Properties

Label 224.8.a.c
Level 224224
Weight 88
Character orbit 224.a
Self dual yes
Analytic conductor 69.97469.974
Analytic rank 11
Dimension 55
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [224,8,Mod(1,224)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(224, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 8, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("224.1"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Level: N N == 224=257 224 = 2^{5} \cdot 7
Weight: k k == 8 8
Character orbit: [χ][\chi] == 224.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,0,-54,0,84,0,1715] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 69.974245708469.9742457084
Analytic rank: 11
Dimension: 55
Coefficient field: Q[x]/(x5)\mathbb{Q}[x]/(x^{5} - \cdots)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x52x41809x3+6482x2+488753x+1733184 x^{5} - 2x^{4} - 1809x^{3} + 6482x^{2} + 488753x + 1733184 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 212 2^{12}
Twist minimal: yes
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β3,β41,\beta_1,\beta_2,\beta_3,\beta_4 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β111)q3+(β3+2β1+17)q5+343q7+(β42β32β2++828)q9+(β4+5β3+1073)q11+(β4β3+5β2+1958)q13++(4999β4+22169β3+11715515)q99+O(q100) q + ( - \beta_1 - 11) q^{3} + ( - \beta_{3} + 2 \beta_1 + 17) q^{5} + 343 q^{7} + (\beta_{4} - 2 \beta_{3} - 2 \beta_{2} + \cdots + 828) q^{9} + ( - \beta_{4} + 5 \beta_{3} + \cdots - 1073) q^{11} + (\beta_{4} - \beta_{3} + 5 \beta_{2} + \cdots - 1958) q^{13}+ \cdots + ( - 4999 \beta_{4} + 22169 \beta_{3} + \cdots - 11715515) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 5q54q3+84q5+1715q7+4133q95324q119880q1330128q1544322q1722898q1918522q21+141016q23+150679q25135972q2718998q29+58451180q99+O(q100) 5 q - 54 q^{3} + 84 q^{5} + 1715 q^{7} + 4133 q^{9} - 5324 q^{11} - 9880 q^{13} - 30128 q^{15} - 44322 q^{17} - 22898 q^{19} - 18522 q^{21} + 141016 q^{23} + 150679 q^{25} - 135972 q^{27} - 18998 q^{29}+ \cdots - 58451180 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x52x41809x3+6482x2+488753x+1733184 x^{5} - 2x^{4} - 1809x^{3} + 6482x^{2} + 488753x + 1733184 : Copy content Toggle raw display

β1\beta_{1}== 2ν1 2\nu - 1 Copy content Toggle raw display
β2\beta_{2}== (16ν4+664ν3+23020ν2954628ν542862)/8883 ( -16\nu^{4} + 664\nu^{3} + 23020\nu^{2} - 954628\nu - 542862 ) / 8883 Copy content Toggle raw display
β3\beta_{3}== (20ν416ν3+30044ν2125210ν3474819)/8883 ( -20\nu^{4} - 16\nu^{3} + 30044\nu^{2} - 125210\nu - 3474819 ) / 8883 Copy content Toggle raw display
β4\beta_{4}== (8ν4+144ν3+15740ν2230094ν3755118)/987 ( -8\nu^{4} + 144\nu^{3} + 15740\nu^{2} - 230094\nu - 3755118 ) / 987 Copy content Toggle raw display
ν\nu== (β1+1)/2 ( \beta _1 + 1 ) / 2 Copy content Toggle raw display
ν2\nu^{2}== (β42β32β25β1+2895)/4 ( \beta_{4} - 2\beta_{3} - 2\beta_{2} - 5\beta _1 + 2895 ) / 4 Copy content Toggle raw display
ν3\nu^{3}== (3β490β3+99β2+5035β112707)/8 ( 3\beta_{4} - 90\beta_{3} + 99\beta_{2} + 5035\beta _1 - 12707 ) / 8 Copy content Toggle raw display
ν4\nu^{4}== (1501β44745β33044β222046β1+3646467)/4 ( 1501\beta_{4} - 4745\beta_{3} - 3044\beta_{2} - 22046\beta _1 + 3646467 ) / 4 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
35.7694
23.3450
−3.98899
−12.9521
−40.1733
0 −81.5387 0 494.197 0 343.000 0 4461.57 0
1.2 0 −56.6900 0 −323.003 0 343.000 0 1026.75 0
1.3 0 −2.02201 0 280.632 0 343.000 0 −2182.91 0
1.4 0 15.9041 0 −336.131 0 343.000 0 −1934.06 0
1.5 0 70.3466 0 −31.6943 0 343.000 0 2761.65 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.5
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 +1 +1
77 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 224.8.a.c 5
4.b odd 2 1 224.8.a.d yes 5
8.b even 2 1 448.8.a.bb 5
8.d odd 2 1 448.8.a.ba 5
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
224.8.a.c 5 1.a even 1 1 trivial
224.8.a.d yes 5 4.b odd 2 1
448.8.a.ba 5 8.d odd 2 1
448.8.a.bb 5 8.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T35+54T346076T33256536T32+4678128T3+10456992 T_{3}^{5} + 54T_{3}^{4} - 6076T_{3}^{3} - 256536T_{3}^{2} + 4678128T_{3} + 10456992 acting on S8new(Γ0(224))S_{8}^{\mathrm{new}}(\Gamma_0(224)). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T5 T^{5} Copy content Toggle raw display
33 T5+54T4++10456992 T^{5} + 54 T^{4} + \cdots + 10456992 Copy content Toggle raw display
55 T5++477235046400 T^{5} + \cdots + 477235046400 Copy content Toggle raw display
77 (T343)5 (T - 343)^{5} Copy content Toggle raw display
1111 T5++26 ⁣ ⁣52 T^{5} + \cdots + 26\!\cdots\!52 Copy content Toggle raw display
1313 T5++33 ⁣ ⁣88 T^{5} + \cdots + 33\!\cdots\!88 Copy content Toggle raw display
1717 T5++13 ⁣ ⁣04 T^{5} + \cdots + 13\!\cdots\!04 Copy content Toggle raw display
1919 T5++14 ⁣ ⁣84 T^{5} + \cdots + 14\!\cdots\!84 Copy content Toggle raw display
2323 T5++91 ⁣ ⁣36 T^{5} + \cdots + 91\!\cdots\!36 Copy content Toggle raw display
2929 T5+60 ⁣ ⁣64 T^{5} + \cdots - 60\!\cdots\!64 Copy content Toggle raw display
3131 T5++13 ⁣ ⁣44 T^{5} + \cdots + 13\!\cdots\!44 Copy content Toggle raw display
3737 T5++10 ⁣ ⁣88 T^{5} + \cdots + 10\!\cdots\!88 Copy content Toggle raw display
4141 T5++22 ⁣ ⁣12 T^{5} + \cdots + 22\!\cdots\!12 Copy content Toggle raw display
4343 T5+24 ⁣ ⁣12 T^{5} + \cdots - 24\!\cdots\!12 Copy content Toggle raw display
4747 T5++12 ⁣ ⁣92 T^{5} + \cdots + 12\!\cdots\!92 Copy content Toggle raw display
5353 T5++11 ⁣ ⁣12 T^{5} + \cdots + 11\!\cdots\!12 Copy content Toggle raw display
5959 T5++39 ⁣ ⁣28 T^{5} + \cdots + 39\!\cdots\!28 Copy content Toggle raw display
6161 T5++92 ⁣ ⁣08 T^{5} + \cdots + 92\!\cdots\!08 Copy content Toggle raw display
6767 T5+35 ⁣ ⁣56 T^{5} + \cdots - 35\!\cdots\!56 Copy content Toggle raw display
7171 T5++30 ⁣ ⁣36 T^{5} + \cdots + 30\!\cdots\!36 Copy content Toggle raw display
7373 T5+16 ⁣ ⁣96 T^{5} + \cdots - 16\!\cdots\!96 Copy content Toggle raw display
7979 T5++34 ⁣ ⁣76 T^{5} + \cdots + 34\!\cdots\!76 Copy content Toggle raw display
8383 T5+44 ⁣ ⁣04 T^{5} + \cdots - 44\!\cdots\!04 Copy content Toggle raw display
8989 T5++16 ⁣ ⁣24 T^{5} + \cdots + 16\!\cdots\!24 Copy content Toggle raw display
9797 T5+76 ⁣ ⁣92 T^{5} + \cdots - 76\!\cdots\!92 Copy content Toggle raw display
show more
show less