Properties

Label 224.6.a.i.1.4
Level $224$
Weight $6$
Character 224.1
Self dual yes
Analytic conductor $35.926$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [224,6,Mod(1,224)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(224, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("224.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 224 = 2^{5} \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 224.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(35.9259756381\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 229x^{3} - 272x^{2} + 7973x - 13998 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{12} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(3.97668\) of defining polynomial
Character \(\chi\) \(=\) 224.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+5.95336 q^{3} +11.6830 q^{5} +49.0000 q^{7} -207.557 q^{9} +12.4129 q^{11} -8.71531 q^{13} +69.5530 q^{15} +2127.81 q^{17} +2222.88 q^{19} +291.715 q^{21} -2947.98 q^{23} -2988.51 q^{25} -2682.33 q^{27} +2466.27 q^{29} +9139.71 q^{31} +73.8983 q^{33} +572.466 q^{35} +6680.55 q^{37} -51.8854 q^{39} +11344.4 q^{41} -11812.9 q^{43} -2424.89 q^{45} -4124.21 q^{47} +2401.00 q^{49} +12667.6 q^{51} +36812.7 q^{53} +145.019 q^{55} +13233.6 q^{57} -1642.24 q^{59} +41959.0 q^{61} -10170.3 q^{63} -101.821 q^{65} -50736.8 q^{67} -17550.4 q^{69} +23385.3 q^{71} +52990.4 q^{73} -17791.7 q^{75} +608.230 q^{77} +62433.7 q^{79} +34467.6 q^{81} +7745.46 q^{83} +24859.1 q^{85} +14682.6 q^{87} +5087.49 q^{89} -427.050 q^{91} +54412.0 q^{93} +25969.8 q^{95} +98615.3 q^{97} -2576.38 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 10 q^{3} + 36 q^{5} + 245 q^{7} + 637 q^{9} + 116 q^{11} + 40 q^{13} + 16 q^{15} - 402 q^{17} - 3582 q^{19} - 490 q^{21} + 472 q^{23} + 9615 q^{25} + 356 q^{27} + 4754 q^{29} - 10500 q^{31} + 15864 q^{33}+ \cdots - 260236 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 5.95336 0.381908 0.190954 0.981599i \(-0.438842\pi\)
0.190954 + 0.981599i \(0.438842\pi\)
\(4\) 0 0
\(5\) 11.6830 0.208991 0.104496 0.994525i \(-0.466677\pi\)
0.104496 + 0.994525i \(0.466677\pi\)
\(6\) 0 0
\(7\) 49.0000 0.377964
\(8\) 0 0
\(9\) −207.557 −0.854146
\(10\) 0 0
\(11\) 12.4129 0.0309307 0.0154654 0.999880i \(-0.495077\pi\)
0.0154654 + 0.999880i \(0.495077\pi\)
\(12\) 0 0
\(13\) −8.71531 −0.0143029 −0.00715146 0.999974i \(-0.502276\pi\)
−0.00715146 + 0.999974i \(0.502276\pi\)
\(14\) 0 0
\(15\) 69.5530 0.0798156
\(16\) 0 0
\(17\) 2127.81 1.78570 0.892852 0.450350i \(-0.148701\pi\)
0.892852 + 0.450350i \(0.148701\pi\)
\(18\) 0 0
\(19\) 2222.88 1.41264 0.706320 0.707893i \(-0.250354\pi\)
0.706320 + 0.707893i \(0.250354\pi\)
\(20\) 0 0
\(21\) 291.715 0.144348
\(22\) 0 0
\(23\) −2947.98 −1.16200 −0.580999 0.813904i \(-0.697338\pi\)
−0.580999 + 0.813904i \(0.697338\pi\)
\(24\) 0 0
\(25\) −2988.51 −0.956323
\(26\) 0 0
\(27\) −2682.33 −0.708114
\(28\) 0 0
\(29\) 2466.27 0.544560 0.272280 0.962218i \(-0.412222\pi\)
0.272280 + 0.962218i \(0.412222\pi\)
\(30\) 0 0
\(31\) 9139.71 1.70816 0.854079 0.520143i \(-0.174121\pi\)
0.854079 + 0.520143i \(0.174121\pi\)
\(32\) 0 0
\(33\) 73.8983 0.0118127
\(34\) 0 0
\(35\) 572.466 0.0789913
\(36\) 0 0
\(37\) 6680.55 0.802247 0.401123 0.916024i \(-0.368620\pi\)
0.401123 + 0.916024i \(0.368620\pi\)
\(38\) 0 0
\(39\) −51.8854 −0.00546240
\(40\) 0 0
\(41\) 11344.4 1.05396 0.526978 0.849879i \(-0.323325\pi\)
0.526978 + 0.849879i \(0.323325\pi\)
\(42\) 0 0
\(43\) −11812.9 −0.974282 −0.487141 0.873323i \(-0.661960\pi\)
−0.487141 + 0.873323i \(0.661960\pi\)
\(44\) 0 0
\(45\) −2424.89 −0.178509
\(46\) 0 0
\(47\) −4124.21 −0.272331 −0.136165 0.990686i \(-0.543478\pi\)
−0.136165 + 0.990686i \(0.543478\pi\)
\(48\) 0 0
\(49\) 2401.00 0.142857
\(50\) 0 0
\(51\) 12667.6 0.681975
\(52\) 0 0
\(53\) 36812.7 1.80015 0.900073 0.435739i \(-0.143513\pi\)
0.900073 + 0.435739i \(0.143513\pi\)
\(54\) 0 0
\(55\) 145.019 0.00646426
\(56\) 0 0
\(57\) 13233.6 0.539499
\(58\) 0 0
\(59\) −1642.24 −0.0614196 −0.0307098 0.999528i \(-0.509777\pi\)
−0.0307098 + 0.999528i \(0.509777\pi\)
\(60\) 0 0
\(61\) 41959.0 1.44378 0.721889 0.692009i \(-0.243274\pi\)
0.721889 + 0.692009i \(0.243274\pi\)
\(62\) 0 0
\(63\) −10170.3 −0.322837
\(64\) 0 0
\(65\) −101.821 −0.00298919
\(66\) 0 0
\(67\) −50736.8 −1.38082 −0.690408 0.723420i \(-0.742569\pi\)
−0.690408 + 0.723420i \(0.742569\pi\)
\(68\) 0 0
\(69\) −17550.4 −0.443777
\(70\) 0 0
\(71\) 23385.3 0.550551 0.275276 0.961365i \(-0.411231\pi\)
0.275276 + 0.961365i \(0.411231\pi\)
\(72\) 0 0
\(73\) 52990.4 1.16383 0.581915 0.813250i \(-0.302304\pi\)
0.581915 + 0.813250i \(0.302304\pi\)
\(74\) 0 0
\(75\) −17791.7 −0.365228
\(76\) 0 0
\(77\) 608.230 0.0116907
\(78\) 0 0
\(79\) 62433.7 1.12551 0.562757 0.826622i \(-0.309741\pi\)
0.562757 + 0.826622i \(0.309741\pi\)
\(80\) 0 0
\(81\) 34467.6 0.583711
\(82\) 0 0
\(83\) 7745.46 0.123410 0.0617052 0.998094i \(-0.480346\pi\)
0.0617052 + 0.998094i \(0.480346\pi\)
\(84\) 0 0
\(85\) 24859.1 0.373197
\(86\) 0 0
\(87\) 14682.6 0.207972
\(88\) 0 0
\(89\) 5087.49 0.0680814 0.0340407 0.999420i \(-0.489162\pi\)
0.0340407 + 0.999420i \(0.489162\pi\)
\(90\) 0 0
\(91\) −427.050 −0.00540599
\(92\) 0 0
\(93\) 54412.0 0.652360
\(94\) 0 0
\(95\) 25969.8 0.295230
\(96\) 0 0
\(97\) 98615.3 1.06418 0.532090 0.846688i \(-0.321407\pi\)
0.532090 + 0.846688i \(0.321407\pi\)
\(98\) 0 0
\(99\) −2576.38 −0.0264194
\(100\) 0 0
\(101\) 64993.8 0.633969 0.316985 0.948431i \(-0.397330\pi\)
0.316985 + 0.948431i \(0.397330\pi\)
\(102\) 0 0
\(103\) 86443.3 0.802857 0.401429 0.915890i \(-0.368514\pi\)
0.401429 + 0.915890i \(0.368514\pi\)
\(104\) 0 0
\(105\) 3408.10 0.0301675
\(106\) 0 0
\(107\) −177683. −1.50033 −0.750165 0.661250i \(-0.770026\pi\)
−0.750165 + 0.661250i \(0.770026\pi\)
\(108\) 0 0
\(109\) −153149. −1.23466 −0.617329 0.786705i \(-0.711785\pi\)
−0.617329 + 0.786705i \(0.711785\pi\)
\(110\) 0 0
\(111\) 39771.7 0.306385
\(112\) 0 0
\(113\) −25761.5 −0.189791 −0.0948954 0.995487i \(-0.530252\pi\)
−0.0948954 + 0.995487i \(0.530252\pi\)
\(114\) 0 0
\(115\) −34441.2 −0.242848
\(116\) 0 0
\(117\) 1808.93 0.0122168
\(118\) 0 0
\(119\) 104262. 0.674933
\(120\) 0 0
\(121\) −160897. −0.999043
\(122\) 0 0
\(123\) 67537.5 0.402515
\(124\) 0 0
\(125\) −71424.0 −0.408855
\(126\) 0 0
\(127\) 72696.9 0.399951 0.199976 0.979801i \(-0.435914\pi\)
0.199976 + 0.979801i \(0.435914\pi\)
\(128\) 0 0
\(129\) −70326.3 −0.372086
\(130\) 0 0
\(131\) −181562. −0.924374 −0.462187 0.886783i \(-0.652935\pi\)
−0.462187 + 0.886783i \(0.652935\pi\)
\(132\) 0 0
\(133\) 108921. 0.533928
\(134\) 0 0
\(135\) −31337.6 −0.147990
\(136\) 0 0
\(137\) 218519. 0.994690 0.497345 0.867553i \(-0.334308\pi\)
0.497345 + 0.867553i \(0.334308\pi\)
\(138\) 0 0
\(139\) −282112. −1.23847 −0.619233 0.785207i \(-0.712557\pi\)
−0.619233 + 0.785207i \(0.712557\pi\)
\(140\) 0 0
\(141\) −24552.9 −0.104005
\(142\) 0 0
\(143\) −108.182 −0.000442400 0
\(144\) 0 0
\(145\) 28813.4 0.113808
\(146\) 0 0
\(147\) 14294.0 0.0545583
\(148\) 0 0
\(149\) −371936. −1.37247 −0.686234 0.727381i \(-0.740737\pi\)
−0.686234 + 0.727381i \(0.740737\pi\)
\(150\) 0 0
\(151\) 61561.3 0.219718 0.109859 0.993947i \(-0.464960\pi\)
0.109859 + 0.993947i \(0.464960\pi\)
\(152\) 0 0
\(153\) −441642. −1.52525
\(154\) 0 0
\(155\) 106779. 0.356990
\(156\) 0 0
\(157\) −179854. −0.582333 −0.291166 0.956672i \(-0.594043\pi\)
−0.291166 + 0.956672i \(0.594043\pi\)
\(158\) 0 0
\(159\) 219159. 0.687491
\(160\) 0 0
\(161\) −144451. −0.439194
\(162\) 0 0
\(163\) 201617. 0.594371 0.297185 0.954820i \(-0.403952\pi\)
0.297185 + 0.954820i \(0.403952\pi\)
\(164\) 0 0
\(165\) 863.352 0.00246876
\(166\) 0 0
\(167\) 165570. 0.459400 0.229700 0.973261i \(-0.426225\pi\)
0.229700 + 0.973261i \(0.426225\pi\)
\(168\) 0 0
\(169\) −371217. −0.999795
\(170\) 0 0
\(171\) −461375. −1.20660
\(172\) 0 0
\(173\) −109988. −0.279403 −0.139702 0.990194i \(-0.544614\pi\)
−0.139702 + 0.990194i \(0.544614\pi\)
\(174\) 0 0
\(175\) −146437. −0.361456
\(176\) 0 0
\(177\) −9776.85 −0.0234566
\(178\) 0 0
\(179\) −785850. −1.83319 −0.916594 0.399818i \(-0.869073\pi\)
−0.916594 + 0.399818i \(0.869073\pi\)
\(180\) 0 0
\(181\) −117176. −0.265854 −0.132927 0.991126i \(-0.542438\pi\)
−0.132927 + 0.991126i \(0.542438\pi\)
\(182\) 0 0
\(183\) 249797. 0.551391
\(184\) 0 0
\(185\) 78048.7 0.167663
\(186\) 0 0
\(187\) 26412.2 0.0552332
\(188\) 0 0
\(189\) −131434. −0.267642
\(190\) 0 0
\(191\) 653452. 1.29608 0.648038 0.761608i \(-0.275590\pi\)
0.648038 + 0.761608i \(0.275590\pi\)
\(192\) 0 0
\(193\) −468276. −0.904917 −0.452459 0.891785i \(-0.649453\pi\)
−0.452459 + 0.891785i \(0.649453\pi\)
\(194\) 0 0
\(195\) −606.176 −0.00114160
\(196\) 0 0
\(197\) −372193. −0.683286 −0.341643 0.939830i \(-0.610983\pi\)
−0.341643 + 0.939830i \(0.610983\pi\)
\(198\) 0 0
\(199\) −581.174 −0.00104034 −0.000520168 1.00000i \(-0.500166\pi\)
−0.000520168 1.00000i \(0.500166\pi\)
\(200\) 0 0
\(201\) −302054. −0.527345
\(202\) 0 0
\(203\) 120847. 0.205824
\(204\) 0 0
\(205\) 132537. 0.220268
\(206\) 0 0
\(207\) 611876. 0.992516
\(208\) 0 0
\(209\) 27592.3 0.0436940
\(210\) 0 0
\(211\) −221013. −0.341753 −0.170876 0.985292i \(-0.554660\pi\)
−0.170876 + 0.985292i \(0.554660\pi\)
\(212\) 0 0
\(213\) 139221. 0.210260
\(214\) 0 0
\(215\) −138010. −0.203617
\(216\) 0 0
\(217\) 447846. 0.645623
\(218\) 0 0
\(219\) 315471. 0.444477
\(220\) 0 0
\(221\) −18544.5 −0.0255408
\(222\) 0 0
\(223\) −1.36021e6 −1.83165 −0.915825 0.401578i \(-0.868462\pi\)
−0.915825 + 0.401578i \(0.868462\pi\)
\(224\) 0 0
\(225\) 620287. 0.816839
\(226\) 0 0
\(227\) 977910. 1.25961 0.629803 0.776755i \(-0.283136\pi\)
0.629803 + 0.776755i \(0.283136\pi\)
\(228\) 0 0
\(229\) 760624. 0.958476 0.479238 0.877685i \(-0.340913\pi\)
0.479238 + 0.877685i \(0.340913\pi\)
\(230\) 0 0
\(231\) 3621.02 0.00446478
\(232\) 0 0
\(233\) −840644. −1.01443 −0.507216 0.861819i \(-0.669325\pi\)
−0.507216 + 0.861819i \(0.669325\pi\)
\(234\) 0 0
\(235\) −48183.1 −0.0569148
\(236\) 0 0
\(237\) 371690. 0.429843
\(238\) 0 0
\(239\) 133752. 0.151463 0.0757314 0.997128i \(-0.475871\pi\)
0.0757314 + 0.997128i \(0.475871\pi\)
\(240\) 0 0
\(241\) 436951. 0.484608 0.242304 0.970200i \(-0.422097\pi\)
0.242304 + 0.970200i \(0.422097\pi\)
\(242\) 0 0
\(243\) 857005. 0.931038
\(244\) 0 0
\(245\) 28050.8 0.0298559
\(246\) 0 0
\(247\) −19373.1 −0.0202049
\(248\) 0 0
\(249\) 46111.5 0.0471315
\(250\) 0 0
\(251\) −952077. −0.953867 −0.476933 0.878939i \(-0.658252\pi\)
−0.476933 + 0.878939i \(0.658252\pi\)
\(252\) 0 0
\(253\) −36592.9 −0.0359415
\(254\) 0 0
\(255\) 147995. 0.142527
\(256\) 0 0
\(257\) −387585. −0.366044 −0.183022 0.983109i \(-0.558588\pi\)
−0.183022 + 0.983109i \(0.558588\pi\)
\(258\) 0 0
\(259\) 327347. 0.303221
\(260\) 0 0
\(261\) −511893. −0.465133
\(262\) 0 0
\(263\) −1.58496e6 −1.41296 −0.706479 0.707734i \(-0.749717\pi\)
−0.706479 + 0.707734i \(0.749717\pi\)
\(264\) 0 0
\(265\) 430082. 0.376215
\(266\) 0 0
\(267\) 30287.7 0.0260008
\(268\) 0 0
\(269\) 39673.8 0.0334290 0.0167145 0.999860i \(-0.494679\pi\)
0.0167145 + 0.999860i \(0.494679\pi\)
\(270\) 0 0
\(271\) 1.27837e6 1.05738 0.528691 0.848814i \(-0.322683\pi\)
0.528691 + 0.848814i \(0.322683\pi\)
\(272\) 0 0
\(273\) −2542.39 −0.00206459
\(274\) 0 0
\(275\) −37095.9 −0.0295798
\(276\) 0 0
\(277\) 1.62541e6 1.27281 0.636407 0.771354i \(-0.280420\pi\)
0.636407 + 0.771354i \(0.280420\pi\)
\(278\) 0 0
\(279\) −1.89701e6 −1.45902
\(280\) 0 0
\(281\) 1.26168e6 0.953198 0.476599 0.879121i \(-0.341869\pi\)
0.476599 + 0.879121i \(0.341869\pi\)
\(282\) 0 0
\(283\) −559540. −0.415303 −0.207652 0.978203i \(-0.566582\pi\)
−0.207652 + 0.978203i \(0.566582\pi\)
\(284\) 0 0
\(285\) 154608. 0.112751
\(286\) 0 0
\(287\) 555877. 0.398358
\(288\) 0 0
\(289\) 3.10770e6 2.18874
\(290\) 0 0
\(291\) 587092. 0.406419
\(292\) 0 0
\(293\) 551496. 0.375295 0.187648 0.982236i \(-0.439914\pi\)
0.187648 + 0.982236i \(0.439914\pi\)
\(294\) 0 0
\(295\) −19186.3 −0.0128362
\(296\) 0 0
\(297\) −33295.4 −0.0219025
\(298\) 0 0
\(299\) 25692.6 0.0166200
\(300\) 0 0
\(301\) −578831. −0.368244
\(302\) 0 0
\(303\) 386931. 0.242118
\(304\) 0 0
\(305\) 490206. 0.301737
\(306\) 0 0
\(307\) −284816. −0.172472 −0.0862358 0.996275i \(-0.527484\pi\)
−0.0862358 + 0.996275i \(0.527484\pi\)
\(308\) 0 0
\(309\) 514628. 0.306618
\(310\) 0 0
\(311\) −2.68224e6 −1.57252 −0.786260 0.617895i \(-0.787986\pi\)
−0.786260 + 0.617895i \(0.787986\pi\)
\(312\) 0 0
\(313\) 1.96153e6 1.13171 0.565855 0.824505i \(-0.308546\pi\)
0.565855 + 0.824505i \(0.308546\pi\)
\(314\) 0 0
\(315\) −118820. −0.0674701
\(316\) 0 0
\(317\) 1.37839e6 0.770411 0.385205 0.922831i \(-0.374131\pi\)
0.385205 + 0.922831i \(0.374131\pi\)
\(318\) 0 0
\(319\) 30613.5 0.0168436
\(320\) 0 0
\(321\) −1.05781e6 −0.572989
\(322\) 0 0
\(323\) 4.72985e6 2.52256
\(324\) 0 0
\(325\) 26045.8 0.0136782
\(326\) 0 0
\(327\) −911749. −0.471526
\(328\) 0 0
\(329\) −202087. −0.102931
\(330\) 0 0
\(331\) 3.00370e6 1.50690 0.753452 0.657502i \(-0.228387\pi\)
0.753452 + 0.657502i \(0.228387\pi\)
\(332\) 0 0
\(333\) −1.38660e6 −0.685236
\(334\) 0 0
\(335\) −592757. −0.288579
\(336\) 0 0
\(337\) −1.75936e6 −0.843877 −0.421938 0.906624i \(-0.638650\pi\)
−0.421938 + 0.906624i \(0.638650\pi\)
\(338\) 0 0
\(339\) −153368. −0.0724827
\(340\) 0 0
\(341\) 113450. 0.0528346
\(342\) 0 0
\(343\) 117649. 0.0539949
\(344\) 0 0
\(345\) −205041. −0.0927456
\(346\) 0 0
\(347\) −3.17264e6 −1.41448 −0.707241 0.706972i \(-0.750061\pi\)
−0.707241 + 0.706972i \(0.750061\pi\)
\(348\) 0 0
\(349\) 1.84732e6 0.811856 0.405928 0.913905i \(-0.366948\pi\)
0.405928 + 0.913905i \(0.366948\pi\)
\(350\) 0 0
\(351\) 23377.4 0.0101281
\(352\) 0 0
\(353\) 721495. 0.308174 0.154087 0.988057i \(-0.450756\pi\)
0.154087 + 0.988057i \(0.450756\pi\)
\(354\) 0 0
\(355\) 273210. 0.115061
\(356\) 0 0
\(357\) 620712. 0.257762
\(358\) 0 0
\(359\) 2.30499e6 0.943913 0.471957 0.881622i \(-0.343548\pi\)
0.471957 + 0.881622i \(0.343548\pi\)
\(360\) 0 0
\(361\) 2.46509e6 0.995552
\(362\) 0 0
\(363\) −957878. −0.381543
\(364\) 0 0
\(365\) 619085. 0.243231
\(366\) 0 0
\(367\) −2.74774e6 −1.06490 −0.532452 0.846461i \(-0.678729\pi\)
−0.532452 + 0.846461i \(0.678729\pi\)
\(368\) 0 0
\(369\) −2.35462e6 −0.900233
\(370\) 0 0
\(371\) 1.80382e6 0.680391
\(372\) 0 0
\(373\) −1.72954e6 −0.643664 −0.321832 0.946797i \(-0.604299\pi\)
−0.321832 + 0.946797i \(0.604299\pi\)
\(374\) 0 0
\(375\) −425213. −0.156145
\(376\) 0 0
\(377\) −21494.3 −0.00778879
\(378\) 0 0
\(379\) 2.51742e6 0.900238 0.450119 0.892969i \(-0.351382\pi\)
0.450119 + 0.892969i \(0.351382\pi\)
\(380\) 0 0
\(381\) 432791. 0.152745
\(382\) 0 0
\(383\) 1.02397e6 0.356689 0.178345 0.983968i \(-0.442926\pi\)
0.178345 + 0.983968i \(0.442926\pi\)
\(384\) 0 0
\(385\) 7105.94 0.00244326
\(386\) 0 0
\(387\) 2.45185e6 0.832179
\(388\) 0 0
\(389\) −5.20359e6 −1.74353 −0.871764 0.489926i \(-0.837024\pi\)
−0.871764 + 0.489926i \(0.837024\pi\)
\(390\) 0 0
\(391\) −6.27274e6 −2.07499
\(392\) 0 0
\(393\) −1.08091e6 −0.353026
\(394\) 0 0
\(395\) 729411. 0.235223
\(396\) 0 0
\(397\) −355287. −0.113136 −0.0565682 0.998399i \(-0.518016\pi\)
−0.0565682 + 0.998399i \(0.518016\pi\)
\(398\) 0 0
\(399\) 648446. 0.203912
\(400\) 0 0
\(401\) −815077. −0.253126 −0.126563 0.991959i \(-0.540395\pi\)
−0.126563 + 0.991959i \(0.540395\pi\)
\(402\) 0 0
\(403\) −79655.4 −0.0244316
\(404\) 0 0
\(405\) 402684. 0.121991
\(406\) 0 0
\(407\) 82924.8 0.0248141
\(408\) 0 0
\(409\) −3.06950e6 −0.907317 −0.453659 0.891176i \(-0.649881\pi\)
−0.453659 + 0.891176i \(0.649881\pi\)
\(410\) 0 0
\(411\) 1.30092e6 0.379881
\(412\) 0 0
\(413\) −80469.8 −0.0232144
\(414\) 0 0
\(415\) 90490.0 0.0257917
\(416\) 0 0
\(417\) −1.67951e6 −0.472981
\(418\) 0 0
\(419\) −4.67844e6 −1.30187 −0.650933 0.759135i \(-0.725622\pi\)
−0.650933 + 0.759135i \(0.725622\pi\)
\(420\) 0 0
\(421\) 5.93307e6 1.63145 0.815727 0.578438i \(-0.196337\pi\)
0.815727 + 0.578438i \(0.196337\pi\)
\(422\) 0 0
\(423\) 856012. 0.232610
\(424\) 0 0
\(425\) −6.35896e6 −1.70771
\(426\) 0 0
\(427\) 2.05599e6 0.545697
\(428\) 0 0
\(429\) −644.047 −0.000168956 0
\(430\) 0 0
\(431\) −2.43836e6 −0.632273 −0.316136 0.948714i \(-0.602386\pi\)
−0.316136 + 0.948714i \(0.602386\pi\)
\(432\) 0 0
\(433\) 1.39843e6 0.358444 0.179222 0.983809i \(-0.442642\pi\)
0.179222 + 0.983809i \(0.442642\pi\)
\(434\) 0 0
\(435\) 171536. 0.0434643
\(436\) 0 0
\(437\) −6.55301e6 −1.64149
\(438\) 0 0
\(439\) 2.68195e6 0.664186 0.332093 0.943247i \(-0.392245\pi\)
0.332093 + 0.943247i \(0.392245\pi\)
\(440\) 0 0
\(441\) −498346. −0.122021
\(442\) 0 0
\(443\) −2.34503e6 −0.567726 −0.283863 0.958865i \(-0.591616\pi\)
−0.283863 + 0.958865i \(0.591616\pi\)
\(444\) 0 0
\(445\) 59437.0 0.0142284
\(446\) 0 0
\(447\) −2.21427e6 −0.524157
\(448\) 0 0
\(449\) −4.54290e6 −1.06345 −0.531726 0.846917i \(-0.678456\pi\)
−0.531726 + 0.846917i \(0.678456\pi\)
\(450\) 0 0
\(451\) 140817. 0.0325997
\(452\) 0 0
\(453\) 366497. 0.0839121
\(454\) 0 0
\(455\) −4989.22 −0.00112981
\(456\) 0 0
\(457\) 3.49073e6 0.781854 0.390927 0.920422i \(-0.372154\pi\)
0.390927 + 0.920422i \(0.372154\pi\)
\(458\) 0 0
\(459\) −5.70748e6 −1.26448
\(460\) 0 0
\(461\) −7.84222e6 −1.71865 −0.859323 0.511433i \(-0.829115\pi\)
−0.859323 + 0.511433i \(0.829115\pi\)
\(462\) 0 0
\(463\) 8.89144e6 1.92761 0.963806 0.266606i \(-0.0859022\pi\)
0.963806 + 0.266606i \(0.0859022\pi\)
\(464\) 0 0
\(465\) 635694. 0.136338
\(466\) 0 0
\(467\) 7.68946e6 1.63156 0.815782 0.578360i \(-0.196307\pi\)
0.815782 + 0.578360i \(0.196307\pi\)
\(468\) 0 0
\(469\) −2.48610e6 −0.521900
\(470\) 0 0
\(471\) −1.07074e6 −0.222398
\(472\) 0 0
\(473\) −146632. −0.0301352
\(474\) 0 0
\(475\) −6.64309e6 −1.35094
\(476\) 0 0
\(477\) −7.64075e6 −1.53759
\(478\) 0 0
\(479\) 3.76195e6 0.749160 0.374580 0.927195i \(-0.377787\pi\)
0.374580 + 0.927195i \(0.377787\pi\)
\(480\) 0 0
\(481\) −58223.1 −0.0114745
\(482\) 0 0
\(483\) −859971. −0.167732
\(484\) 0 0
\(485\) 1.15212e6 0.222404
\(486\) 0 0
\(487\) −4.93372e6 −0.942653 −0.471326 0.881959i \(-0.656225\pi\)
−0.471326 + 0.881959i \(0.656225\pi\)
\(488\) 0 0
\(489\) 1.20030e6 0.226995
\(490\) 0 0
\(491\) −5.44764e6 −1.01978 −0.509888 0.860241i \(-0.670313\pi\)
−0.509888 + 0.860241i \(0.670313\pi\)
\(492\) 0 0
\(493\) 5.24774e6 0.972422
\(494\) 0 0
\(495\) −30099.8 −0.00552142
\(496\) 0 0
\(497\) 1.14588e6 0.208089
\(498\) 0 0
\(499\) 9.46063e6 1.70086 0.850430 0.526088i \(-0.176342\pi\)
0.850430 + 0.526088i \(0.176342\pi\)
\(500\) 0 0
\(501\) 985700. 0.175449
\(502\) 0 0
\(503\) −1.05175e7 −1.85350 −0.926750 0.375678i \(-0.877410\pi\)
−0.926750 + 0.375678i \(0.877410\pi\)
\(504\) 0 0
\(505\) 759321. 0.132494
\(506\) 0 0
\(507\) −2.20999e6 −0.381830
\(508\) 0 0
\(509\) 9.48876e6 1.62336 0.811680 0.584102i \(-0.198553\pi\)
0.811680 + 0.584102i \(0.198553\pi\)
\(510\) 0 0
\(511\) 2.59653e6 0.439887
\(512\) 0 0
\(513\) −5.96250e6 −1.00031
\(514\) 0 0
\(515\) 1.00991e6 0.167790
\(516\) 0 0
\(517\) −51193.3 −0.00842339
\(518\) 0 0
\(519\) −654800. −0.106706
\(520\) 0 0
\(521\) −461896. −0.0745504 −0.0372752 0.999305i \(-0.511868\pi\)
−0.0372752 + 0.999305i \(0.511868\pi\)
\(522\) 0 0
\(523\) −6.25546e6 −1.00001 −0.500006 0.866022i \(-0.666669\pi\)
−0.500006 + 0.866022i \(0.666669\pi\)
\(524\) 0 0
\(525\) −871792. −0.138043
\(526\) 0 0
\(527\) 1.94475e7 3.05027
\(528\) 0 0
\(529\) 2.25427e6 0.350241
\(530\) 0 0
\(531\) 340859. 0.0524613
\(532\) 0 0
\(533\) −98870.2 −0.0150747
\(534\) 0 0
\(535\) −2.07587e6 −0.313556
\(536\) 0 0
\(537\) −4.67845e6 −0.700110
\(538\) 0 0
\(539\) 29803.3 0.00441868
\(540\) 0 0
\(541\) −3.69306e6 −0.542492 −0.271246 0.962510i \(-0.587436\pi\)
−0.271246 + 0.962510i \(0.587436\pi\)
\(542\) 0 0
\(543\) −697592. −0.101532
\(544\) 0 0
\(545\) −1.78923e6 −0.258033
\(546\) 0 0
\(547\) 7.21330e6 1.03078 0.515390 0.856956i \(-0.327647\pi\)
0.515390 + 0.856956i \(0.327647\pi\)
\(548\) 0 0
\(549\) −8.70890e6 −1.23320
\(550\) 0 0
\(551\) 5.48221e6 0.769267
\(552\) 0 0
\(553\) 3.05925e6 0.425404
\(554\) 0 0
\(555\) 464652. 0.0640318
\(556\) 0 0
\(557\) −409138. −0.0558769 −0.0279384 0.999610i \(-0.508894\pi\)
−0.0279384 + 0.999610i \(0.508894\pi\)
\(558\) 0 0
\(559\) 102953. 0.0139351
\(560\) 0 0
\(561\) 157241. 0.0210940
\(562\) 0 0
\(563\) −7.34492e6 −0.976599 −0.488300 0.872676i \(-0.662383\pi\)
−0.488300 + 0.872676i \(0.662383\pi\)
\(564\) 0 0
\(565\) −300971. −0.0396647
\(566\) 0 0
\(567\) 1.68891e6 0.220622
\(568\) 0 0
\(569\) 7.91777e6 1.02523 0.512616 0.858618i \(-0.328676\pi\)
0.512616 + 0.858618i \(0.328676\pi\)
\(570\) 0 0
\(571\) −1.15724e7 −1.48537 −0.742684 0.669643i \(-0.766447\pi\)
−0.742684 + 0.669643i \(0.766447\pi\)
\(572\) 0 0
\(573\) 3.89024e6 0.494982
\(574\) 0 0
\(575\) 8.81008e6 1.11125
\(576\) 0 0
\(577\) 1.56068e7 1.95152 0.975762 0.218836i \(-0.0702258\pi\)
0.975762 + 0.218836i \(0.0702258\pi\)
\(578\) 0 0
\(579\) −2.78782e6 −0.345596
\(580\) 0 0
\(581\) 379527. 0.0466448
\(582\) 0 0
\(583\) 456951. 0.0556798
\(584\) 0 0
\(585\) 21133.7 0.00255320
\(586\) 0 0
\(587\) −1.55824e7 −1.86654 −0.933272 0.359169i \(-0.883060\pi\)
−0.933272 + 0.359169i \(0.883060\pi\)
\(588\) 0 0
\(589\) 2.03165e7 2.41301
\(590\) 0 0
\(591\) −2.21580e6 −0.260953
\(592\) 0 0
\(593\) −3.33313e6 −0.389238 −0.194619 0.980879i \(-0.562347\pi\)
−0.194619 + 0.980879i \(0.562347\pi\)
\(594\) 0 0
\(595\) 1.21810e6 0.141055
\(596\) 0 0
\(597\) −3459.94 −0.000397313 0
\(598\) 0 0
\(599\) 7.91924e6 0.901813 0.450907 0.892571i \(-0.351101\pi\)
0.450907 + 0.892571i \(0.351101\pi\)
\(600\) 0 0
\(601\) 6.69762e6 0.756370 0.378185 0.925730i \(-0.376548\pi\)
0.378185 + 0.925730i \(0.376548\pi\)
\(602\) 0 0
\(603\) 1.05308e7 1.17942
\(604\) 0 0
\(605\) −1.87976e6 −0.208792
\(606\) 0 0
\(607\) 9.79035e6 1.07852 0.539258 0.842141i \(-0.318705\pi\)
0.539258 + 0.842141i \(0.318705\pi\)
\(608\) 0 0
\(609\) 719447. 0.0786060
\(610\) 0 0
\(611\) 35943.8 0.00389512
\(612\) 0 0
\(613\) −1.56969e6 −0.168719 −0.0843595 0.996435i \(-0.526884\pi\)
−0.0843595 + 0.996435i \(0.526884\pi\)
\(614\) 0 0
\(615\) 789039. 0.0841222
\(616\) 0 0
\(617\) −1.92210e6 −0.203265 −0.101632 0.994822i \(-0.532407\pi\)
−0.101632 + 0.994822i \(0.532407\pi\)
\(618\) 0 0
\(619\) −5.31663e6 −0.557712 −0.278856 0.960333i \(-0.589955\pi\)
−0.278856 + 0.960333i \(0.589955\pi\)
\(620\) 0 0
\(621\) 7.90747e6 0.822827
\(622\) 0 0
\(623\) 249287. 0.0257323
\(624\) 0 0
\(625\) 8.50464e6 0.870875
\(626\) 0 0
\(627\) 164267. 0.0166871
\(628\) 0 0
\(629\) 1.42149e7 1.43258
\(630\) 0 0
\(631\) −5.16106e6 −0.516019 −0.258009 0.966142i \(-0.583067\pi\)
−0.258009 + 0.966142i \(0.583067\pi\)
\(632\) 0 0
\(633\) −1.31577e6 −0.130518
\(634\) 0 0
\(635\) 849317. 0.0835864
\(636\) 0 0
\(637\) −20925.5 −0.00204327
\(638\) 0 0
\(639\) −4.85380e6 −0.470251
\(640\) 0 0
\(641\) 1.15335e7 1.10871 0.554355 0.832281i \(-0.312965\pi\)
0.554355 + 0.832281i \(0.312965\pi\)
\(642\) 0 0
\(643\) −1.36548e7 −1.30244 −0.651221 0.758888i \(-0.725743\pi\)
−0.651221 + 0.758888i \(0.725743\pi\)
\(644\) 0 0
\(645\) −821621. −0.0777629
\(646\) 0 0
\(647\) −1.00104e7 −0.940132 −0.470066 0.882631i \(-0.655770\pi\)
−0.470066 + 0.882631i \(0.655770\pi\)
\(648\) 0 0
\(649\) −20384.9 −0.00189975
\(650\) 0 0
\(651\) 2.66619e6 0.246569
\(652\) 0 0
\(653\) −1.88670e7 −1.73149 −0.865745 0.500485i \(-0.833155\pi\)
−0.865745 + 0.500485i \(0.833155\pi\)
\(654\) 0 0
\(655\) −2.12119e6 −0.193186
\(656\) 0 0
\(657\) −1.09985e7 −0.994081
\(658\) 0 0
\(659\) −5.13314e6 −0.460436 −0.230218 0.973139i \(-0.573944\pi\)
−0.230218 + 0.973139i \(0.573944\pi\)
\(660\) 0 0
\(661\) 1.72818e7 1.53846 0.769228 0.638974i \(-0.220641\pi\)
0.769228 + 0.638974i \(0.220641\pi\)
\(662\) 0 0
\(663\) −110402. −0.00975424
\(664\) 0 0
\(665\) 1.27252e6 0.111586
\(666\) 0 0
\(667\) −7.27052e6 −0.632778
\(668\) 0 0
\(669\) −8.09780e6 −0.699522
\(670\) 0 0
\(671\) 520831. 0.0446571
\(672\) 0 0
\(673\) −5.02989e6 −0.428076 −0.214038 0.976825i \(-0.568662\pi\)
−0.214038 + 0.976825i \(0.568662\pi\)
\(674\) 0 0
\(675\) 8.01617e6 0.677185
\(676\) 0 0
\(677\) 1.32646e7 1.11230 0.556151 0.831081i \(-0.312278\pi\)
0.556151 + 0.831081i \(0.312278\pi\)
\(678\) 0 0
\(679\) 4.83215e6 0.402222
\(680\) 0 0
\(681\) 5.82186e6 0.481054
\(682\) 0 0
\(683\) 8.54838e6 0.701184 0.350592 0.936528i \(-0.385980\pi\)
0.350592 + 0.936528i \(0.385980\pi\)
\(684\) 0 0
\(685\) 2.55295e6 0.207882
\(686\) 0 0
\(687\) 4.52827e6 0.366050
\(688\) 0 0
\(689\) −320834. −0.0257473
\(690\) 0 0
\(691\) 1.44989e7 1.15515 0.577576 0.816337i \(-0.303999\pi\)
0.577576 + 0.816337i \(0.303999\pi\)
\(692\) 0 0
\(693\) −126243. −0.00998558
\(694\) 0 0
\(695\) −3.29591e6 −0.258829
\(696\) 0 0
\(697\) 2.41387e7 1.88206
\(698\) 0 0
\(699\) −5.00466e6 −0.387420
\(700\) 0 0
\(701\) −1.46207e7 −1.12376 −0.561878 0.827220i \(-0.689921\pi\)
−0.561878 + 0.827220i \(0.689921\pi\)
\(702\) 0 0
\(703\) 1.48500e7 1.13329
\(704\) 0 0
\(705\) −286851. −0.0217362
\(706\) 0 0
\(707\) 3.18469e6 0.239618
\(708\) 0 0
\(709\) 1.16448e6 0.0869998 0.0434999 0.999053i \(-0.486149\pi\)
0.0434999 + 0.999053i \(0.486149\pi\)
\(710\) 0 0
\(711\) −1.29586e7 −0.961354
\(712\) 0 0
\(713\) −2.69437e7 −1.98488
\(714\) 0 0
\(715\) −1263.89 −9.24578e−5 0
\(716\) 0 0
\(717\) 796275. 0.0578449
\(718\) 0 0
\(719\) −798699. −0.0576184 −0.0288092 0.999585i \(-0.509172\pi\)
−0.0288092 + 0.999585i \(0.509172\pi\)
\(720\) 0 0
\(721\) 4.23572e6 0.303451
\(722\) 0 0
\(723\) 2.60133e6 0.185076
\(724\) 0 0
\(725\) −7.37047e6 −0.520775
\(726\) 0 0
\(727\) −5.01536e6 −0.351938 −0.175969 0.984396i \(-0.556306\pi\)
−0.175969 + 0.984396i \(0.556306\pi\)
\(728\) 0 0
\(729\) −3.27356e6 −0.228140
\(730\) 0 0
\(731\) −2.51355e7 −1.73978
\(732\) 0 0
\(733\) 1.99730e7 1.37304 0.686522 0.727109i \(-0.259137\pi\)
0.686522 + 0.727109i \(0.259137\pi\)
\(734\) 0 0
\(735\) 166997. 0.0114022
\(736\) 0 0
\(737\) −629789. −0.0427097
\(738\) 0 0
\(739\) 6.39496e6 0.430751 0.215376 0.976531i \(-0.430902\pi\)
0.215376 + 0.976531i \(0.430902\pi\)
\(740\) 0 0
\(741\) −115335. −0.00771641
\(742\) 0 0
\(743\) 1.85128e7 1.23027 0.615135 0.788422i \(-0.289101\pi\)
0.615135 + 0.788422i \(0.289101\pi\)
\(744\) 0 0
\(745\) −4.34531e6 −0.286834
\(746\) 0 0
\(747\) −1.60763e6 −0.105411
\(748\) 0 0
\(749\) −8.70648e6 −0.567072
\(750\) 0 0
\(751\) 1.53034e7 0.990122 0.495061 0.868858i \(-0.335146\pi\)
0.495061 + 0.868858i \(0.335146\pi\)
\(752\) 0 0
\(753\) −5.66806e6 −0.364290
\(754\) 0 0
\(755\) 719219. 0.0459191
\(756\) 0 0
\(757\) 1.09596e7 0.695112 0.347556 0.937659i \(-0.387012\pi\)
0.347556 + 0.937659i \(0.387012\pi\)
\(758\) 0 0
\(759\) −217851. −0.0137264
\(760\) 0 0
\(761\) −2.00858e7 −1.25727 −0.628635 0.777701i \(-0.716386\pi\)
−0.628635 + 0.777701i \(0.716386\pi\)
\(762\) 0 0
\(763\) −7.50428e6 −0.466657
\(764\) 0 0
\(765\) −5.15969e6 −0.318765
\(766\) 0 0
\(767\) 14312.6 0.000878479 0
\(768\) 0 0
\(769\) 3.05867e6 0.186516 0.0932582 0.995642i \(-0.470272\pi\)
0.0932582 + 0.995642i \(0.470272\pi\)
\(770\) 0 0
\(771\) −2.30743e6 −0.139795
\(772\) 0 0
\(773\) −1.12284e7 −0.675879 −0.337939 0.941168i \(-0.609730\pi\)
−0.337939 + 0.941168i \(0.609730\pi\)
\(774\) 0 0
\(775\) −2.73141e7 −1.63355
\(776\) 0 0
\(777\) 1.94882e6 0.115803
\(778\) 0 0
\(779\) 2.52173e7 1.48886
\(780\) 0 0
\(781\) 290279. 0.0170290
\(782\) 0 0
\(783\) −6.61535e6 −0.385610
\(784\) 0 0
\(785\) −2.10123e6 −0.121703
\(786\) 0 0
\(787\) 1.69505e7 0.975543 0.487772 0.872971i \(-0.337810\pi\)
0.487772 + 0.872971i \(0.337810\pi\)
\(788\) 0 0
\(789\) −9.43584e6 −0.539620
\(790\) 0 0
\(791\) −1.26231e6 −0.0717342
\(792\) 0 0
\(793\) −365686. −0.0206502
\(794\) 0 0
\(795\) 2.56043e6 0.143680
\(796\) 0 0
\(797\) 1.23975e7 0.691337 0.345669 0.938357i \(-0.387652\pi\)
0.345669 + 0.938357i \(0.387652\pi\)
\(798\) 0 0
\(799\) −8.77552e6 −0.486302
\(800\) 0 0
\(801\) −1.05595e6 −0.0581514
\(802\) 0 0
\(803\) 657762. 0.0359981
\(804\) 0 0
\(805\) −1.68762e6 −0.0917878
\(806\) 0 0
\(807\) 236193. 0.0127668
\(808\) 0 0
\(809\) −6.94674e6 −0.373173 −0.186586 0.982439i \(-0.559742\pi\)
−0.186586 + 0.982439i \(0.559742\pi\)
\(810\) 0 0
\(811\) 2.49740e7 1.33332 0.666662 0.745360i \(-0.267722\pi\)
0.666662 + 0.745360i \(0.267722\pi\)
\(812\) 0 0
\(813\) 7.61058e6 0.403823
\(814\) 0 0
\(815\) 2.35548e6 0.124218
\(816\) 0 0
\(817\) −2.62586e7 −1.37631
\(818\) 0 0
\(819\) 88637.5 0.00461751
\(820\) 0 0
\(821\) −2.51438e7 −1.30188 −0.650942 0.759127i \(-0.725626\pi\)
−0.650942 + 0.759127i \(0.725626\pi\)
\(822\) 0 0
\(823\) −2.28787e7 −1.17742 −0.588711 0.808343i \(-0.700364\pi\)
−0.588711 + 0.808343i \(0.700364\pi\)
\(824\) 0 0
\(825\) −220846. −0.0112968
\(826\) 0 0
\(827\) −2.11076e7 −1.07319 −0.536594 0.843841i \(-0.680289\pi\)
−0.536594 + 0.843841i \(0.680289\pi\)
\(828\) 0 0
\(829\) −3.36314e7 −1.69965 −0.849824 0.527067i \(-0.823292\pi\)
−0.849824 + 0.527067i \(0.823292\pi\)
\(830\) 0 0
\(831\) 9.67668e6 0.486098
\(832\) 0 0
\(833\) 5.10886e6 0.255101
\(834\) 0 0
\(835\) 1.93435e6 0.0960107
\(836\) 0 0
\(837\) −2.45157e7 −1.20957
\(838\) 0 0
\(839\) 5.71851e6 0.280464 0.140232 0.990119i \(-0.455215\pi\)
0.140232 + 0.990119i \(0.455215\pi\)
\(840\) 0 0
\(841\) −1.44287e7 −0.703455
\(842\) 0 0
\(843\) 7.51123e6 0.364034
\(844\) 0 0
\(845\) −4.33692e6 −0.208949
\(846\) 0 0
\(847\) −7.88395e6 −0.377603
\(848\) 0 0
\(849\) −3.33115e6 −0.158608
\(850\) 0 0
\(851\) −1.96942e7 −0.932210
\(852\) 0 0
\(853\) −2.04266e7 −0.961219 −0.480610 0.876935i \(-0.659585\pi\)
−0.480610 + 0.876935i \(0.659585\pi\)
\(854\) 0 0
\(855\) −5.39023e6 −0.252169
\(856\) 0 0
\(857\) 3.13151e7 1.45647 0.728235 0.685328i \(-0.240341\pi\)
0.728235 + 0.685328i \(0.240341\pi\)
\(858\) 0 0
\(859\) 3.07708e6 0.142284 0.0711419 0.997466i \(-0.477336\pi\)
0.0711419 + 0.997466i \(0.477336\pi\)
\(860\) 0 0
\(861\) 3.30934e6 0.152136
\(862\) 0 0
\(863\) −2.50508e7 −1.14497 −0.572485 0.819915i \(-0.694021\pi\)
−0.572485 + 0.819915i \(0.694021\pi\)
\(864\) 0 0
\(865\) −1.28499e6 −0.0583928
\(866\) 0 0
\(867\) 1.85012e7 0.835898
\(868\) 0 0
\(869\) 774980. 0.0348130
\(870\) 0 0
\(871\) 442187. 0.0197497
\(872\) 0 0
\(873\) −2.04683e7 −0.908964
\(874\) 0 0
\(875\) −3.49977e6 −0.154533
\(876\) 0 0
\(877\) 1.20180e6 0.0527635 0.0263818 0.999652i \(-0.491601\pi\)
0.0263818 + 0.999652i \(0.491601\pi\)
\(878\) 0 0
\(879\) 3.28325e6 0.143328
\(880\) 0 0
\(881\) 1.49531e7 0.649068 0.324534 0.945874i \(-0.394792\pi\)
0.324534 + 0.945874i \(0.394792\pi\)
\(882\) 0 0
\(883\) 1.73150e7 0.747344 0.373672 0.927561i \(-0.378099\pi\)
0.373672 + 0.927561i \(0.378099\pi\)
\(884\) 0 0
\(885\) −114223. −0.00490224
\(886\) 0 0
\(887\) 1.23187e7 0.525723 0.262862 0.964834i \(-0.415334\pi\)
0.262862 + 0.964834i \(0.415334\pi\)
\(888\) 0 0
\(889\) 3.56215e6 0.151167
\(890\) 0 0
\(891\) 427841. 0.0180546
\(892\) 0 0
\(893\) −9.16762e6 −0.384705
\(894\) 0 0
\(895\) −9.18107e6 −0.383121
\(896\) 0 0
\(897\) 152957. 0.00634730
\(898\) 0 0
\(899\) 2.25410e7 0.930194
\(900\) 0 0
\(901\) 7.83302e7 3.21453
\(902\) 0 0
\(903\) −3.44599e6 −0.140635
\(904\) 0 0
\(905\) −1.36897e6 −0.0555612
\(906\) 0 0
\(907\) 2.90810e7 1.17379 0.586896 0.809663i \(-0.300350\pi\)
0.586896 + 0.809663i \(0.300350\pi\)
\(908\) 0 0
\(909\) −1.34899e7 −0.541502
\(910\) 0 0
\(911\) −2.59902e7 −1.03756 −0.518780 0.854908i \(-0.673614\pi\)
−0.518780 + 0.854908i \(0.673614\pi\)
\(912\) 0 0
\(913\) 96143.3 0.00381718
\(914\) 0 0
\(915\) 2.91837e6 0.115236
\(916\) 0 0
\(917\) −8.89656e6 −0.349380
\(918\) 0 0
\(919\) −2.96126e7 −1.15661 −0.578307 0.815819i \(-0.696286\pi\)
−0.578307 + 0.815819i \(0.696286\pi\)
\(920\) 0 0
\(921\) −1.69561e6 −0.0658684
\(922\) 0 0
\(923\) −203811. −0.00787449
\(924\) 0 0
\(925\) −1.99649e7 −0.767207
\(926\) 0 0
\(927\) −1.79420e7 −0.685757
\(928\) 0 0
\(929\) −4.31754e7 −1.64134 −0.820668 0.571406i \(-0.806398\pi\)
−0.820668 + 0.571406i \(0.806398\pi\)
\(930\) 0 0
\(931\) 5.33713e6 0.201806
\(932\) 0 0
\(933\) −1.59683e7 −0.600559
\(934\) 0 0
\(935\) 308573. 0.0115433
\(936\) 0 0
\(937\) −8.42379e6 −0.313443 −0.156721 0.987643i \(-0.550092\pi\)
−0.156721 + 0.987643i \(0.550092\pi\)
\(938\) 0 0
\(939\) 1.16777e7 0.432209
\(940\) 0 0
\(941\) −1.67707e7 −0.617414 −0.308707 0.951157i \(-0.599896\pi\)
−0.308707 + 0.951157i \(0.599896\pi\)
\(942\) 0 0
\(943\) −3.34432e7 −1.22470
\(944\) 0 0
\(945\) −1.53554e6 −0.0559349
\(946\) 0 0
\(947\) −4.38904e7 −1.59036 −0.795178 0.606377i \(-0.792622\pi\)
−0.795178 + 0.606377i \(0.792622\pi\)
\(948\) 0 0
\(949\) −461827. −0.0166462
\(950\) 0 0
\(951\) 8.20603e6 0.294226
\(952\) 0 0
\(953\) −2.68610e7 −0.958053 −0.479026 0.877800i \(-0.659010\pi\)
−0.479026 + 0.877800i \(0.659010\pi\)
\(954\) 0 0
\(955\) 7.63427e6 0.270869
\(956\) 0 0
\(957\) 182253. 0.00643272
\(958\) 0 0
\(959\) 1.07074e7 0.375958
\(960\) 0 0
\(961\) 5.49051e7 1.91780
\(962\) 0 0
\(963\) 3.68795e7 1.28150
\(964\) 0 0
\(965\) −5.47086e6 −0.189120
\(966\) 0 0
\(967\) −3.10989e7 −1.06950 −0.534748 0.845011i \(-0.679594\pi\)
−0.534748 + 0.845011i \(0.679594\pi\)
\(968\) 0 0
\(969\) 2.81585e7 0.963386
\(970\) 0 0
\(971\) −8.08990e6 −0.275356 −0.137678 0.990477i \(-0.543964\pi\)
−0.137678 + 0.990477i \(0.543964\pi\)
\(972\) 0 0
\(973\) −1.38235e7 −0.468096
\(974\) 0 0
\(975\) 155060. 0.00522382
\(976\) 0 0
\(977\) 4.18409e7 1.40238 0.701189 0.712976i \(-0.252653\pi\)
0.701189 + 0.712976i \(0.252653\pi\)
\(978\) 0 0
\(979\) 63150.3 0.00210581
\(980\) 0 0
\(981\) 3.17871e7 1.05458
\(982\) 0 0
\(983\) 4.55446e7 1.50333 0.751663 0.659547i \(-0.229252\pi\)
0.751663 + 0.659547i \(0.229252\pi\)
\(984\) 0 0
\(985\) −4.34832e6 −0.142801
\(986\) 0 0
\(987\) −1.20309e6 −0.0393103
\(988\) 0 0
\(989\) 3.48242e7 1.13211
\(990\) 0 0
\(991\) 2.27184e7 0.734841 0.367421 0.930055i \(-0.380241\pi\)
0.367421 + 0.930055i \(0.380241\pi\)
\(992\) 0 0
\(993\) 1.78821e7 0.575500
\(994\) 0 0
\(995\) −6789.85 −0.000217421 0
\(996\) 0 0
\(997\) −1.58021e7 −0.503472 −0.251736 0.967796i \(-0.581002\pi\)
−0.251736 + 0.967796i \(0.581002\pi\)
\(998\) 0 0
\(999\) −1.79195e7 −0.568082
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 224.6.a.i.1.4 5
4.3 odd 2 224.6.a.j.1.2 yes 5
8.3 odd 2 448.6.a.be.1.4 5
8.5 even 2 448.6.a.bf.1.2 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
224.6.a.i.1.4 5 1.1 even 1 trivial
224.6.a.j.1.2 yes 5 4.3 odd 2
448.6.a.be.1.4 5 8.3 odd 2
448.6.a.bf.1.2 5 8.5 even 2