gp: [N,k,chi] = [224,8,Mod(1,224)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(224, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0]))
N = Newforms(chi, 8, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("224.1");
S:= CuspForms(chi, 8);
N := Newforms(S);
Newform invariants
sage: traces = [5,0,-54,0,84,0,1715]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , β 2 , β 3 , β 4 1,\beta_1,\beta_2,\beta_3,\beta_4 1 , β 1 , β 2 , β 3 , β 4 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 5 − 2 x 4 − 1809 x 3 + 6482 x 2 + 488753 x + 1733184 x^{5} - 2x^{4} - 1809x^{3} + 6482x^{2} + 488753x + 1733184 x 5 − 2 x 4 − 1 8 0 9 x 3 + 6 4 8 2 x 2 + 4 8 8 7 5 3 x + 1 7 3 3 1 8 4
x^5 - 2*x^4 - 1809*x^3 + 6482*x^2 + 488753*x + 1733184
:
β 1 \beta_{1} β 1 = = =
2 ν − 1 2\nu - 1 2 ν − 1
2*v - 1
β 2 \beta_{2} β 2 = = =
( − 16 ν 4 + 664 ν 3 + 23020 ν 2 − 954628 ν − 542862 ) / 8883 ( -16\nu^{4} + 664\nu^{3} + 23020\nu^{2} - 954628\nu - 542862 ) / 8883 ( − 1 6 ν 4 + 6 6 4 ν 3 + 2 3 0 2 0 ν 2 − 9 5 4 6 2 8 ν − 5 4 2 8 6 2 ) / 8 8 8 3
(-16*v^4 + 664*v^3 + 23020*v^2 - 954628*v - 542862) / 8883
β 3 \beta_{3} β 3 = = =
( − 20 ν 4 − 16 ν 3 + 30044 ν 2 − 125210 ν − 3474819 ) / 8883 ( -20\nu^{4} - 16\nu^{3} + 30044\nu^{2} - 125210\nu - 3474819 ) / 8883 ( − 2 0 ν 4 − 1 6 ν 3 + 3 0 0 4 4 ν 2 − 1 2 5 2 1 0 ν − 3 4 7 4 8 1 9 ) / 8 8 8 3
(-20*v^4 - 16*v^3 + 30044*v^2 - 125210*v - 3474819) / 8883
β 4 \beta_{4} β 4 = = =
( − 8 ν 4 + 144 ν 3 + 15740 ν 2 − 230094 ν − 3755118 ) / 987 ( -8\nu^{4} + 144\nu^{3} + 15740\nu^{2} - 230094\nu - 3755118 ) / 987 ( − 8 ν 4 + 1 4 4 ν 3 + 1 5 7 4 0 ν 2 − 2 3 0 0 9 4 ν − 3 7 5 5 1 1 8 ) / 9 8 7
(-8*v^4 + 144*v^3 + 15740*v^2 - 230094*v - 3755118) / 987
ν \nu ν = = =
( β 1 + 1 ) / 2 ( \beta _1 + 1 ) / 2 ( β 1 + 1 ) / 2
(b1 + 1) / 2
ν 2 \nu^{2} ν 2 = = =
( β 4 − 2 β 3 − 2 β 2 − 5 β 1 + 2895 ) / 4 ( \beta_{4} - 2\beta_{3} - 2\beta_{2} - 5\beta _1 + 2895 ) / 4 ( β 4 − 2 β 3 − 2 β 2 − 5 β 1 + 2 8 9 5 ) / 4
(b4 - 2*b3 - 2*b2 - 5*b1 + 2895) / 4
ν 3 \nu^{3} ν 3 = = =
( 3 β 4 − 90 β 3 + 99 β 2 + 5035 β 1 − 12707 ) / 8 ( 3\beta_{4} - 90\beta_{3} + 99\beta_{2} + 5035\beta _1 - 12707 ) / 8 ( 3 β 4 − 9 0 β 3 + 9 9 β 2 + 5 0 3 5 β 1 − 1 2 7 0 7 ) / 8
(3*b4 - 90*b3 + 99*b2 + 5035*b1 - 12707) / 8
ν 4 \nu^{4} ν 4 = = =
( 1501 β 4 − 4745 β 3 − 3044 β 2 − 22046 β 1 + 3646467 ) / 4 ( 1501\beta_{4} - 4745\beta_{3} - 3044\beta_{2} - 22046\beta _1 + 3646467 ) / 4 ( 1 5 0 1 β 4 − 4 7 4 5 β 3 − 3 0 4 4 β 2 − 2 2 0 4 6 β 1 + 3 6 4 6 4 6 7 ) / 4
(1501*b4 - 4745*b3 - 3044*b2 - 22046*b1 + 3646467) / 4
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
p p p
Sign
2 2 2
+ 1 +1 + 1
7 7 7
− 1 -1 − 1
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the kernel of the linear operator
T 3 5 + 54 T 3 4 − 6076 T 3 3 − 256536 T 3 2 + 4678128 T 3 + 10456992 T_{3}^{5} + 54T_{3}^{4} - 6076T_{3}^{3} - 256536T_{3}^{2} + 4678128T_{3} + 10456992 T 3 5 + 5 4 T 3 4 − 6 0 7 6 T 3 3 − 2 5 6 5 3 6 T 3 2 + 4 6 7 8 1 2 8 T 3 + 1 0 4 5 6 9 9 2
T3^5 + 54*T3^4 - 6076*T3^3 - 256536*T3^2 + 4678128*T3 + 10456992
acting on S 8 n e w ( Γ 0 ( 224 ) ) S_{8}^{\mathrm{new}}(\Gamma_0(224)) S 8 n e w ( Γ 0 ( 2 2 4 ) ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 5 T^{5} T 5
T^5
3 3 3
T 5 + 54 T 4 + ⋯ + 10456992 T^{5} + 54 T^{4} + \cdots + 10456992 T 5 + 5 4 T 4 + ⋯ + 1 0 4 5 6 9 9 2
T^5 + 54*T^4 - 6076*T^3 - 256536*T^2 + 4678128*T + 10456992
5 5 5
T 5 + ⋯ + 477235046400 T^{5} + \cdots + 477235046400 T 5 + ⋯ + 4 7 7 2 3 5 0 4 6 4 0 0
T^5 - 84*T^4 - 267124*T^3 - 1060752*T^2 + 15288489360*T + 477235046400
7 7 7
( T − 343 ) 5 (T - 343)^{5} ( T − 3 4 3 ) 5
(T - 343)^5
11 11 1 1
T 5 + ⋯ + 26 ⋯ 52 T^{5} + \cdots + 26\!\cdots\!52 T 5 + ⋯ + 2 6 ⋯ 5 2
T^5 + 5324*T^4 - 41769840*T^3 - 104677184192*T^2 + 148558165290752*T + 262393439394788352
13 13 1 3
T 5 + ⋯ + 33 ⋯ 88 T^{5} + \cdots + 33\!\cdots\!88 T 5 + ⋯ + 3 3 ⋯ 8 8
T^5 + 9880*T^4 - 75729588*T^3 - 334143966560*T^2 + 994289575365328*T + 3397854488079213888
17 17 1 7
T 5 + ⋯ + 13 ⋯ 04 T^{5} + \cdots + 13\!\cdots\!04 T 5 + ⋯ + 1 3 ⋯ 0 4
T^5 + 44322*T^4 - 284414440*T^3 - 27436946732240*T^2 - 145446179616257904*T + 1380300135154995094304
19 19 1 9
T 5 + ⋯ + 14 ⋯ 84 T^{5} + \cdots + 14\!\cdots\!84 T 5 + ⋯ + 1 4 ⋯ 8 4
T^5 + 22898*T^4 - 2660349020*T^3 - 41883140540808*T^2 - 64540883895314064*T + 145641990220669519584
23 23 2 3
T 5 + ⋯ + 91 ⋯ 36 T^{5} + \cdots + 91\!\cdots\!36 T 5 + ⋯ + 9 1 ⋯ 3 6
T^5 - 141016*T^4 - 2344046880*T^3 + 1208694545830912*T^2 - 61894076965301491456*T + 918171726331515830286336
29 29 2 9
T 5 + ⋯ − 60 ⋯ 64 T^{5} + \cdots - 60\!\cdots\!64 T 5 + ⋯ − 6 0 ⋯ 6 4
T^5 + 18998*T^4 - 26575708200*T^3 + 1675684104812432*T^2 - 25264738836000497264*T - 6058164908585336540064
31 31 3 1
T 5 + ⋯ + 13 ⋯ 44 T^{5} + \cdots + 13\!\cdots\!44 T 5 + ⋯ + 1 3 ⋯ 4 4
T^5 - 167668*T^4 - 42558334896*T^3 + 4444315488823616*T^2 + 227061417598936318720*T + 1369973495427417092588544
37 37 3 7
T 5 + ⋯ + 10 ⋯ 88 T^{5} + \cdots + 10\!\cdots\!88 T 5 + ⋯ + 1 0 ⋯ 8 8
T^5 + 434206*T^4 - 290954226984*T^3 - 117452697442536112*T^2 + 6775350158096291390864*T + 1096902361446476622705125088
41 41 4 1
T 5 + ⋯ + 22 ⋯ 12 T^{5} + \cdots + 22\!\cdots\!12 T 5 + ⋯ + 2 2 ⋯ 1 2
T^5 - 44278*T^4 - 525710269800*T^3 - 72636401519671312*T^2 + 31114413480554207188624*T + 2270762212340028398692919712
43 43 4 3
T 5 + ⋯ − 24 ⋯ 12 T^{5} + \cdots - 24\!\cdots\!12 T 5 + ⋯ − 2 4 ⋯ 1 2
T^5 + 465076*T^4 - 407062515440*T^3 - 104339306714662208*T^2 + 38813835517412110204672*T - 2474074075866973296538637312
47 47 4 7
T 5 + ⋯ + 12 ⋯ 92 T^{5} + \cdots + 12\!\cdots\!92 T 5 + ⋯ + 1 2 ⋯ 9 2
T^5 + 7508*T^4 - 897251304432*T^3 + 124061352692984000*T^2 + 30507729619707122616064*T + 1212187169911889368572705792
53 53 5 3
T 5 + ⋯ + 11 ⋯ 12 T^{5} + \cdots + 11\!\cdots\!12 T 5 + ⋯ + 1 1 ⋯ 1 2
T^5 + 1901986*T^4 + 760050790632*T^3 - 327735639134638448*T^2 - 172886849705483276442800*T + 11096053939883270984751364512
59 59 5 9
T 5 + ⋯ + 39 ⋯ 28 T^{5} + \cdots + 39\!\cdots\!28 T 5 + ⋯ + 3 9 ⋯ 2 8
T^5 + 2342994*T^4 - 979551748476*T^3 - 668783167597973512*T^2 + 12556295853814567930992*T + 3907156488228556067967503328
61 61 6 1
T 5 + ⋯ + 92 ⋯ 08 T^{5} + \cdots + 92\!\cdots\!08 T 5 + ⋯ + 9 2 ⋯ 0 8
T^5 + 553300*T^4 - 6723725088116*T^3 - 9548958956277039088*T^2 - 2372059455160568564795248*T + 923766024689550534640441275008
67 67 6 7
T 5 + ⋯ − 35 ⋯ 56 T^{5} + \cdots - 35\!\cdots\!56 T 5 + ⋯ − 3 5 ⋯ 5 6
T^5 + 1908152*T^4 - 7841266617632*T^3 - 6849508485304518656*T^2 + 18718347166942263075334400*T - 3541127545059930966297513875456
71 71 7 1
T 5 + ⋯ + 30 ⋯ 36 T^{5} + \cdots + 30\!\cdots\!36 T 5 + ⋯ + 3 0 ⋯ 3 6
T^5 + 1721104*T^4 - 25645283485248*T^3 - 52225730518601708544*T^2 + 139962340973127095481569280*T + 304747327928378257822762124967936
73 73 7 3
T 5 + ⋯ − 16 ⋯ 96 T^{5} + \cdots - 16\!\cdots\!96 T 5 + ⋯ − 1 6 ⋯ 9 6
T^5 - 1237634*T^4 - 20840543683800*T^3 + 28192323220510115568*T^2 + 107958474841390450110897744*T - 161612368846416812059586427259296
79 79 7 9
T 5 + ⋯ + 34 ⋯ 76 T^{5} + \cdots + 34\!\cdots\!76 T 5 + ⋯ + 3 4 ⋯ 7 6
T^5 + 9787808*T^4 + 16966682996928*T^3 - 64840451198990731264*T^2 - 147119954133662112752414720*T + 34987211330653924131188705918976
83 83 8 3
T 5 + ⋯ − 44 ⋯ 04 T^{5} + \cdots - 44\!\cdots\!04 T 5 + ⋯ − 4 4 ⋯ 0 4
T^5 + 17717898*T^4 + 63339546448164*T^3 - 420701113720594497896*T^2 - 3005395316248550069941704720*T - 4470676125184639989085250929862304
89 89 8 9
T 5 + ⋯ + 16 ⋯ 24 T^{5} + \cdots + 16\!\cdots\!24 T 5 + ⋯ + 1 6 ⋯ 2 4
T^5 - 7408138*T^4 - 29322000542808*T^3 + 211202883219140145840*T^2 - 120623453367519404412429744*T + 16216550912543015410098878022624
97 97 9 7
T 5 + ⋯ − 76 ⋯ 92 T^{5} + \cdots - 76\!\cdots\!92 T 5 + ⋯ − 7 6 ⋯ 9 2
T^5 + 17027554*T^4 - 178598007557160*T^3 - 2455111364116411067728*T^2 + 9401380361412495732414079376*T - 7636291152415330395070795592877792
show more
show less