Properties

Label 2240.1.bk.b
Level $2240$
Weight $1$
Character orbit 2240.bk
Analytic conductor $1.118$
Analytic rank $0$
Dimension $8$
Projective image $D_{8}$
CM discriminant -56
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2240,1,Mod(223,2240)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2240, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 2, 3, 2]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2240.223");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2240 = 2^{6} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2240.bk (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.11790562830\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{16})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{8}\)
Projective field: Galois closure of 8.0.19208000000.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q + ( - \zeta_{16}^{7} + \zeta_{16}^{5}) q^{3} - \zeta_{16}^{3} q^{5} + \zeta_{16}^{6} q^{7} + ( - \zeta_{16}^{6} + \cdots - \zeta_{16}^{2}) q^{9} +O(q^{10}) \) Copy content Toggle raw display \( q + ( - \zeta_{16}^{7} + \zeta_{16}^{5}) q^{3} - \zeta_{16}^{3} q^{5} + \zeta_{16}^{6} q^{7} + ( - \zeta_{16}^{6} + \cdots - \zeta_{16}^{2}) q^{9} + \cdots + ( - \zeta_{16}^{6} - 1) q^{95} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q+O(q^{10}) \) Copy content Toggle raw display \( 8 q + 8 q^{15} - 8 q^{23} - 8 q^{57} + 8 q^{63} - 8 q^{65} - 8 q^{81} - 8 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2240\mathbb{Z}\right)^\times\).

\(n\) \(897\) \(1471\) \(1541\) \(1921\)
\(\chi(n)\) \(\zeta_{16}^{4}\) \(-1\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
223.1
−0.382683 0.923880i
−0.923880 + 0.382683i
0.923880 0.382683i
0.382683 + 0.923880i
−0.382683 + 0.923880i
−0.923880 0.382683i
0.923880 + 0.382683i
0.382683 0.923880i
0 −1.30656 + 1.30656i 0 −0.923880 0.382683i 0 0.707107 + 0.707107i 0 2.41421i 0
223.2 0 −0.541196 + 0.541196i 0 0.382683 0.923880i 0 −0.707107 0.707107i 0 0.414214i 0
223.3 0 0.541196 0.541196i 0 −0.382683 + 0.923880i 0 −0.707107 0.707107i 0 0.414214i 0
223.4 0 1.30656 1.30656i 0 0.923880 + 0.382683i 0 0.707107 + 0.707107i 0 2.41421i 0
1567.1 0 −1.30656 1.30656i 0 −0.923880 + 0.382683i 0 0.707107 0.707107i 0 2.41421i 0
1567.2 0 −0.541196 0.541196i 0 0.382683 + 0.923880i 0 −0.707107 + 0.707107i 0 0.414214i 0
1567.3 0 0.541196 + 0.541196i 0 −0.382683 0.923880i 0 −0.707107 + 0.707107i 0 0.414214i 0
1567.4 0 1.30656 + 1.30656i 0 0.923880 0.382683i 0 0.707107 0.707107i 0 2.41421i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 223.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
56.h odd 2 1 CM by \(\Q(\sqrt{-14}) \)
7.b odd 2 1 inner
8.b even 2 1 inner
20.e even 4 1 inner
40.k even 4 1 inner
140.j odd 4 1 inner
280.y odd 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2240.1.bk.b yes 8
4.b odd 2 1 2240.1.bk.a 8
5.c odd 4 1 2240.1.bk.a 8
7.b odd 2 1 inner 2240.1.bk.b yes 8
8.b even 2 1 inner 2240.1.bk.b yes 8
8.d odd 2 1 2240.1.bk.a 8
20.e even 4 1 inner 2240.1.bk.b yes 8
28.d even 2 1 2240.1.bk.a 8
35.f even 4 1 2240.1.bk.a 8
40.i odd 4 1 2240.1.bk.a 8
40.k even 4 1 inner 2240.1.bk.b yes 8
56.e even 2 1 2240.1.bk.a 8
56.h odd 2 1 CM 2240.1.bk.b yes 8
140.j odd 4 1 inner 2240.1.bk.b yes 8
280.s even 4 1 2240.1.bk.a 8
280.y odd 4 1 inner 2240.1.bk.b yes 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2240.1.bk.a 8 4.b odd 2 1
2240.1.bk.a 8 5.c odd 4 1
2240.1.bk.a 8 8.d odd 2 1
2240.1.bk.a 8 28.d even 2 1
2240.1.bk.a 8 35.f even 4 1
2240.1.bk.a 8 40.i odd 4 1
2240.1.bk.a 8 56.e even 2 1
2240.1.bk.a 8 280.s even 4 1
2240.1.bk.b yes 8 1.a even 1 1 trivial
2240.1.bk.b yes 8 7.b odd 2 1 inner
2240.1.bk.b yes 8 8.b even 2 1 inner
2240.1.bk.b yes 8 20.e even 4 1 inner
2240.1.bk.b yes 8 40.k even 4 1 inner
2240.1.bk.b yes 8 56.h odd 2 1 CM
2240.1.bk.b yes 8 140.j odd 4 1 inner
2240.1.bk.b yes 8 280.y odd 4 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{23}^{2} + 2T_{23} + 2 \) acting on \(S_{1}^{\mathrm{new}}(2240, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} \) Copy content Toggle raw display
$3$ \( T^{8} + 12T^{4} + 4 \) Copy content Toggle raw display
$5$ \( T^{8} + 1 \) Copy content Toggle raw display
$7$ \( (T^{4} + 1)^{2} \) Copy content Toggle raw display
$11$ \( T^{8} \) Copy content Toggle raw display
$13$ \( T^{8} + 12T^{4} + 4 \) Copy content Toggle raw display
$17$ \( T^{8} \) Copy content Toggle raw display
$19$ \( (T^{4} - 4 T^{2} + 2)^{2} \) Copy content Toggle raw display
$23$ \( (T^{2} + 2 T + 2)^{4} \) Copy content Toggle raw display
$29$ \( T^{8} \) Copy content Toggle raw display
$31$ \( T^{8} \) Copy content Toggle raw display
$37$ \( T^{8} \) Copy content Toggle raw display
$41$ \( T^{8} \) Copy content Toggle raw display
$43$ \( T^{8} \) Copy content Toggle raw display
$47$ \( T^{8} \) Copy content Toggle raw display
$53$ \( T^{8} \) Copy content Toggle raw display
$59$ \( (T^{4} - 4 T^{2} + 2)^{2} \) Copy content Toggle raw display
$61$ \( (T^{4} - 4 T^{2} + 2)^{2} \) Copy content Toggle raw display
$67$ \( T^{8} \) Copy content Toggle raw display
$71$ \( (T^{2} + 2)^{4} \) Copy content Toggle raw display
$73$ \( T^{8} \) Copy content Toggle raw display
$79$ \( (T^{2} - 2)^{4} \) Copy content Toggle raw display
$83$ \( T^{8} + 12T^{4} + 4 \) Copy content Toggle raw display
$89$ \( T^{8} \) Copy content Toggle raw display
$97$ \( T^{8} \) Copy content Toggle raw display
show more
show less