)
\(600\) 0 0
\(601\) −11257.4 −0.764059 −0.382029 0.924150i \(-0.624775\pi\)
−0.382029 + 0.924150i \(0.624775\pi\)
\(602\) 0 0
\(603\) 221.600i 0.0149656i
\(604\) 0 0
\(605\) −4634.67 2675.83i −0.311448 0.179815i
\(606\) 0 0
\(607\) 9229.65 + 15986.2i 0.617166 + 1.06896i 0.990000 + 0.141065i \(0.0450528\pi\)
−0.372834 + 0.927898i \(0.621614\pi\)
\(608\) 0 0
\(609\) 23224.4 + 11074.2i 1.54532 + 0.736863i
\(610\) 0 0
\(611\) −5147.83 + 2972.10i −0.340849 + 0.196789i
\(612\) 0 0
\(613\) 13231.8 + 7639.39i 0.871823 + 0.503347i 0.867954 0.496645i \(-0.165435\pi\)
0.00386941 + 0.999993i \(0.498768\pi\)
\(614\) 0 0
\(615\) 27072.6 1.77507
\(616\) 0 0
\(617\) −7018.11 −0.457923 −0.228961 0.973436i \(-0.573533\pi\)
−0.228961 + 0.973436i \(0.573533\pi\)
\(618\) 0 0
\(619\) −22065.9 12739.8i −1.43280 0.827228i −0.435468 0.900204i \(-0.643417\pi\)
−0.997334 + 0.0729760i \(0.976750\pi\)
\(620\) 0 0
\(621\) −17017.9 + 9825.32i −1.09969 + 0.634906i
\(622\) 0 0
\(623\) 24547.7 16875.3i 1.57863 1.08523i
\(624\) 0 0
\(625\) 8818.52 + 15274.1i 0.564385 + 0.977544i
\(626\) 0 0
\(627\) −7817.12 4513.21i −0.497904 0.287465i
\(628\) 0 0
\(629\) 12800.1i 0.811406i
\(630\) 0 0
\(631\) −18127.4 −1.14365 −0.571824 0.820377i \(-0.693764\pi\)
−0.571824 + 0.820377i \(0.693764\pi\)
\(632\) 0 0
\(633\) 9573.51 16581.8i 0.601126 1.04118i
\(634\) 0 0
\(635\) −21163.2 + 12218.6i −1.32258 + 0.763590i
\(636\) 0 0
\(637\) 812.594 + 5122.96i 0.0505434 + 0.318648i
\(638\) 0 0
\(639\) 30.1268 + 52.1811i 0.00186510 + 0.00323044i
\(640\) 0 0
\(641\) 1097.34 1900.65i 0.0676166 0.117115i −0.830235 0.557413i \(-0.811794\pi\)
0.897852 + 0.440298i \(0.145127\pi\)
\(642\) 0 0
\(643\) 5435.55i 0.333370i 0.986010 + 0.166685i \(0.0533064\pi\)
−0.986010 + 0.166685i \(0.946694\pi\)
\(644\) 0 0
\(645\) 24539.2i 1.49803i
\(646\) 0 0
\(647\) 6711.08 11623.9i 0.407790 0.706313i −0.586852 0.809694i \(-0.699633\pi\)
0.994642 + 0.103382i \(0.0329663\pi\)
\(648\) 0 0
\(649\) 15180.4 + 26293.3i 0.918157 + 1.59029i
\(650\) 0 0
\(651\) 987.702 + 1436.76i 0.0594641 + 0.0864996i
\(652\) 0 0
\(653\) 1330.30 768.048i 0.0797222 0.0460276i −0.459609 0.888121i \(-0.652010\pi\)
0.539331 + 0.842094i \(0.318677\pi\)
\(654\) 0 0
\(655\) −12028.2 + 20833.4i −0.717527 + 1.24279i
\(656\) 0 0
\(657\) −198.222 −0.0117708
\(658\) 0 0
\(659\) 1960.03i 0.115860i 0.998321 + 0.0579301i \(0.0184501\pi\)
−0.998321 + 0.0579301i \(0.981550\pi\)
\(660\) 0 0
\(661\) −20878.2 12054.1i −1.22855 0.709302i −0.261821 0.965116i \(-0.584323\pi\)
−0.966726 + 0.255815i \(0.917656\pi\)
\(662\) 0 0
\(663\) −2119.00 3670.22i −0.124126 0.214992i
\(664\) 0 0
\(665\) 10907.4 + 5201.04i 0.636047 + 0.303290i
\(666\) 0 0
\(667\) 32455.1 18738.0i 1.88406 1.08776i
\(668\) 0 0
\(669\) −8621.20 4977.45i −0.498228 0.287652i
\(670\) 0 0
\(671\) −9398.84 −0.540742
\(672\) 0 0
\(673\) 21235.3 1.21629 0.608143 0.793827i \(-0.291915\pi\)
0.608143 + 0.793827i \(0.291915\pi\)
\(674\) 0 0
\(675\) −13050.1 7534.46i −0.744144 0.429632i
\(676\) 0 0
\(677\) −12582.6 + 7264.57i −0.714312 + 0.412408i −0.812655 0.582745i \(-0.801979\pi\)
0.0983439 + 0.995152i \(0.468645\pi\)
\(678\) 0 0
\(679\) 494.385 + 6272.61i 0.0279422 + 0.354522i
\(680\) 0 0
\(681\) −10343.6 17915.6i −0.582036 1.00812i
\(682\) 0 0
\(683\) 6086.87 + 3514.25i 0.341006 + 0.196880i 0.660717 0.750635i \(-0.270252\pi\)
−0.319711 + 0.947515i \(0.603586\pi\)
\(684\) 0 0
\(685\) 10258.1i 0.572175i
\(686\) 0 0
\(687\) −17405.9 −0.966635
\(688\) 0 0
\(689\) −3840.75 + 6652.37i −0.212367 + 0.367830i
\(690\) 0 0
\(691\) −28337.1 + 16360.4i −1.56005 + 0.900695i −0.562798 + 0.826594i \(0.690275\pi\)
−0.997251 + 0.0741006i \(0.976391\pi\)
\(692\) 0 0
\(693\) 553.322 43.6109i 0.0303304 0.00239053i
\(694\) 0 0
\(695\) −1203.21 2084.03i −0.0656698 0.113743i
\(696\) 0 0
\(697\) −9500.79 + 16455.8i −0.516310 + 0.894275i
\(698\) 0 0
\(699\) 28765.7i 1.55654i
\(700\) 0 0
\(701\) 33247.8i 1.79137i 0.444685 + 0.895687i \(0.353316\pi\)
−0.444685 + 0.895687i \(0.646684\pi\)
\(702\) 0 0
\(703\) 5024.66 8702.96i 0.269571 0.466911i
\(704\) 0 0
\(705\) 15310.7 + 26518.9i 0.817920 + 1.41668i
\(706\) 0 0
\(707\) 6365.24 13348.9i 0.338599 0.710096i
\(708\) 0 0
\(709\) −12015.8 + 6937.33i −0.636478 + 0.367471i −0.783257 0.621698i \(-0.786443\pi\)
0.146778 + 0.989169i \(0.453110\pi\)
\(710\) 0 0
\(711\) 222.695 385.719i 0.0117464 0.0203454i
\(712\) 0 0
\(713\) 2539.49 0.133386
\(714\) 0 0
\(715\) 9429.83i 0.493225i
\(716\) 0 0
\(717\) 5123.38 + 2957.98i 0.266856 + 0.154070i
\(718\) 0 0
\(719\) 7233.72 + 12529.2i 0.375205 + 0.649873i 0.990358 0.138534i \(-0.0442391\pi\)
−0.615153 + 0.788408i \(0.710906\pi\)
\(720\) 0 0
\(721\) −13481.8 + 9268.04i −0.696377 + 0.478724i
\(722\) 0 0
\(723\) 10074.6 5816.57i 0.518227 0.299199i
\(724\) 0 0
\(725\) 24887.9 + 14369.0i 1.27492 + 0.736073i
\(726\) 0 0
\(727\) −28059.8 −1.43147 −0.715736 0.698371i \(-0.753909\pi\)
−0.715736 + 0.698371i \(0.753909\pi\)
\(728\) 0 0
\(729\) −20186.3 −1.02557
\(730\) 0 0
\(731\) 14916.0 + 8611.73i 0.754701 + 0.435727i
\(732\) 0 0
\(733\) 19847.4 11458.9i 1.00011 0.577413i 0.0918288 0.995775i \(-0.470729\pi\)
0.908281 + 0.418361i \(0.137395\pi\)
\(734\) 0 0
\(735\) 26390.7 4186.05i 1.32440 0.210075i
\(736\) 0 0
\(737\) 6222.61 + 10777.9i 0.311008 + 0.538681i
\(738\) 0 0
\(739\) 3194.68 + 1844.45i 0.159023 + 0.0918121i 0.577400 0.816462i \(-0.304067\pi\)
−0.418377 + 0.908274i \(0.637401\pi\)
\(740\) 0 0
\(741\) 3327.24i 0.164952i
\(742\) 0 0
\(743\) 3171.06 0.156575 0.0782873 0.996931i \(-0.475055\pi\)
0.0782873 + 0.996931i \(0.475055\pi\)
\(744\) 0 0
\(745\) 18573.1 32169.6i 0.913377 1.58202i
\(746\) 0 0
\(747\) 371.542 214.510i 0.0181981 0.0105067i
\(748\) 0 0
\(749\) 3653.68 + 5314.83i 0.178241 + 0.259279i
\(750\) 0 0
\(751\) 886.894 + 1536.14i 0.0430935 + 0.0746401i 0.886768 0.462215i \(-0.152945\pi\)
−0.843674 + 0.536856i \(0.819612\pi\)
\(752\) 0 0
\(753\) 6998.33 12121.5i 0.338690 0.586627i
\(754\) 0 0
\(755\) 9243.34i 0.445563i
\(756\) 0 0
\(757\) 370.903i 0.0178081i 0.999960 + 0.00890403i \(0.00283428\pi\)
−0.999960 + 0.00890403i \(0.997166\pi\)
\(758\) 0 0
\(759\) −14535.9 + 25177.0i −0.695153 + 1.20404i
\(760\) 0 0
\(761\) −14664.5 25399.6i −0.698538 1.20990i −0.968973 0.247165i \(-0.920501\pi\)
0.270435 0.962738i \(-0.412832\pi\)
\(762\) 0 0
\(763\) 1683.33 3530.21i 0.0798697 0.167499i
\(764\) 0 0
\(765\) 525.766 303.551i 0.0248485 0.0143463i
\(766\) 0 0
\(767\) −5595.67 + 9691.98i −0.263426 + 0.456267i
\(768\) 0 0
\(769\) −26755.7 −1.25466 −0.627331 0.778753i \(-0.715853\pi\)
−0.627331 + 0.778753i \(0.715853\pi\)
\(770\) 0 0
\(771\) 33172.0i 1.54950i
\(772\) 0 0
\(773\) −12808.3 7394.87i −0.595967 0.344082i 0.171486 0.985186i \(-0.445143\pi\)
−0.767453 + 0.641105i \(0.778476\pi\)
\(774\) 0 0
\(775\) 973.692 + 1686.48i 0.0451304 + 0.0781681i
\(776\) 0 0
\(777\) −1746.01 22152.8i −0.0806147 1.02282i
\(778\) 0 0
\(779\) −12919.4 + 7459.02i −0.594205 + 0.343064i
\(780\) 0 0
\(781\) 2930.53 + 1691.94i 0.134267 + 0.0775192i
\(782\) 0 0
\(783\) 38525.0 1.75833
\(784\) 0 0
\(785\) 19874.0 0.903611
\(786\) 0 0
\(787\) −9694.95 5597.38i −0.439120 0.253526i 0.264104 0.964494i \(-0.414924\pi\)
−0.703224 + 0.710968i \(0.748257\pi\)
\(788\) 0 0
\(789\) 5524.32 3189.46i 0.249266 0.143914i
\(790\) 0 0
\(791\) −2319.75 29432.3i −0.104274 1.32300i
\(792\) 0 0
\(793\) −1732.26 3000.35i −0.0775715 0.134358i
\(794\) 0 0
\(795\) 34269.5 + 19785.5i 1.52882 + 0.882665i
\(796\) 0 0
\(797\) 11568.6i 0.514153i −0.966391 0.257076i \(-0.917241\pi\)
0.966391 0.257076i \(-0.0827592\pi\)
\(798\) 0 0
\(799\) −21492.4 −0.951623
\(800\) 0 0
\(801\) 587.484 1017.55i 0.0259148 0.0448857i
\(802\) 0 0
\(803\) −9640.87 + 5566.16i −0.423685 + 0.244615i
\(804\) 0 0
\(805\) 16751.3 35130.1i 0.733422 1.53810i
\(806\) 0 0
\(807\) −8087.27 14007.6i −0.352770 0.611016i
\(808\) 0 0
\(809\) 8617.10 14925.2i 0.374488 0.648633i −0.615762 0.787932i \(-0.711152\pi\)
0.990250 + 0.139300i \(0.0444851\pi\)
\(810\) 0 0
\(811\) 6011.49i 0.260286i 0.991495 + 0.130143i \(0.0415437\pi\)
−0.991495 + 0.130143i \(0.958456\pi\)
\(812\) 0 0
\(813\) 10224.5i 0.441067i
\(814\) 0 0
\(815\) 14176.5 24554.4i 0.609302 1.05534i
\(816\) 0 0
\(817\) 6761.02 + 11710.4i 0.289520 + 0.501464i
\(818\) 0 0
\(819\) 115.902 + 168.597i 0.00494498 + 0.00719323i
\(820\) 0 0
\(821\) −146.755 + 84.7289i −0.00623846 + 0.00360178i −0.503116 0.864219i \(-0.667813\pi\)
0.496878 + 0.867821i \(0.334480\pi\)
\(822\) 0 0
\(823\) −3086.68 + 5346.28i −0.130735 + 0.226439i −0.923960 0.382489i \(-0.875067\pi\)
0.793225 + 0.608928i \(0.208400\pi\)
\(824\) 0 0
\(825\) −22293.5 −0.940801
\(826\) 0 0
\(827\) 12247.9i 0.514995i −0.966279 0.257497i \(-0.917102\pi\)
0.966279 0.257497i \(-0.0828978\pi\)
\(828\) 0 0
\(829\) 19887.0 + 11481.8i 0.833176 + 0.481035i 0.854939 0.518729i \(-0.173594\pi\)
−0.0217626 + 0.999763i \(0.506928\pi\)
\(830\) 0 0
\(831\) −3098.14 5366.13i −0.129330 0.224006i
\(832\) 0 0
\(833\) −6717.05 + 17510.5i −0.279390 + 0.728333i
\(834\) 0 0
\(835\) −5500.07 + 3175.47i −0.227949 + 0.131607i
\(836\) 0 0
\(837\) 2260.83 + 1305.29i 0.0933639 + 0.0539037i
\(838\) 0 0
\(839\) 27390.4 1.12708 0.563541 0.826088i \(-0.309439\pi\)
0.563541 + 0.826088i \(0.309439\pi\)
\(840\) 0 0
\(841\) −49082.5 −2.01249
\(842\) 0 0
\(843\) 21948.1 + 12671.7i 0.896718 + 0.517720i
\(844\) 0 0
\(845\) −25909.1 + 14958.6i −1.05479 + 0.608984i
\(846\) 0 0
\(847\) 5373.63 3694.10i 0.217993 0.149859i
\(848\) 0 0
\(849\) −12361.2 21410.2i −0.499687 0.865483i
\(850\) 0 0
\(851\) −28030.1 16183.2i −1.12909 0.651882i
\(852\) 0 0
\(853\) 27281.2i 1.09506i −0.836785 0.547532i \(-0.815568\pi\)
0.836785 0.547532i \(-0.184432\pi\)
\(854\) 0 0
\(855\) 476.633 0.0190649
\(856\) 0 0
\(857\) 2898.81 5020.89i 0.115544 0.200129i −0.802453 0.596716i \(-0.796472\pi\)
0.917997 + 0.396587i \(0.129805\pi\)
\(858\) 0 0
\(859\) 23919.8 13810.1i 0.950095 0.548537i 0.0569844 0.998375i \(-0.481851\pi\)
0.893110 + 0.449838i \(0.148518\pi\)
\(860\) 0 0
\(861\) −14198.1 + 29775.6i −0.561985 + 1.17857i
\(862\) 0 0
\(863\) −23042.4 39910.5i −0.908889 1.57424i −0.815610 0.578601i \(-0.803599\pi\)
−0.0932784 0.995640i \(-0.529735\pi\)
\(864\) 0 0
\(865\) −15700.9 + 27194.8i −0.617164 + 1.06896i
\(866\) 0 0
\(867\) 9857.65i 0.386140i
\(868\) 0 0
\(869\) 25013.4i 0.976436i
\(870\) 0 0
\(871\) −2293.72 + 3972.84i −0.0892304 + 0.154552i
\(872\) 0 0
\(873\) 124.090 + 214.930i 0.00481078 + 0.00833251i
\(874\) 0 0
\(875\) −5325.58 + 419.743i −0.205757 + 0.0162170i
\(876\) 0 0
\(877\) −11574.9 + 6682.75i −0.445673 + 0.257309i −0.706001 0.708211i \(-0.749503\pi\)
0.260328 + 0.965520i \(0.416169\pi\)
\(878\) 0 0
\(879\) 8302.96 14381.1i 0.318603 0.551836i
\(880\) 0 0
\(881\) 5901.17 0.225670 0.112835 0.993614i \(-0.464007\pi\)
0.112835 + 0.993614i \(0.464007\pi\)
\(882\) 0 0
\(883\) 4207.25i 0.160346i 0.996781 + 0.0801729i \(0.0255472\pi\)
−0.996781 + 0.0801729i \(0.974453\pi\)
\(884\) 0 0
\(885\) 49927.9 + 28825.9i 1.89639 + 1.09488i
\(886\) 0 0
\(887\) −10064.4 17432.1i −0.380982 0.659880i 0.610221 0.792231i \(-0.291081\pi\)
−0.991203 + 0.132351i \(0.957747\pi\)
\(888\) 0 0
\(889\) −2339.61 29684.3i −0.0882654 1.11989i
\(890\) 0 0
\(891\) −25181.0 + 14538.3i −0.946798 + 0.546634i
\(892\) 0 0
\(893\) −14612.9 8436.79i −0.547596 0.316155i
\(894\) 0 0
\(895\) −31390.7 −1.17237
\(896\) 0 0
\(897\) −10716.2 −0.398889
\(898\) 0 0
\(899\) −4311.65 2489.33i −0.159957 0.0923513i
\(900\) 0 0
\(901\) −24052.9 + 13887.0i −0.889366 + 0.513476i
\(902\) 0 0
\(903\) 26989.3 + 12869.5i 0.994627 + 0.474273i
\(904\) 0 0
\(905\) −11270.4 19521.0i −0.413969 0.717015i
\(906\) 0 0
\(907\) 6350.05 + 3666.20i 0.232469 + 0.134216i 0.611711 0.791081i \(-0.290482\pi\)
−0.379241 + 0.925298i \(0.623815\pi\)
\(908\) 0 0
\(909\) 583.322i 0.0212845i
\(910\) 0 0
\(911\) −38942.4 −1.41627 −0.708133 0.706079i \(-0.750462\pi\)
−0.708133 + 0.706079i \(0.750462\pi\)
\(912\) 0 0
\(913\) 12047.0 20866.1i 0.436691 0.756371i
\(914\) 0 0
\(915\) −15456.2 + 8923.65i −0.558434 + 0.322412i
\(916\) 0 0
\(917\) −16605.4 24155.1i −0.597993 0.869872i
\(918\) 0 0
\(919\) 5166.34 + 8948.36i 0.185443 + 0.321196i 0.943726 0.330729i \(-0.107295\pi\)
−0.758283 + 0.651926i \(0.773961\pi\)
\(920\) 0 0
\(921\) −596.390 + 1032.98i −0.0213374 + 0.0369574i
\(922\) 0 0
\(923\) 1247.34i 0.0444817i
\(924\) 0 0
\(925\) 24819.9i 0.882240i
\(926\) 0 0
\(927\) −322.650 + 558.846i −0.0114317 + 0.0198004i
\(928\) 0 0
\(929\) 6917.69 + 11981.8i 0.244308 + 0.423154i 0.961937 0.273272i \(-0.0881059\pi\)
−0.717629 + 0.696426i \(0.754773\pi\)
\(930\) 0 0
\(931\) −11440.7 + 9268.81i −0.402743 + 0.326287i
\(932\) 0 0
\(933\) −39687.2 + 22913.4i −1.39260 + 0.804020i
\(934\) 0 0
\(935\) 17047.7 29527.4i 0.596277 1.03278i
\(936\) 0 0
\(937\) −25168.3 −0.877495 −0.438747 0.898610i \(-0.644578\pi\)
−0.438747 + 0.898610i \(0.644578\pi\)
\(938\) 0 0
\(939\) 7469.46i 0.259592i
\(940\) 0 0
\(941\) −27803.9 16052.6i −0.963210 0.556110i −0.0660507 0.997816i \(-0.521040\pi\)
−0.897160 + 0.441707i \(0.854373\pi\)
\(942\) 0 0
\(943\) 24023.6 + 41610.2i 0.829605 + 1.43692i
\(944\) 0 0
\(945\) 32969.9 22665.1i 1.13493 0.780208i
\(946\) 0 0
\(947\) 35980.9 20773.6i 1.23466 0.712830i 0.266661 0.963791i \(-0.414080\pi\)
0.967997 + 0.250960i \(0.0807464\pi\)
\(948\) 0 0
\(949\) −3553.73 2051.75i −0.121558 0.0701817i
\(950\) 0 0
\(951\) −36610.6 −1.24835
\(952\) 0 0
\(953\) 42752.7 1.45320 0.726599 0.687062i \(-0.241100\pi\)
0.726599 + 0.687062i \(0.241100\pi\)
\(954\) 0 0
\(955\) 8231.48 + 4752.45i 0.278916 + 0.161032i
\(956\) 0 0
\(957\) 49359.5 28497.7i 1.66726 0.962591i
\(958\) 0 0
\(959\) −11282.3 5379.79i −0.379900 0.181150i
\(960\) 0 0
\(961\) 14726.8 + 25507.6i 0.494338 + 0.856218i
\(962\) 0 0
\(963\) 220.310 + 127.196i 0.00737217 + 0.00425632i
\(964\) 0 0
\(965\) 80908.2i 2.69899i
\(966\) 0 0
\(967\) 46475.7 1.54556 0.772780 0.634674i \(-0.218866\pi\)
0.772780 + 0.634674i \(0.218866\pi\)
\(968\) 0 0
\(969\) 6015.13 10418.5i 0.199416 0.345398i
\(970\) 0 0
\(971\) 52110.5 30086.0i 1.72225 0.994343i 0.808015 0.589161i \(-0.200542\pi\)
0.914236 0.405181i \(-0.132792\pi\)
\(972\) 0 0
\(973\) 2923.13 230.391i 0.0963116 0.00759094i
\(974\) 0 0
\(975\) −4108.81 7116.68i −0.134961 0.233760i
\(976\) 0 0
\(977\) −4830.84 + 8367.26i −0.158191 + 0.273994i −0.934216 0.356707i \(-0.883899\pi\)
0.776026 + 0.630701i \(0.217233\pi\)
\(978\) 0 0
\(979\) 65987.1i 2.15420i
\(980\) 0 0
\(981\) 154.263i 0.00502063i
\(982\) 0 0
\(983\) −147.336 + 255.194i −0.00478057 + 0.00828019i −0.868406 0.495854i \(-0.834855\pi\)
0.863625 + 0.504134i \(0.168188\pi\)
\(984\) 0 0
\(985\) 4369.38 + 7567.99i 0.141340 + 0.244808i
\(986\) 0 0
\(987\) −37196.3 + 2931.68i −1.19957 + 0.0945455i
\(988\) 0 0
\(989\) 37716.4 21775.6i 1.21265 0.700125i
\(990\) 0 0
\(991\) −17842.6 + 30904.3i −0.571937 + 0.990624i 0.424430 + 0.905461i \(0.360474\pi\)
−0.996367 + 0.0851632i \(0.972859\pi\)
\(992\) 0 0
\(993\) 51368.6 1.64163
\(994\) 0 0
\(995\) 35806.5i 1.14085i
\(996\) 0 0
\(997\) 22310.1 + 12880.7i 0.708693 + 0.409164i 0.810577 0.585632i \(-0.199154\pi\)
−0.101884 + 0.994796i \(0.532487\pi\)
\(998\) 0 0
\(999\) −16636.2 28814.8i −0.526873 0.912571i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 224.4.t.a.81.17 44
4.3 odd 2 56.4.p.a.53.16 yes 44
7.2 even 3 inner 224.4.t.a.177.6 44
8.3 odd 2 56.4.p.a.53.14 yes 44
8.5 even 2 inner 224.4.t.a.81.6 44
28.23 odd 6 56.4.p.a.37.14 44
56.37 even 6 inner 224.4.t.a.177.17 44
56.51 odd 6 56.4.p.a.37.16 yes 44
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
56.4.p.a.37.14 44 28.23 odd 6
56.4.p.a.37.16 yes 44 56.51 odd 6
56.4.p.a.53.14 yes 44 8.3 odd 2
56.4.p.a.53.16 yes 44 4.3 odd 2
224.4.t.a.81.6 44 8.5 even 2 inner
224.4.t.a.81.17 44 1.1 even 1 trivial
224.4.t.a.177.6 44 7.2 even 3 inner
224.4.t.a.177.17 44 56.37 even 6 inner