Properties

Label 2240.2.b.d
Level $2240$
Weight $2$
Character orbit 2240.b
Analytic conductor $17.886$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2240,2,Mod(1121,2240)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2240, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2240.1121");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2240 = 2^{6} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2240.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(17.8864900528\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{2} q^{3} - \beta_1 q^{5} + q^{7}+O(q^{10}) \) Copy content Toggle raw display \( q - \beta_{2} q^{3} - \beta_1 q^{5} + q^{7} + \beta_1 q^{11} - \beta_1 q^{13} - \beta_{3} q^{15} + ( - \beta_{3} - 4) q^{17} + 2 \beta_1 q^{19} - \beta_{2} q^{21} - 2 \beta_{3} q^{23} - q^{25} - 3 \beta_{2} q^{27} + ( - 3 \beta_{2} - 4 \beta_1) q^{29} + 4 q^{31} + \beta_{3} q^{33} - \beta_1 q^{35} + ( - 2 \beta_{2} - 4 \beta_1) q^{37} - \beta_{3} q^{39} + ( - 4 \beta_{3} - 4) q^{41} - 2 \beta_{2} q^{43} + ( - 4 \beta_{3} + 3) q^{47} + q^{49} + (4 \beta_{2} + 3 \beta_1) q^{51} + ( - 2 \beta_{2} - 2 \beta_1) q^{53} + q^{55} + 2 \beta_{3} q^{57} + ( - 2 \beta_{2} + 6 \beta_1) q^{59} + ( - 2 \beta_{2} - 2 \beta_1) q^{61} - q^{65} + (2 \beta_{2} - 2 \beta_1) q^{67} + 6 \beta_1 q^{69} + ( - 2 \beta_{3} + 4) q^{71} + 4 q^{73} + \beta_{2} q^{75} + \beta_1 q^{77} + (\beta_{3} + 4) q^{79} - 9 q^{81} + (2 \beta_{2} + 12 \beta_1) q^{83} + (\beta_{2} + 4 \beta_1) q^{85} + ( - 4 \beta_{3} - 9) q^{87} + (2 \beta_{3} + 6) q^{89} - \beta_1 q^{91} - 4 \beta_{2} q^{93} + 2 q^{95} + (\beta_{3} - 16) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 4 q^{7} - 16 q^{17} - 4 q^{25} + 16 q^{31} - 16 q^{41} + 12 q^{47} + 4 q^{49} + 4 q^{55} - 4 q^{65} + 16 q^{71} + 16 q^{73} + 16 q^{79} - 36 q^{81} - 36 q^{87} + 24 q^{89} + 8 q^{95} - 64 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring

\(\beta_{1}\)\(=\) \( \zeta_{12}^{3} \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( 2\zeta_{12}^{2} - 1 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( -\zeta_{12}^{3} + 2\zeta_{12} \) Copy content Toggle raw display
\(\zeta_{12}\)\(=\) \( ( \beta_{3} + \beta_1 ) / 2 \) Copy content Toggle raw display
\(\zeta_{12}^{2}\)\(=\) \( ( \beta_{2} + 1 ) / 2 \) Copy content Toggle raw display
\(\zeta_{12}^{3}\)\(=\) \( \beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2240\mathbb{Z}\right)^\times\).

\(n\) \(897\) \(1471\) \(1541\) \(1921\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1121.1
0.866025 + 0.500000i
−0.866025 0.500000i
−0.866025 + 0.500000i
0.866025 0.500000i
0 1.73205i 0 1.00000i 0 1.00000 0 0 0
1121.2 0 1.73205i 0 1.00000i 0 1.00000 0 0 0
1121.3 0 1.73205i 0 1.00000i 0 1.00000 0 0 0
1121.4 0 1.73205i 0 1.00000i 0 1.00000 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2240.2.b.d yes 4
4.b odd 2 1 2240.2.b.c 4
8.b even 2 1 inner 2240.2.b.d yes 4
8.d odd 2 1 2240.2.b.c 4
16.e even 4 1 8960.2.a.y 2
16.e even 4 1 8960.2.a.ba 2
16.f odd 4 1 8960.2.a.z 2
16.f odd 4 1 8960.2.a.bb 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2240.2.b.c 4 4.b odd 2 1
2240.2.b.c 4 8.d odd 2 1
2240.2.b.d yes 4 1.a even 1 1 trivial
2240.2.b.d yes 4 8.b even 2 1 inner
8960.2.a.y 2 16.e even 4 1
8960.2.a.z 2 16.f odd 4 1
8960.2.a.ba 2 16.e even 4 1
8960.2.a.bb 2 16.f odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(2240, [\chi])\):

\( T_{3}^{2} + 3 \) Copy content Toggle raw display
\( T_{23}^{2} - 12 \) Copy content Toggle raw display
\( T_{31} - 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( (T^{2} + 3)^{2} \) Copy content Toggle raw display
$5$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$7$ \( (T - 1)^{4} \) Copy content Toggle raw display
$11$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$13$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$17$ \( (T^{2} + 8 T + 13)^{2} \) Copy content Toggle raw display
$19$ \( (T^{2} + 4)^{2} \) Copy content Toggle raw display
$23$ \( (T^{2} - 12)^{2} \) Copy content Toggle raw display
$29$ \( T^{4} + 86T^{2} + 121 \) Copy content Toggle raw display
$31$ \( (T - 4)^{4} \) Copy content Toggle raw display
$37$ \( T^{4} + 56T^{2} + 16 \) Copy content Toggle raw display
$41$ \( (T^{2} + 8 T - 32)^{2} \) Copy content Toggle raw display
$43$ \( (T^{2} + 12)^{2} \) Copy content Toggle raw display
$47$ \( (T^{2} - 6 T - 39)^{2} \) Copy content Toggle raw display
$53$ \( T^{4} + 32T^{2} + 64 \) Copy content Toggle raw display
$59$ \( T^{4} + 96T^{2} + 576 \) Copy content Toggle raw display
$61$ \( T^{4} + 32T^{2} + 64 \) Copy content Toggle raw display
$67$ \( T^{4} + 32T^{2} + 64 \) Copy content Toggle raw display
$71$ \( (T^{2} - 8 T + 4)^{2} \) Copy content Toggle raw display
$73$ \( (T - 4)^{4} \) Copy content Toggle raw display
$79$ \( (T^{2} - 8 T + 13)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + 312 T^{2} + 17424 \) Copy content Toggle raw display
$89$ \( (T^{2} - 12 T + 24)^{2} \) Copy content Toggle raw display
$97$ \( (T^{2} + 32 T + 253)^{2} \) Copy content Toggle raw display
show more
show less