Properties

Label 2240.4.a.b.1.1
Level $2240$
Weight $4$
Character 2240.1
Self dual yes
Analytic conductor $132.164$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2240,4,Mod(1,2240)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2240, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2240.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2240 = 2^{6} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2240.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(132.164278413\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 35)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 2240.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-8.00000 q^{3} +5.00000 q^{5} -7.00000 q^{7} +37.0000 q^{9} +12.0000 q^{11} +78.0000 q^{13} -40.0000 q^{15} -94.0000 q^{17} +40.0000 q^{19} +56.0000 q^{21} -32.0000 q^{23} +25.0000 q^{25} -80.0000 q^{27} +50.0000 q^{29} +248.000 q^{31} -96.0000 q^{33} -35.0000 q^{35} +434.000 q^{37} -624.000 q^{39} +402.000 q^{41} -68.0000 q^{43} +185.000 q^{45} -536.000 q^{47} +49.0000 q^{49} +752.000 q^{51} -22.0000 q^{53} +60.0000 q^{55} -320.000 q^{57} -560.000 q^{59} +278.000 q^{61} -259.000 q^{63} +390.000 q^{65} -164.000 q^{67} +256.000 q^{69} -672.000 q^{71} +82.0000 q^{73} -200.000 q^{75} -84.0000 q^{77} +1000.00 q^{79} -359.000 q^{81} -448.000 q^{83} -470.000 q^{85} -400.000 q^{87} -870.000 q^{89} -546.000 q^{91} -1984.00 q^{93} +200.000 q^{95} +1026.00 q^{97} +444.000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −8.00000 −1.53960 −0.769800 0.638285i \(-0.779644\pi\)
−0.769800 + 0.638285i \(0.779644\pi\)
\(4\) 0 0
\(5\) 5.00000 0.447214
\(6\) 0 0
\(7\) −7.00000 −0.377964
\(8\) 0 0
\(9\) 37.0000 1.37037
\(10\) 0 0
\(11\) 12.0000 0.328921 0.164461 0.986384i \(-0.447412\pi\)
0.164461 + 0.986384i \(0.447412\pi\)
\(12\) 0 0
\(13\) 78.0000 1.66410 0.832050 0.554700i \(-0.187167\pi\)
0.832050 + 0.554700i \(0.187167\pi\)
\(14\) 0 0
\(15\) −40.0000 −0.688530
\(16\) 0 0
\(17\) −94.0000 −1.34108 −0.670540 0.741874i \(-0.733937\pi\)
−0.670540 + 0.741874i \(0.733937\pi\)
\(18\) 0 0
\(19\) 40.0000 0.482980 0.241490 0.970403i \(-0.422364\pi\)
0.241490 + 0.970403i \(0.422364\pi\)
\(20\) 0 0
\(21\) 56.0000 0.581914
\(22\) 0 0
\(23\) −32.0000 −0.290107 −0.145054 0.989424i \(-0.546335\pi\)
−0.145054 + 0.989424i \(0.546335\pi\)
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) 0 0
\(27\) −80.0000 −0.570222
\(28\) 0 0
\(29\) 50.0000 0.320164 0.160082 0.987104i \(-0.448824\pi\)
0.160082 + 0.987104i \(0.448824\pi\)
\(30\) 0 0
\(31\) 248.000 1.43684 0.718421 0.695608i \(-0.244865\pi\)
0.718421 + 0.695608i \(0.244865\pi\)
\(32\) 0 0
\(33\) −96.0000 −0.506408
\(34\) 0 0
\(35\) −35.0000 −0.169031
\(36\) 0 0
\(37\) 434.000 1.92836 0.964178 0.265257i \(-0.0854567\pi\)
0.964178 + 0.265257i \(0.0854567\pi\)
\(38\) 0 0
\(39\) −624.000 −2.56205
\(40\) 0 0
\(41\) 402.000 1.53126 0.765632 0.643278i \(-0.222426\pi\)
0.765632 + 0.643278i \(0.222426\pi\)
\(42\) 0 0
\(43\) −68.0000 −0.241161 −0.120580 0.992704i \(-0.538476\pi\)
−0.120580 + 0.992704i \(0.538476\pi\)
\(44\) 0 0
\(45\) 185.000 0.612848
\(46\) 0 0
\(47\) −536.000 −1.66348 −0.831741 0.555164i \(-0.812655\pi\)
−0.831741 + 0.555164i \(0.812655\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) 0 0
\(51\) 752.000 2.06473
\(52\) 0 0
\(53\) −22.0000 −0.0570176 −0.0285088 0.999594i \(-0.509076\pi\)
−0.0285088 + 0.999594i \(0.509076\pi\)
\(54\) 0 0
\(55\) 60.0000 0.147098
\(56\) 0 0
\(57\) −320.000 −0.743597
\(58\) 0 0
\(59\) −560.000 −1.23569 −0.617846 0.786299i \(-0.711994\pi\)
−0.617846 + 0.786299i \(0.711994\pi\)
\(60\) 0 0
\(61\) 278.000 0.583512 0.291756 0.956493i \(-0.405760\pi\)
0.291756 + 0.956493i \(0.405760\pi\)
\(62\) 0 0
\(63\) −259.000 −0.517951
\(64\) 0 0
\(65\) 390.000 0.744208
\(66\) 0 0
\(67\) −164.000 −0.299042 −0.149521 0.988759i \(-0.547773\pi\)
−0.149521 + 0.988759i \(0.547773\pi\)
\(68\) 0 0
\(69\) 256.000 0.446649
\(70\) 0 0
\(71\) −672.000 −1.12326 −0.561632 0.827387i \(-0.689826\pi\)
−0.561632 + 0.827387i \(0.689826\pi\)
\(72\) 0 0
\(73\) 82.0000 0.131471 0.0657354 0.997837i \(-0.479061\pi\)
0.0657354 + 0.997837i \(0.479061\pi\)
\(74\) 0 0
\(75\) −200.000 −0.307920
\(76\) 0 0
\(77\) −84.0000 −0.124321
\(78\) 0 0
\(79\) 1000.00 1.42416 0.712081 0.702097i \(-0.247753\pi\)
0.712081 + 0.702097i \(0.247753\pi\)
\(80\) 0 0
\(81\) −359.000 −0.492455
\(82\) 0 0
\(83\) −448.000 −0.592463 −0.296231 0.955116i \(-0.595730\pi\)
−0.296231 + 0.955116i \(0.595730\pi\)
\(84\) 0 0
\(85\) −470.000 −0.599749
\(86\) 0 0
\(87\) −400.000 −0.492925
\(88\) 0 0
\(89\) −870.000 −1.03618 −0.518089 0.855327i \(-0.673356\pi\)
−0.518089 + 0.855327i \(0.673356\pi\)
\(90\) 0 0
\(91\) −546.000 −0.628971
\(92\) 0 0
\(93\) −1984.00 −2.21216
\(94\) 0 0
\(95\) 200.000 0.215995
\(96\) 0 0
\(97\) 1026.00 1.07396 0.536982 0.843594i \(-0.319564\pi\)
0.536982 + 0.843594i \(0.319564\pi\)
\(98\) 0 0
\(99\) 444.000 0.450744
\(100\) 0 0
\(101\) −482.000 −0.474859 −0.237430 0.971405i \(-0.576305\pi\)
−0.237430 + 0.971405i \(0.576305\pi\)
\(102\) 0 0
\(103\) −272.000 −0.260203 −0.130102 0.991501i \(-0.541530\pi\)
−0.130102 + 0.991501i \(0.541530\pi\)
\(104\) 0 0
\(105\) 280.000 0.260240
\(106\) 0 0
\(107\) −444.000 −0.401150 −0.200575 0.979678i \(-0.564281\pi\)
−0.200575 + 0.979678i \(0.564281\pi\)
\(108\) 0 0
\(109\) 1170.00 1.02813 0.514063 0.857753i \(-0.328140\pi\)
0.514063 + 0.857753i \(0.328140\pi\)
\(110\) 0 0
\(111\) −3472.00 −2.96890
\(112\) 0 0
\(113\) −798.000 −0.664332 −0.332166 0.943221i \(-0.607779\pi\)
−0.332166 + 0.943221i \(0.607779\pi\)
\(114\) 0 0
\(115\) −160.000 −0.129740
\(116\) 0 0
\(117\) 2886.00 2.28043
\(118\) 0 0
\(119\) 658.000 0.506880
\(120\) 0 0
\(121\) −1187.00 −0.891811
\(122\) 0 0
\(123\) −3216.00 −2.35754
\(124\) 0 0
\(125\) 125.000 0.0894427
\(126\) 0 0
\(127\) −776.000 −0.542196 −0.271098 0.962552i \(-0.587387\pi\)
−0.271098 + 0.962552i \(0.587387\pi\)
\(128\) 0 0
\(129\) 544.000 0.371291
\(130\) 0 0
\(131\) 1112.00 0.741648 0.370824 0.928703i \(-0.379075\pi\)
0.370824 + 0.928703i \(0.379075\pi\)
\(132\) 0 0
\(133\) −280.000 −0.182549
\(134\) 0 0
\(135\) −400.000 −0.255011
\(136\) 0 0
\(137\) −694.000 −0.432791 −0.216396 0.976306i \(-0.569430\pi\)
−0.216396 + 0.976306i \(0.569430\pi\)
\(138\) 0 0
\(139\) 360.000 0.219675 0.109837 0.993950i \(-0.464967\pi\)
0.109837 + 0.993950i \(0.464967\pi\)
\(140\) 0 0
\(141\) 4288.00 2.56110
\(142\) 0 0
\(143\) 936.000 0.547358
\(144\) 0 0
\(145\) 250.000 0.143182
\(146\) 0 0
\(147\) −392.000 −0.219943
\(148\) 0 0
\(149\) −2270.00 −1.24809 −0.624046 0.781388i \(-0.714512\pi\)
−0.624046 + 0.781388i \(0.714512\pi\)
\(150\) 0 0
\(151\) −632.000 −0.340606 −0.170303 0.985392i \(-0.554475\pi\)
−0.170303 + 0.985392i \(0.554475\pi\)
\(152\) 0 0
\(153\) −3478.00 −1.83778
\(154\) 0 0
\(155\) 1240.00 0.642575
\(156\) 0 0
\(157\) 734.000 0.373118 0.186559 0.982444i \(-0.440266\pi\)
0.186559 + 0.982444i \(0.440266\pi\)
\(158\) 0 0
\(159\) 176.000 0.0877843
\(160\) 0 0
\(161\) 224.000 0.109650
\(162\) 0 0
\(163\) 2532.00 1.21670 0.608348 0.793670i \(-0.291832\pi\)
0.608348 + 0.793670i \(0.291832\pi\)
\(164\) 0 0
\(165\) −480.000 −0.226472
\(166\) 0 0
\(167\) −416.000 −0.192761 −0.0963804 0.995345i \(-0.530727\pi\)
−0.0963804 + 0.995345i \(0.530727\pi\)
\(168\) 0 0
\(169\) 3887.00 1.76923
\(170\) 0 0
\(171\) 1480.00 0.661862
\(172\) 0 0
\(173\) −3042.00 −1.33687 −0.668436 0.743769i \(-0.733036\pi\)
−0.668436 + 0.743769i \(0.733036\pi\)
\(174\) 0 0
\(175\) −175.000 −0.0755929
\(176\) 0 0
\(177\) 4480.00 1.90247
\(178\) 0 0
\(179\) −180.000 −0.0751611 −0.0375805 0.999294i \(-0.511965\pi\)
−0.0375805 + 0.999294i \(0.511965\pi\)
\(180\) 0 0
\(181\) 1958.00 0.804072 0.402036 0.915624i \(-0.368303\pi\)
0.402036 + 0.915624i \(0.368303\pi\)
\(182\) 0 0
\(183\) −2224.00 −0.898376
\(184\) 0 0
\(185\) 2170.00 0.862387
\(186\) 0 0
\(187\) −1128.00 −0.441110
\(188\) 0 0
\(189\) 560.000 0.215524
\(190\) 0 0
\(191\) 2888.00 1.09408 0.547038 0.837108i \(-0.315755\pi\)
0.547038 + 0.837108i \(0.315755\pi\)
\(192\) 0 0
\(193\) 1602.00 0.597484 0.298742 0.954334i \(-0.403433\pi\)
0.298742 + 0.954334i \(0.403433\pi\)
\(194\) 0 0
\(195\) −3120.00 −1.14578
\(196\) 0 0
\(197\) 4794.00 1.73380 0.866899 0.498483i \(-0.166109\pi\)
0.866899 + 0.498483i \(0.166109\pi\)
\(198\) 0 0
\(199\) −1280.00 −0.455964 −0.227982 0.973665i \(-0.573213\pi\)
−0.227982 + 0.973665i \(0.573213\pi\)
\(200\) 0 0
\(201\) 1312.00 0.460405
\(202\) 0 0
\(203\) −350.000 −0.121011
\(204\) 0 0
\(205\) 2010.00 0.684802
\(206\) 0 0
\(207\) −1184.00 −0.397554
\(208\) 0 0
\(209\) 480.000 0.158863
\(210\) 0 0
\(211\) −68.0000 −0.0221863 −0.0110932 0.999938i \(-0.503531\pi\)
−0.0110932 + 0.999938i \(0.503531\pi\)
\(212\) 0 0
\(213\) 5376.00 1.72938
\(214\) 0 0
\(215\) −340.000 −0.107850
\(216\) 0 0
\(217\) −1736.00 −0.543075
\(218\) 0 0
\(219\) −656.000 −0.202413
\(220\) 0 0
\(221\) −7332.00 −2.23169
\(222\) 0 0
\(223\) 1728.00 0.518903 0.259452 0.965756i \(-0.416458\pi\)
0.259452 + 0.965756i \(0.416458\pi\)
\(224\) 0 0
\(225\) 925.000 0.274074
\(226\) 0 0
\(227\) −4864.00 −1.42218 −0.711090 0.703101i \(-0.751798\pi\)
−0.711090 + 0.703101i \(0.751798\pi\)
\(228\) 0 0
\(229\) 5510.00 1.59000 0.795002 0.606606i \(-0.207470\pi\)
0.795002 + 0.606606i \(0.207470\pi\)
\(230\) 0 0
\(231\) 672.000 0.191404
\(232\) 0 0
\(233\) 5322.00 1.49638 0.748188 0.663486i \(-0.230924\pi\)
0.748188 + 0.663486i \(0.230924\pi\)
\(234\) 0 0
\(235\) −2680.00 −0.743932
\(236\) 0 0
\(237\) −8000.00 −2.19264
\(238\) 0 0
\(239\) 1840.00 0.497990 0.248995 0.968505i \(-0.419900\pi\)
0.248995 + 0.968505i \(0.419900\pi\)
\(240\) 0 0
\(241\) −438.000 −0.117071 −0.0585354 0.998285i \(-0.518643\pi\)
−0.0585354 + 0.998285i \(0.518643\pi\)
\(242\) 0 0
\(243\) 5032.00 1.32841
\(244\) 0 0
\(245\) 245.000 0.0638877
\(246\) 0 0
\(247\) 3120.00 0.803728
\(248\) 0 0
\(249\) 3584.00 0.912156
\(250\) 0 0
\(251\) 5592.00 1.40623 0.703115 0.711076i \(-0.251792\pi\)
0.703115 + 0.711076i \(0.251792\pi\)
\(252\) 0 0
\(253\) −384.000 −0.0954224
\(254\) 0 0
\(255\) 3760.00 0.923374
\(256\) 0 0
\(257\) −1974.00 −0.479123 −0.239562 0.970881i \(-0.577004\pi\)
−0.239562 + 0.970881i \(0.577004\pi\)
\(258\) 0 0
\(259\) −3038.00 −0.728850
\(260\) 0 0
\(261\) 1850.00 0.438744
\(262\) 0 0
\(263\) 728.000 0.170686 0.0853430 0.996352i \(-0.472801\pi\)
0.0853430 + 0.996352i \(0.472801\pi\)
\(264\) 0 0
\(265\) −110.000 −0.0254990
\(266\) 0 0
\(267\) 6960.00 1.59530
\(268\) 0 0
\(269\) −5810.00 −1.31688 −0.658442 0.752631i \(-0.728784\pi\)
−0.658442 + 0.752631i \(0.728784\pi\)
\(270\) 0 0
\(271\) 6528.00 1.46328 0.731638 0.681693i \(-0.238756\pi\)
0.731638 + 0.681693i \(0.238756\pi\)
\(272\) 0 0
\(273\) 4368.00 0.968364
\(274\) 0 0
\(275\) 300.000 0.0657843
\(276\) 0 0
\(277\) −5126.00 −1.11188 −0.555941 0.831222i \(-0.687642\pi\)
−0.555941 + 0.831222i \(0.687642\pi\)
\(278\) 0 0
\(279\) 9176.00 1.96901
\(280\) 0 0
\(281\) −2358.00 −0.500592 −0.250296 0.968169i \(-0.580528\pi\)
−0.250296 + 0.968169i \(0.580528\pi\)
\(282\) 0 0
\(283\) 392.000 0.0823392 0.0411696 0.999152i \(-0.486892\pi\)
0.0411696 + 0.999152i \(0.486892\pi\)
\(284\) 0 0
\(285\) −1600.00 −0.332547
\(286\) 0 0
\(287\) −2814.00 −0.578764
\(288\) 0 0
\(289\) 3923.00 0.798494
\(290\) 0 0
\(291\) −8208.00 −1.65348
\(292\) 0 0
\(293\) −1202.00 −0.239664 −0.119832 0.992794i \(-0.538236\pi\)
−0.119832 + 0.992794i \(0.538236\pi\)
\(294\) 0 0
\(295\) −2800.00 −0.552618
\(296\) 0 0
\(297\) −960.000 −0.187558
\(298\) 0 0
\(299\) −2496.00 −0.482767
\(300\) 0 0
\(301\) 476.000 0.0911501
\(302\) 0 0
\(303\) 3856.00 0.731094
\(304\) 0 0
\(305\) 1390.00 0.260955
\(306\) 0 0
\(307\) −6384.00 −1.18682 −0.593411 0.804900i \(-0.702219\pi\)
−0.593411 + 0.804900i \(0.702219\pi\)
\(308\) 0 0
\(309\) 2176.00 0.400609
\(310\) 0 0
\(311\) 4968.00 0.905818 0.452909 0.891557i \(-0.350386\pi\)
0.452909 + 0.891557i \(0.350386\pi\)
\(312\) 0 0
\(313\) −2758.00 −0.498056 −0.249028 0.968496i \(-0.580111\pi\)
−0.249028 + 0.968496i \(0.580111\pi\)
\(314\) 0 0
\(315\) −1295.00 −0.231635
\(316\) 0 0
\(317\) 6274.00 1.11162 0.555809 0.831310i \(-0.312409\pi\)
0.555809 + 0.831310i \(0.312409\pi\)
\(318\) 0 0
\(319\) 600.000 0.105309
\(320\) 0 0
\(321\) 3552.00 0.617612
\(322\) 0 0
\(323\) −3760.00 −0.647715
\(324\) 0 0
\(325\) 1950.00 0.332820
\(326\) 0 0
\(327\) −9360.00 −1.58290
\(328\) 0 0
\(329\) 3752.00 0.628737
\(330\) 0 0
\(331\) 1932.00 0.320823 0.160411 0.987050i \(-0.448718\pi\)
0.160411 + 0.987050i \(0.448718\pi\)
\(332\) 0 0
\(333\) 16058.0 2.64256
\(334\) 0 0
\(335\) −820.000 −0.133735
\(336\) 0 0
\(337\) 2386.00 0.385679 0.192839 0.981230i \(-0.438230\pi\)
0.192839 + 0.981230i \(0.438230\pi\)
\(338\) 0 0
\(339\) 6384.00 1.02281
\(340\) 0 0
\(341\) 2976.00 0.472608
\(342\) 0 0
\(343\) −343.000 −0.0539949
\(344\) 0 0
\(345\) 1280.00 0.199747
\(346\) 0 0
\(347\) 6076.00 0.939991 0.469995 0.882669i \(-0.344256\pi\)
0.469995 + 0.882669i \(0.344256\pi\)
\(348\) 0 0
\(349\) −2210.00 −0.338964 −0.169482 0.985533i \(-0.554210\pi\)
−0.169482 + 0.985533i \(0.554210\pi\)
\(350\) 0 0
\(351\) −6240.00 −0.948908
\(352\) 0 0
\(353\) −2598.00 −0.391721 −0.195861 0.980632i \(-0.562750\pi\)
−0.195861 + 0.980632i \(0.562750\pi\)
\(354\) 0 0
\(355\) −3360.00 −0.502339
\(356\) 0 0
\(357\) −5264.00 −0.780393
\(358\) 0 0
\(359\) 13320.0 1.95822 0.979112 0.203320i \(-0.0651731\pi\)
0.979112 + 0.203320i \(0.0651731\pi\)
\(360\) 0 0
\(361\) −5259.00 −0.766730
\(362\) 0 0
\(363\) 9496.00 1.37303
\(364\) 0 0
\(365\) 410.000 0.0587956
\(366\) 0 0
\(367\) −10816.0 −1.53839 −0.769197 0.639012i \(-0.779344\pi\)
−0.769197 + 0.639012i \(0.779344\pi\)
\(368\) 0 0
\(369\) 14874.0 2.09840
\(370\) 0 0
\(371\) 154.000 0.0215506
\(372\) 0 0
\(373\) 11098.0 1.54057 0.770285 0.637700i \(-0.220114\pi\)
0.770285 + 0.637700i \(0.220114\pi\)
\(374\) 0 0
\(375\) −1000.00 −0.137706
\(376\) 0 0
\(377\) 3900.00 0.532786
\(378\) 0 0
\(379\) 7100.00 0.962276 0.481138 0.876645i \(-0.340224\pi\)
0.481138 + 0.876645i \(0.340224\pi\)
\(380\) 0 0
\(381\) 6208.00 0.834765
\(382\) 0 0
\(383\) 728.000 0.0971255 0.0485627 0.998820i \(-0.484536\pi\)
0.0485627 + 0.998820i \(0.484536\pi\)
\(384\) 0 0
\(385\) −420.000 −0.0555979
\(386\) 0 0
\(387\) −2516.00 −0.330479
\(388\) 0 0
\(389\) 6810.00 0.887611 0.443806 0.896123i \(-0.353628\pi\)
0.443806 + 0.896123i \(0.353628\pi\)
\(390\) 0 0
\(391\) 3008.00 0.389057
\(392\) 0 0
\(393\) −8896.00 −1.14184
\(394\) 0 0
\(395\) 5000.00 0.636905
\(396\) 0 0
\(397\) 574.000 0.0725648 0.0362824 0.999342i \(-0.488448\pi\)
0.0362824 + 0.999342i \(0.488448\pi\)
\(398\) 0 0
\(399\) 2240.00 0.281053
\(400\) 0 0
\(401\) 6162.00 0.767371 0.383685 0.923464i \(-0.374655\pi\)
0.383685 + 0.923464i \(0.374655\pi\)
\(402\) 0 0
\(403\) 19344.0 2.39105
\(404\) 0 0
\(405\) −1795.00 −0.220233
\(406\) 0 0
\(407\) 5208.00 0.634278
\(408\) 0 0
\(409\) 8210.00 0.992563 0.496282 0.868162i \(-0.334698\pi\)
0.496282 + 0.868162i \(0.334698\pi\)
\(410\) 0 0
\(411\) 5552.00 0.666326
\(412\) 0 0
\(413\) 3920.00 0.467047
\(414\) 0 0
\(415\) −2240.00 −0.264957
\(416\) 0 0
\(417\) −2880.00 −0.338212
\(418\) 0 0
\(419\) 4800.00 0.559655 0.279827 0.960050i \(-0.409723\pi\)
0.279827 + 0.960050i \(0.409723\pi\)
\(420\) 0 0
\(421\) 9938.00 1.15047 0.575236 0.817988i \(-0.304910\pi\)
0.575236 + 0.817988i \(0.304910\pi\)
\(422\) 0 0
\(423\) −19832.0 −2.27959
\(424\) 0 0
\(425\) −2350.00 −0.268216
\(426\) 0 0
\(427\) −1946.00 −0.220547
\(428\) 0 0
\(429\) −7488.00 −0.842713
\(430\) 0 0
\(431\) 9248.00 1.03355 0.516776 0.856121i \(-0.327132\pi\)
0.516776 + 0.856121i \(0.327132\pi\)
\(432\) 0 0
\(433\) −1118.00 −0.124082 −0.0620412 0.998074i \(-0.519761\pi\)
−0.0620412 + 0.998074i \(0.519761\pi\)
\(434\) 0 0
\(435\) −2000.00 −0.220443
\(436\) 0 0
\(437\) −1280.00 −0.140116
\(438\) 0 0
\(439\) 11960.0 1.30027 0.650136 0.759818i \(-0.274712\pi\)
0.650136 + 0.759818i \(0.274712\pi\)
\(440\) 0 0
\(441\) 1813.00 0.195767
\(442\) 0 0
\(443\) 7332.00 0.786352 0.393176 0.919463i \(-0.371376\pi\)
0.393176 + 0.919463i \(0.371376\pi\)
\(444\) 0 0
\(445\) −4350.00 −0.463393
\(446\) 0 0
\(447\) 18160.0 1.92156
\(448\) 0 0
\(449\) 1890.00 0.198652 0.0993259 0.995055i \(-0.468331\pi\)
0.0993259 + 0.995055i \(0.468331\pi\)
\(450\) 0 0
\(451\) 4824.00 0.503666
\(452\) 0 0
\(453\) 5056.00 0.524396
\(454\) 0 0
\(455\) −2730.00 −0.281284
\(456\) 0 0
\(457\) −7014.00 −0.717945 −0.358973 0.933348i \(-0.616873\pi\)
−0.358973 + 0.933348i \(0.616873\pi\)
\(458\) 0 0
\(459\) 7520.00 0.764714
\(460\) 0 0
\(461\) 8318.00 0.840364 0.420182 0.907440i \(-0.361966\pi\)
0.420182 + 0.907440i \(0.361966\pi\)
\(462\) 0 0
\(463\) −6432.00 −0.645616 −0.322808 0.946464i \(-0.604627\pi\)
−0.322808 + 0.946464i \(0.604627\pi\)
\(464\) 0 0
\(465\) −9920.00 −0.989310
\(466\) 0 0
\(467\) −10064.0 −0.997230 −0.498615 0.866824i \(-0.666158\pi\)
−0.498615 + 0.866824i \(0.666158\pi\)
\(468\) 0 0
\(469\) 1148.00 0.113027
\(470\) 0 0
\(471\) −5872.00 −0.574453
\(472\) 0 0
\(473\) −816.000 −0.0793229
\(474\) 0 0
\(475\) 1000.00 0.0965961
\(476\) 0 0
\(477\) −814.000 −0.0781352
\(478\) 0 0
\(479\) −1400.00 −0.133544 −0.0667721 0.997768i \(-0.521270\pi\)
−0.0667721 + 0.997768i \(0.521270\pi\)
\(480\) 0 0
\(481\) 33852.0 3.20898
\(482\) 0 0
\(483\) −1792.00 −0.168817
\(484\) 0 0
\(485\) 5130.00 0.480291
\(486\) 0 0
\(487\) −13376.0 −1.24461 −0.622304 0.782775i \(-0.713803\pi\)
−0.622304 + 0.782775i \(0.713803\pi\)
\(488\) 0 0
\(489\) −20256.0 −1.87323
\(490\) 0 0
\(491\) 7092.00 0.651848 0.325924 0.945396i \(-0.394325\pi\)
0.325924 + 0.945396i \(0.394325\pi\)
\(492\) 0 0
\(493\) −4700.00 −0.429366
\(494\) 0 0
\(495\) 2220.00 0.201579
\(496\) 0 0
\(497\) 4704.00 0.424554
\(498\) 0 0
\(499\) −820.000 −0.0735636 −0.0367818 0.999323i \(-0.511711\pi\)
−0.0367818 + 0.999323i \(0.511711\pi\)
\(500\) 0 0
\(501\) 3328.00 0.296775
\(502\) 0 0
\(503\) 4568.00 0.404925 0.202462 0.979290i \(-0.435106\pi\)
0.202462 + 0.979290i \(0.435106\pi\)
\(504\) 0 0
\(505\) −2410.00 −0.212364
\(506\) 0 0
\(507\) −31096.0 −2.72391
\(508\) 0 0
\(509\) −19810.0 −1.72507 −0.862537 0.505994i \(-0.831126\pi\)
−0.862537 + 0.505994i \(0.831126\pi\)
\(510\) 0 0
\(511\) −574.000 −0.0496913
\(512\) 0 0
\(513\) −3200.00 −0.275406
\(514\) 0 0
\(515\) −1360.00 −0.116367
\(516\) 0 0
\(517\) −6432.00 −0.547155
\(518\) 0 0
\(519\) 24336.0 2.05825
\(520\) 0 0
\(521\) −1838.00 −0.154557 −0.0772785 0.997010i \(-0.524623\pi\)
−0.0772785 + 0.997010i \(0.524623\pi\)
\(522\) 0 0
\(523\) 2072.00 0.173236 0.0866178 0.996242i \(-0.472394\pi\)
0.0866178 + 0.996242i \(0.472394\pi\)
\(524\) 0 0
\(525\) 1400.00 0.116383
\(526\) 0 0
\(527\) −23312.0 −1.92692
\(528\) 0 0
\(529\) −11143.0 −0.915838
\(530\) 0 0
\(531\) −20720.0 −1.69335
\(532\) 0 0
\(533\) 31356.0 2.54818
\(534\) 0 0
\(535\) −2220.00 −0.179400
\(536\) 0 0
\(537\) 1440.00 0.115718
\(538\) 0 0
\(539\) 588.000 0.0469888
\(540\) 0 0
\(541\) 3498.00 0.277987 0.138993 0.990293i \(-0.455613\pi\)
0.138993 + 0.990293i \(0.455613\pi\)
\(542\) 0 0
\(543\) −15664.0 −1.23795
\(544\) 0 0
\(545\) 5850.00 0.459792
\(546\) 0 0
\(547\) 5076.00 0.396772 0.198386 0.980124i \(-0.436430\pi\)
0.198386 + 0.980124i \(0.436430\pi\)
\(548\) 0 0
\(549\) 10286.0 0.799628
\(550\) 0 0
\(551\) 2000.00 0.154633
\(552\) 0 0
\(553\) −7000.00 −0.538283
\(554\) 0 0
\(555\) −17360.0 −1.32773
\(556\) 0 0
\(557\) 8674.00 0.659837 0.329918 0.944009i \(-0.392979\pi\)
0.329918 + 0.944009i \(0.392979\pi\)
\(558\) 0 0
\(559\) −5304.00 −0.401315
\(560\) 0 0
\(561\) 9024.00 0.679133
\(562\) 0 0
\(563\) 16072.0 1.20312 0.601558 0.798829i \(-0.294547\pi\)
0.601558 + 0.798829i \(0.294547\pi\)
\(564\) 0 0
\(565\) −3990.00 −0.297098
\(566\) 0 0
\(567\) 2513.00 0.186131
\(568\) 0 0
\(569\) 2730.00 0.201138 0.100569 0.994930i \(-0.467934\pi\)
0.100569 + 0.994930i \(0.467934\pi\)
\(570\) 0 0
\(571\) 19932.0 1.46082 0.730410 0.683009i \(-0.239329\pi\)
0.730410 + 0.683009i \(0.239329\pi\)
\(572\) 0 0
\(573\) −23104.0 −1.68444
\(574\) 0 0
\(575\) −800.000 −0.0580214
\(576\) 0 0
\(577\) −20054.0 −1.44690 −0.723448 0.690379i \(-0.757444\pi\)
−0.723448 + 0.690379i \(0.757444\pi\)
\(578\) 0 0
\(579\) −12816.0 −0.919887
\(580\) 0 0
\(581\) 3136.00 0.223930
\(582\) 0 0
\(583\) −264.000 −0.0187543
\(584\) 0 0
\(585\) 14430.0 1.01984
\(586\) 0 0
\(587\) −2544.00 −0.178879 −0.0894396 0.995992i \(-0.528508\pi\)
−0.0894396 + 0.995992i \(0.528508\pi\)
\(588\) 0 0
\(589\) 9920.00 0.693967
\(590\) 0 0
\(591\) −38352.0 −2.66936
\(592\) 0 0
\(593\) 14202.0 0.983484 0.491742 0.870741i \(-0.336360\pi\)
0.491742 + 0.870741i \(0.336360\pi\)
\(594\) 0 0
\(595\) 3290.00 0.226684
\(596\) 0 0
\(597\) 10240.0 0.702002
\(598\) 0 0
\(599\) 19600.0 1.33695 0.668476 0.743734i \(-0.266947\pi\)
0.668476 + 0.743734i \(0.266947\pi\)
\(600\) 0 0
\(601\) −27078.0 −1.83783 −0.918914 0.394458i \(-0.870932\pi\)
−0.918914 + 0.394458i \(0.870932\pi\)
\(602\) 0 0
\(603\) −6068.00 −0.409798
\(604\) 0 0
\(605\) −5935.00 −0.398830
\(606\) 0 0
\(607\) 2704.00 0.180811 0.0904053 0.995905i \(-0.471184\pi\)
0.0904053 + 0.995905i \(0.471184\pi\)
\(608\) 0 0
\(609\) 2800.00 0.186308
\(610\) 0 0
\(611\) −41808.0 −2.76820
\(612\) 0 0
\(613\) −12702.0 −0.836915 −0.418458 0.908236i \(-0.637429\pi\)
−0.418458 + 0.908236i \(0.637429\pi\)
\(614\) 0 0
\(615\) −16080.0 −1.05432
\(616\) 0 0
\(617\) 12666.0 0.826441 0.413220 0.910631i \(-0.364404\pi\)
0.413220 + 0.910631i \(0.364404\pi\)
\(618\) 0 0
\(619\) 960.000 0.0623355 0.0311677 0.999514i \(-0.490077\pi\)
0.0311677 + 0.999514i \(0.490077\pi\)
\(620\) 0 0
\(621\) 2560.00 0.165426
\(622\) 0 0
\(623\) 6090.00 0.391638
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) 0 0
\(627\) −3840.00 −0.244585
\(628\) 0 0
\(629\) −40796.0 −2.58608
\(630\) 0 0
\(631\) −23232.0 −1.46569 −0.732846 0.680395i \(-0.761808\pi\)
−0.732846 + 0.680395i \(0.761808\pi\)
\(632\) 0 0
\(633\) 544.000 0.0341581
\(634\) 0 0
\(635\) −3880.00 −0.242477
\(636\) 0 0
\(637\) 3822.00 0.237729
\(638\) 0 0
\(639\) −24864.0 −1.53929
\(640\) 0 0
\(641\) 12162.0 0.749407 0.374704 0.927145i \(-0.377744\pi\)
0.374704 + 0.927145i \(0.377744\pi\)
\(642\) 0 0
\(643\) −488.000 −0.0299298 −0.0149649 0.999888i \(-0.504764\pi\)
−0.0149649 + 0.999888i \(0.504764\pi\)
\(644\) 0 0
\(645\) 2720.00 0.166046
\(646\) 0 0
\(647\) 3984.00 0.242082 0.121041 0.992647i \(-0.461377\pi\)
0.121041 + 0.992647i \(0.461377\pi\)
\(648\) 0 0
\(649\) −6720.00 −0.406445
\(650\) 0 0
\(651\) 13888.0 0.836119
\(652\) 0 0
\(653\) 30538.0 1.83008 0.915042 0.403360i \(-0.132158\pi\)
0.915042 + 0.403360i \(0.132158\pi\)
\(654\) 0 0
\(655\) 5560.00 0.331675
\(656\) 0 0
\(657\) 3034.00 0.180164
\(658\) 0 0
\(659\) 22740.0 1.34420 0.672098 0.740463i \(-0.265394\pi\)
0.672098 + 0.740463i \(0.265394\pi\)
\(660\) 0 0
\(661\) 18718.0 1.10143 0.550715 0.834693i \(-0.314355\pi\)
0.550715 + 0.834693i \(0.314355\pi\)
\(662\) 0 0
\(663\) 58656.0 3.43591
\(664\) 0 0
\(665\) −1400.00 −0.0816386
\(666\) 0 0
\(667\) −1600.00 −0.0928819
\(668\) 0 0
\(669\) −13824.0 −0.798904
\(670\) 0 0
\(671\) 3336.00 0.191930
\(672\) 0 0
\(673\) 10802.0 0.618702 0.309351 0.950948i \(-0.399888\pi\)
0.309351 + 0.950948i \(0.399888\pi\)
\(674\) 0 0
\(675\) −2000.00 −0.114044
\(676\) 0 0
\(677\) −346.000 −0.0196423 −0.00982117 0.999952i \(-0.503126\pi\)
−0.00982117 + 0.999952i \(0.503126\pi\)
\(678\) 0 0
\(679\) −7182.00 −0.405920
\(680\) 0 0
\(681\) 38912.0 2.18959
\(682\) 0 0
\(683\) −11628.0 −0.651439 −0.325720 0.945466i \(-0.605607\pi\)
−0.325720 + 0.945466i \(0.605607\pi\)
\(684\) 0 0
\(685\) −3470.00 −0.193550
\(686\) 0 0
\(687\) −44080.0 −2.44797
\(688\) 0 0
\(689\) −1716.00 −0.0948830
\(690\) 0 0
\(691\) 2472.00 0.136092 0.0680458 0.997682i \(-0.478324\pi\)
0.0680458 + 0.997682i \(0.478324\pi\)
\(692\) 0 0
\(693\) −3108.00 −0.170365
\(694\) 0 0
\(695\) 1800.00 0.0982416
\(696\) 0 0
\(697\) −37788.0 −2.05355
\(698\) 0 0
\(699\) −42576.0 −2.30382
\(700\) 0 0
\(701\) 2018.00 0.108729 0.0543643 0.998521i \(-0.482687\pi\)
0.0543643 + 0.998521i \(0.482687\pi\)
\(702\) 0 0
\(703\) 17360.0 0.931358
\(704\) 0 0
\(705\) 21440.0 1.14536
\(706\) 0 0
\(707\) 3374.00 0.179480
\(708\) 0 0
\(709\) −790.000 −0.0418464 −0.0209232 0.999781i \(-0.506661\pi\)
−0.0209232 + 0.999781i \(0.506661\pi\)
\(710\) 0 0
\(711\) 37000.0 1.95163
\(712\) 0 0
\(713\) −7936.00 −0.416838
\(714\) 0 0
\(715\) 4680.00 0.244786
\(716\) 0 0
\(717\) −14720.0 −0.766706
\(718\) 0 0
\(719\) −18200.0 −0.944013 −0.472007 0.881595i \(-0.656470\pi\)
−0.472007 + 0.881595i \(0.656470\pi\)
\(720\) 0 0
\(721\) 1904.00 0.0983477
\(722\) 0 0
\(723\) 3504.00 0.180242
\(724\) 0 0
\(725\) 1250.00 0.0640329
\(726\) 0 0
\(727\) −29056.0 −1.48229 −0.741147 0.671343i \(-0.765718\pi\)
−0.741147 + 0.671343i \(0.765718\pi\)
\(728\) 0 0
\(729\) −30563.0 −1.55276
\(730\) 0 0
\(731\) 6392.00 0.323415
\(732\) 0 0
\(733\) −7082.00 −0.356862 −0.178431 0.983952i \(-0.557102\pi\)
−0.178431 + 0.983952i \(0.557102\pi\)
\(734\) 0 0
\(735\) −1960.00 −0.0983615
\(736\) 0 0
\(737\) −1968.00 −0.0983612
\(738\) 0 0
\(739\) 11060.0 0.550539 0.275270 0.961367i \(-0.411233\pi\)
0.275270 + 0.961367i \(0.411233\pi\)
\(740\) 0 0
\(741\) −24960.0 −1.23742
\(742\) 0 0
\(743\) −33072.0 −1.63297 −0.816483 0.577369i \(-0.804079\pi\)
−0.816483 + 0.577369i \(0.804079\pi\)
\(744\) 0 0
\(745\) −11350.0 −0.558164
\(746\) 0 0
\(747\) −16576.0 −0.811893
\(748\) 0 0
\(749\) 3108.00 0.151621
\(750\) 0 0
\(751\) −29072.0 −1.41259 −0.706293 0.707919i \(-0.749634\pi\)
−0.706293 + 0.707919i \(0.749634\pi\)
\(752\) 0 0
\(753\) −44736.0 −2.16503
\(754\) 0 0
\(755\) −3160.00 −0.152323
\(756\) 0 0
\(757\) 13234.0 0.635400 0.317700 0.948191i \(-0.397089\pi\)
0.317700 + 0.948191i \(0.397089\pi\)
\(758\) 0 0
\(759\) 3072.00 0.146912
\(760\) 0 0
\(761\) −22398.0 −1.06692 −0.533460 0.845825i \(-0.679109\pi\)
−0.533460 + 0.845825i \(0.679109\pi\)
\(762\) 0 0
\(763\) −8190.00 −0.388595
\(764\) 0 0
\(765\) −17390.0 −0.821878
\(766\) 0 0
\(767\) −43680.0 −2.05631
\(768\) 0 0
\(769\) 6890.00 0.323095 0.161547 0.986865i \(-0.448352\pi\)
0.161547 + 0.986865i \(0.448352\pi\)
\(770\) 0 0
\(771\) 15792.0 0.737659
\(772\) 0 0
\(773\) −16722.0 −0.778071 −0.389035 0.921223i \(-0.627192\pi\)
−0.389035 + 0.921223i \(0.627192\pi\)
\(774\) 0 0
\(775\) 6200.00 0.287368
\(776\) 0 0
\(777\) 24304.0 1.12214
\(778\) 0 0
\(779\) 16080.0 0.739571
\(780\) 0 0
\(781\) −8064.00 −0.369466
\(782\) 0 0
\(783\) −4000.00 −0.182565
\(784\) 0 0
\(785\) 3670.00 0.166864
\(786\) 0 0
\(787\) −32624.0 −1.47766 −0.738831 0.673891i \(-0.764622\pi\)
−0.738831 + 0.673891i \(0.764622\pi\)
\(788\) 0 0
\(789\) −5824.00 −0.262788
\(790\) 0 0
\(791\) 5586.00 0.251094
\(792\) 0 0
\(793\) 21684.0 0.971023
\(794\) 0 0
\(795\) 880.000 0.0392583
\(796\) 0 0
\(797\) −11346.0 −0.504261 −0.252130 0.967693i \(-0.581131\pi\)
−0.252130 + 0.967693i \(0.581131\pi\)
\(798\) 0 0
\(799\) 50384.0 2.23086
\(800\) 0 0
\(801\) −32190.0 −1.41995
\(802\) 0 0
\(803\) 984.000 0.0432436
\(804\) 0 0
\(805\) 1120.00 0.0490370
\(806\) 0 0
\(807\) 46480.0 2.02748
\(808\) 0 0
\(809\) −35190.0 −1.52931 −0.764657 0.644438i \(-0.777091\pi\)
−0.764657 + 0.644438i \(0.777091\pi\)
\(810\) 0 0
\(811\) 30432.0 1.31765 0.658824 0.752297i \(-0.271054\pi\)
0.658824 + 0.752297i \(0.271054\pi\)
\(812\) 0 0
\(813\) −52224.0 −2.25286
\(814\) 0 0
\(815\) 12660.0 0.544123
\(816\) 0 0
\(817\) −2720.00 −0.116476
\(818\) 0 0
\(819\) −20202.0 −0.861923
\(820\) 0 0
\(821\) −12702.0 −0.539955 −0.269977 0.962867i \(-0.587016\pi\)
−0.269977 + 0.962867i \(0.587016\pi\)
\(822\) 0 0
\(823\) −16952.0 −0.717995 −0.358997 0.933339i \(-0.616881\pi\)
−0.358997 + 0.933339i \(0.616881\pi\)
\(824\) 0 0
\(825\) −2400.00 −0.101282
\(826\) 0 0
\(827\) −25404.0 −1.06818 −0.534089 0.845428i \(-0.679345\pi\)
−0.534089 + 0.845428i \(0.679345\pi\)
\(828\) 0 0
\(829\) −26250.0 −1.09976 −0.549879 0.835244i \(-0.685326\pi\)
−0.549879 + 0.835244i \(0.685326\pi\)
\(830\) 0 0
\(831\) 41008.0 1.71186
\(832\) 0 0
\(833\) −4606.00 −0.191583
\(834\) 0 0
\(835\) −2080.00 −0.0862052
\(836\) 0 0
\(837\) −19840.0 −0.819320
\(838\) 0 0
\(839\) 15360.0 0.632045 0.316023 0.948752i \(-0.397652\pi\)
0.316023 + 0.948752i \(0.397652\pi\)
\(840\) 0 0
\(841\) −21889.0 −0.897495
\(842\) 0 0
\(843\) 18864.0 0.770713
\(844\) 0 0
\(845\) 19435.0 0.791224
\(846\) 0 0
\(847\) 8309.00 0.337073
\(848\) 0 0
\(849\) −3136.00 −0.126769
\(850\) 0 0
\(851\) −13888.0 −0.559430
\(852\) 0 0
\(853\) −10362.0 −0.415930 −0.207965 0.978136i \(-0.566684\pi\)
−0.207965 + 0.978136i \(0.566684\pi\)
\(854\) 0 0
\(855\) 7400.00 0.295994
\(856\) 0 0
\(857\) 4506.00 0.179606 0.0898028 0.995960i \(-0.471376\pi\)
0.0898028 + 0.995960i \(0.471376\pi\)
\(858\) 0 0
\(859\) 24200.0 0.961226 0.480613 0.876933i \(-0.340414\pi\)
0.480613 + 0.876933i \(0.340414\pi\)
\(860\) 0 0
\(861\) 22512.0 0.891065
\(862\) 0 0
\(863\) 37008.0 1.45975 0.729877 0.683579i \(-0.239578\pi\)
0.729877 + 0.683579i \(0.239578\pi\)
\(864\) 0 0
\(865\) −15210.0 −0.597868
\(866\) 0 0
\(867\) −31384.0 −1.22936
\(868\) 0 0
\(869\) 12000.0 0.468437
\(870\) 0 0
\(871\) −12792.0 −0.497635
\(872\) 0 0
\(873\) 37962.0 1.47173
\(874\) 0 0
\(875\) −875.000 −0.0338062
\(876\) 0 0
\(877\) −3446.00 −0.132683 −0.0663416 0.997797i \(-0.521133\pi\)
−0.0663416 + 0.997797i \(0.521133\pi\)
\(878\) 0 0
\(879\) 9616.00 0.368987
\(880\) 0 0
\(881\) −16158.0 −0.617908 −0.308954 0.951077i \(-0.599979\pi\)
−0.308954 + 0.951077i \(0.599979\pi\)
\(882\) 0 0
\(883\) −44708.0 −1.70390 −0.851950 0.523623i \(-0.824580\pi\)
−0.851950 + 0.523623i \(0.824580\pi\)
\(884\) 0 0
\(885\) 22400.0 0.850811
\(886\) 0 0
\(887\) 23504.0 0.889726 0.444863 0.895599i \(-0.353252\pi\)
0.444863 + 0.895599i \(0.353252\pi\)
\(888\) 0 0
\(889\) 5432.00 0.204931
\(890\) 0 0
\(891\) −4308.00 −0.161979
\(892\) 0 0
\(893\) −21440.0 −0.803429
\(894\) 0 0
\(895\) −900.000 −0.0336131
\(896\) 0 0
\(897\) 19968.0 0.743269
\(898\) 0 0
\(899\) 12400.0 0.460026
\(900\) 0 0
\(901\) 2068.00 0.0764651
\(902\) 0 0
\(903\) −3808.00 −0.140335
\(904\) 0 0
\(905\) 9790.00 0.359592
\(906\) 0 0
\(907\) 42436.0 1.55354 0.776772 0.629782i \(-0.216856\pi\)
0.776772 + 0.629782i \(0.216856\pi\)
\(908\) 0 0
\(909\) −17834.0 −0.650733
\(910\) 0 0
\(911\) 7968.00 0.289782 0.144891 0.989448i \(-0.453717\pi\)
0.144891 + 0.989448i \(0.453717\pi\)
\(912\) 0 0
\(913\) −5376.00 −0.194874
\(914\) 0 0
\(915\) −11120.0 −0.401766
\(916\) 0 0
\(917\) −7784.00 −0.280317
\(918\) 0 0
\(919\) −14880.0 −0.534109 −0.267054 0.963681i \(-0.586050\pi\)
−0.267054 + 0.963681i \(0.586050\pi\)
\(920\) 0 0
\(921\) 51072.0 1.82723
\(922\) 0 0
\(923\) −52416.0 −1.86922
\(924\) 0 0
\(925\) 10850.0 0.385671
\(926\) 0 0
\(927\) −10064.0 −0.356575
\(928\) 0 0
\(929\) 27610.0 0.975086 0.487543 0.873099i \(-0.337893\pi\)
0.487543 + 0.873099i \(0.337893\pi\)
\(930\) 0 0
\(931\) 1960.00 0.0689972
\(932\) 0 0
\(933\) −39744.0 −1.39460
\(934\) 0 0
\(935\) −5640.00 −0.197270
\(936\) 0 0
\(937\) −28094.0 −0.979499 −0.489750 0.871863i \(-0.662912\pi\)
−0.489750 + 0.871863i \(0.662912\pi\)
\(938\) 0 0
\(939\) 22064.0 0.766807
\(940\) 0 0
\(941\) 12198.0 0.422575 0.211288 0.977424i \(-0.432234\pi\)
0.211288 + 0.977424i \(0.432234\pi\)
\(942\) 0 0
\(943\) −12864.0 −0.444231
\(944\) 0 0
\(945\) 2800.00 0.0963852
\(946\) 0 0
\(947\) 31316.0 1.07459 0.537293 0.843396i \(-0.319447\pi\)
0.537293 + 0.843396i \(0.319447\pi\)
\(948\) 0 0
\(949\) 6396.00 0.218781
\(950\) 0 0
\(951\) −50192.0 −1.71145
\(952\) 0 0
\(953\) 27322.0 0.928695 0.464348 0.885653i \(-0.346289\pi\)
0.464348 + 0.885653i \(0.346289\pi\)
\(954\) 0 0
\(955\) 14440.0 0.489285
\(956\) 0 0
\(957\) −4800.00 −0.162134
\(958\) 0 0
\(959\) 4858.00 0.163580
\(960\) 0 0
\(961\) 31713.0 1.06452
\(962\) 0 0
\(963\) −16428.0 −0.549725
\(964\) 0 0
\(965\) 8010.00 0.267203
\(966\) 0 0
\(967\) −5296.00 −0.176120 −0.0880599 0.996115i \(-0.528067\pi\)
−0.0880599 + 0.996115i \(0.528067\pi\)
\(968\) 0 0
\(969\) 30080.0 0.997223
\(970\) 0 0
\(971\) 512.000 0.0169216 0.00846079 0.999964i \(-0.497307\pi\)
0.00846079 + 0.999964i \(0.497307\pi\)
\(972\) 0 0
\(973\) −2520.00 −0.0830293
\(974\) 0 0
\(975\) −15600.0 −0.512410
\(976\) 0 0
\(977\) −20734.0 −0.678955 −0.339478 0.940614i \(-0.610250\pi\)
−0.339478 + 0.940614i \(0.610250\pi\)
\(978\) 0 0
\(979\) −10440.0 −0.340821
\(980\) 0 0
\(981\) 43290.0 1.40891
\(982\) 0 0
\(983\) 61168.0 1.98470 0.992348 0.123472i \(-0.0394030\pi\)
0.992348 + 0.123472i \(0.0394030\pi\)
\(984\) 0 0
\(985\) 23970.0 0.775378
\(986\) 0 0
\(987\) −30016.0 −0.968004
\(988\) 0 0
\(989\) 2176.00 0.0699624
\(990\) 0 0
\(991\) 47928.0 1.53631 0.768155 0.640264i \(-0.221175\pi\)
0.768155 + 0.640264i \(0.221175\pi\)
\(992\) 0 0
\(993\) −15456.0 −0.493939
\(994\) 0 0
\(995\) −6400.00 −0.203913
\(996\) 0 0
\(997\) 9454.00 0.300312 0.150156 0.988662i \(-0.452022\pi\)
0.150156 + 0.988662i \(0.452022\pi\)
\(998\) 0 0
\(999\) −34720.0 −1.09959
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2240.4.a.b.1.1 1
4.3 odd 2 2240.4.a.bk.1.1 1
8.3 odd 2 35.4.a.a.1.1 1
8.5 even 2 560.4.a.p.1.1 1
24.11 even 2 315.4.a.c.1.1 1
40.3 even 4 175.4.b.a.99.1 2
40.19 odd 2 175.4.a.a.1.1 1
40.27 even 4 175.4.b.a.99.2 2
56.3 even 6 245.4.e.b.226.1 2
56.11 odd 6 245.4.e.e.226.1 2
56.19 even 6 245.4.e.b.116.1 2
56.27 even 2 245.4.a.d.1.1 1
56.51 odd 6 245.4.e.e.116.1 2
120.59 even 2 1575.4.a.g.1.1 1
168.83 odd 2 2205.4.a.i.1.1 1
280.139 even 2 1225.4.a.e.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
35.4.a.a.1.1 1 8.3 odd 2
175.4.a.a.1.1 1 40.19 odd 2
175.4.b.a.99.1 2 40.3 even 4
175.4.b.a.99.2 2 40.27 even 4
245.4.a.d.1.1 1 56.27 even 2
245.4.e.b.116.1 2 56.19 even 6
245.4.e.b.226.1 2 56.3 even 6
245.4.e.e.116.1 2 56.51 odd 6
245.4.e.e.226.1 2 56.11 odd 6
315.4.a.c.1.1 1 24.11 even 2
560.4.a.p.1.1 1 8.5 even 2
1225.4.a.e.1.1 1 280.139 even 2
1575.4.a.g.1.1 1 120.59 even 2
2205.4.a.i.1.1 1 168.83 odd 2
2240.4.a.b.1.1 1 1.1 even 1 trivial
2240.4.a.bk.1.1 1 4.3 odd 2