Properties

Label 2240.4.a.bg.1.1
Level $2240$
Weight $4$
Character 2240.1
Self dual yes
Analytic conductor $132.164$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2240,4,Mod(1,2240)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2240, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2240.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2240 = 2^{6} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2240.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(132.164278413\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 280)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 2240.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+7.00000 q^{3} -5.00000 q^{5} -7.00000 q^{7} +22.0000 q^{9} +9.00000 q^{11} -23.0000 q^{13} -35.0000 q^{15} +41.0000 q^{17} +34.0000 q^{19} -49.0000 q^{21} +6.00000 q^{23} +25.0000 q^{25} -35.0000 q^{27} -131.000 q^{29} -4.00000 q^{31} +63.0000 q^{33} +35.0000 q^{35} -26.0000 q^{37} -161.000 q^{39} -260.000 q^{41} -190.000 q^{43} -110.000 q^{45} -167.000 q^{47} +49.0000 q^{49} +287.000 q^{51} +368.000 q^{53} -45.0000 q^{55} +238.000 q^{57} +324.000 q^{59} +164.000 q^{61} -154.000 q^{63} +115.000 q^{65} +200.000 q^{67} +42.0000 q^{69} -784.000 q^{71} -410.000 q^{73} +175.000 q^{75} -63.0000 q^{77} -1211.00 q^{79} -839.000 q^{81} -1132.00 q^{83} -205.000 q^{85} -917.000 q^{87} -72.0000 q^{89} +161.000 q^{91} -28.0000 q^{93} -170.000 q^{95} -707.000 q^{97} +198.000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 7.00000 1.34715 0.673575 0.739119i \(-0.264758\pi\)
0.673575 + 0.739119i \(0.264758\pi\)
\(4\) 0 0
\(5\) −5.00000 −0.447214
\(6\) 0 0
\(7\) −7.00000 −0.377964
\(8\) 0 0
\(9\) 22.0000 0.814815
\(10\) 0 0
\(11\) 9.00000 0.246691 0.123346 0.992364i \(-0.460638\pi\)
0.123346 + 0.992364i \(0.460638\pi\)
\(12\) 0 0
\(13\) −23.0000 −0.490696 −0.245348 0.969435i \(-0.578902\pi\)
−0.245348 + 0.969435i \(0.578902\pi\)
\(14\) 0 0
\(15\) −35.0000 −0.602464
\(16\) 0 0
\(17\) 41.0000 0.584939 0.292469 0.956275i \(-0.405523\pi\)
0.292469 + 0.956275i \(0.405523\pi\)
\(18\) 0 0
\(19\) 34.0000 0.410533 0.205267 0.978706i \(-0.434194\pi\)
0.205267 + 0.978706i \(0.434194\pi\)
\(20\) 0 0
\(21\) −49.0000 −0.509175
\(22\) 0 0
\(23\) 6.00000 0.0543951 0.0271975 0.999630i \(-0.491342\pi\)
0.0271975 + 0.999630i \(0.491342\pi\)
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) 0 0
\(27\) −35.0000 −0.249472
\(28\) 0 0
\(29\) −131.000 −0.838831 −0.419415 0.907794i \(-0.637765\pi\)
−0.419415 + 0.907794i \(0.637765\pi\)
\(30\) 0 0
\(31\) −4.00000 −0.0231749 −0.0115874 0.999933i \(-0.503688\pi\)
−0.0115874 + 0.999933i \(0.503688\pi\)
\(32\) 0 0
\(33\) 63.0000 0.332330
\(34\) 0 0
\(35\) 35.0000 0.169031
\(36\) 0 0
\(37\) −26.0000 −0.115524 −0.0577618 0.998330i \(-0.518396\pi\)
−0.0577618 + 0.998330i \(0.518396\pi\)
\(38\) 0 0
\(39\) −161.000 −0.661042
\(40\) 0 0
\(41\) −260.000 −0.990370 −0.495185 0.868787i \(-0.664900\pi\)
−0.495185 + 0.868787i \(0.664900\pi\)
\(42\) 0 0
\(43\) −190.000 −0.673831 −0.336915 0.941535i \(-0.609384\pi\)
−0.336915 + 0.941535i \(0.609384\pi\)
\(44\) 0 0
\(45\) −110.000 −0.364396
\(46\) 0 0
\(47\) −167.000 −0.518286 −0.259143 0.965839i \(-0.583440\pi\)
−0.259143 + 0.965839i \(0.583440\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) 0 0
\(51\) 287.000 0.788001
\(52\) 0 0
\(53\) 368.000 0.953749 0.476874 0.878971i \(-0.341770\pi\)
0.476874 + 0.878971i \(0.341770\pi\)
\(54\) 0 0
\(55\) −45.0000 −0.110324
\(56\) 0 0
\(57\) 238.000 0.553050
\(58\) 0 0
\(59\) 324.000 0.714936 0.357468 0.933925i \(-0.383640\pi\)
0.357468 + 0.933925i \(0.383640\pi\)
\(60\) 0 0
\(61\) 164.000 0.344230 0.172115 0.985077i \(-0.444940\pi\)
0.172115 + 0.985077i \(0.444940\pi\)
\(62\) 0 0
\(63\) −154.000 −0.307971
\(64\) 0 0
\(65\) 115.000 0.219446
\(66\) 0 0
\(67\) 200.000 0.364685 0.182342 0.983235i \(-0.441632\pi\)
0.182342 + 0.983235i \(0.441632\pi\)
\(68\) 0 0
\(69\) 42.0000 0.0732783
\(70\) 0 0
\(71\) −784.000 −1.31047 −0.655237 0.755423i \(-0.727431\pi\)
−0.655237 + 0.755423i \(0.727431\pi\)
\(72\) 0 0
\(73\) −410.000 −0.657354 −0.328677 0.944442i \(-0.606603\pi\)
−0.328677 + 0.944442i \(0.606603\pi\)
\(74\) 0 0
\(75\) 175.000 0.269430
\(76\) 0 0
\(77\) −63.0000 −0.0932405
\(78\) 0 0
\(79\) −1211.00 −1.72466 −0.862330 0.506347i \(-0.830996\pi\)
−0.862330 + 0.506347i \(0.830996\pi\)
\(80\) 0 0
\(81\) −839.000 −1.15089
\(82\) 0 0
\(83\) −1132.00 −1.49703 −0.748513 0.663120i \(-0.769232\pi\)
−0.748513 + 0.663120i \(0.769232\pi\)
\(84\) 0 0
\(85\) −205.000 −0.261593
\(86\) 0 0
\(87\) −917.000 −1.13003
\(88\) 0 0
\(89\) −72.0000 −0.0857526 −0.0428763 0.999080i \(-0.513652\pi\)
−0.0428763 + 0.999080i \(0.513652\pi\)
\(90\) 0 0
\(91\) 161.000 0.185466
\(92\) 0 0
\(93\) −28.0000 −0.0312201
\(94\) 0 0
\(95\) −170.000 −0.183596
\(96\) 0 0
\(97\) −707.000 −0.740051 −0.370026 0.929022i \(-0.620651\pi\)
−0.370026 + 0.929022i \(0.620651\pi\)
\(98\) 0 0
\(99\) 198.000 0.201008
\(100\) 0 0
\(101\) 1410.00 1.38911 0.694556 0.719439i \(-0.255601\pi\)
0.694556 + 0.719439i \(0.255601\pi\)
\(102\) 0 0
\(103\) 813.000 0.777740 0.388870 0.921293i \(-0.372865\pi\)
0.388870 + 0.921293i \(0.372865\pi\)
\(104\) 0 0
\(105\) 245.000 0.227710
\(106\) 0 0
\(107\) 1078.00 0.973964 0.486982 0.873412i \(-0.338098\pi\)
0.486982 + 0.873412i \(0.338098\pi\)
\(108\) 0 0
\(109\) 2135.00 1.87611 0.938055 0.346487i \(-0.112626\pi\)
0.938055 + 0.346487i \(0.112626\pi\)
\(110\) 0 0
\(111\) −182.000 −0.155628
\(112\) 0 0
\(113\) 158.000 0.131534 0.0657672 0.997835i \(-0.479051\pi\)
0.0657672 + 0.997835i \(0.479051\pi\)
\(114\) 0 0
\(115\) −30.0000 −0.0243262
\(116\) 0 0
\(117\) −506.000 −0.399827
\(118\) 0 0
\(119\) −287.000 −0.221086
\(120\) 0 0
\(121\) −1250.00 −0.939144
\(122\) 0 0
\(123\) −1820.00 −1.33418
\(124\) 0 0
\(125\) −125.000 −0.0894427
\(126\) 0 0
\(127\) −604.000 −0.422018 −0.211009 0.977484i \(-0.567675\pi\)
−0.211009 + 0.977484i \(0.567675\pi\)
\(128\) 0 0
\(129\) −1330.00 −0.907752
\(130\) 0 0
\(131\) −1914.00 −1.27654 −0.638271 0.769812i \(-0.720350\pi\)
−0.638271 + 0.769812i \(0.720350\pi\)
\(132\) 0 0
\(133\) −238.000 −0.155167
\(134\) 0 0
\(135\) 175.000 0.111567
\(136\) 0 0
\(137\) −2144.00 −1.33704 −0.668519 0.743695i \(-0.733072\pi\)
−0.668519 + 0.743695i \(0.733072\pi\)
\(138\) 0 0
\(139\) −2266.00 −1.38273 −0.691366 0.722505i \(-0.742991\pi\)
−0.691366 + 0.722505i \(0.742991\pi\)
\(140\) 0 0
\(141\) −1169.00 −0.698210
\(142\) 0 0
\(143\) −207.000 −0.121050
\(144\) 0 0
\(145\) 655.000 0.375136
\(146\) 0 0
\(147\) 343.000 0.192450
\(148\) 0 0
\(149\) 1854.00 1.01937 0.509683 0.860362i \(-0.329763\pi\)
0.509683 + 0.860362i \(0.329763\pi\)
\(150\) 0 0
\(151\) 1037.00 0.558873 0.279437 0.960164i \(-0.409852\pi\)
0.279437 + 0.960164i \(0.409852\pi\)
\(152\) 0 0
\(153\) 902.000 0.476617
\(154\) 0 0
\(155\) 20.0000 0.0103641
\(156\) 0 0
\(157\) −1058.00 −0.537819 −0.268910 0.963165i \(-0.586663\pi\)
−0.268910 + 0.963165i \(0.586663\pi\)
\(158\) 0 0
\(159\) 2576.00 1.28484
\(160\) 0 0
\(161\) −42.0000 −0.0205594
\(162\) 0 0
\(163\) −2810.00 −1.35028 −0.675142 0.737688i \(-0.735918\pi\)
−0.675142 + 0.737688i \(0.735918\pi\)
\(164\) 0 0
\(165\) −315.000 −0.148623
\(166\) 0 0
\(167\) −1395.00 −0.646397 −0.323199 0.946331i \(-0.604758\pi\)
−0.323199 + 0.946331i \(0.604758\pi\)
\(168\) 0 0
\(169\) −1668.00 −0.759217
\(170\) 0 0
\(171\) 748.000 0.334509
\(172\) 0 0
\(173\) −4445.00 −1.95345 −0.976726 0.214492i \(-0.931190\pi\)
−0.976726 + 0.214492i \(0.931190\pi\)
\(174\) 0 0
\(175\) −175.000 −0.0755929
\(176\) 0 0
\(177\) 2268.00 0.963126
\(178\) 0 0
\(179\) −1740.00 −0.726557 −0.363279 0.931681i \(-0.618343\pi\)
−0.363279 + 0.931681i \(0.618343\pi\)
\(180\) 0 0
\(181\) −2488.00 −1.02172 −0.510861 0.859663i \(-0.670673\pi\)
−0.510861 + 0.859663i \(0.670673\pi\)
\(182\) 0 0
\(183\) 1148.00 0.463730
\(184\) 0 0
\(185\) 130.000 0.0516637
\(186\) 0 0
\(187\) 369.000 0.144299
\(188\) 0 0
\(189\) 245.000 0.0942917
\(190\) 0 0
\(191\) −2053.00 −0.777748 −0.388874 0.921291i \(-0.627136\pi\)
−0.388874 + 0.921291i \(0.627136\pi\)
\(192\) 0 0
\(193\) 448.000 0.167087 0.0835434 0.996504i \(-0.473376\pi\)
0.0835434 + 0.996504i \(0.473376\pi\)
\(194\) 0 0
\(195\) 805.000 0.295627
\(196\) 0 0
\(197\) −3312.00 −1.19782 −0.598909 0.800817i \(-0.704399\pi\)
−0.598909 + 0.800817i \(0.704399\pi\)
\(198\) 0 0
\(199\) −1060.00 −0.377595 −0.188798 0.982016i \(-0.560459\pi\)
−0.188798 + 0.982016i \(0.560459\pi\)
\(200\) 0 0
\(201\) 1400.00 0.491286
\(202\) 0 0
\(203\) 917.000 0.317048
\(204\) 0 0
\(205\) 1300.00 0.442907
\(206\) 0 0
\(207\) 132.000 0.0443219
\(208\) 0 0
\(209\) 306.000 0.101275
\(210\) 0 0
\(211\) 1711.00 0.558247 0.279123 0.960255i \(-0.409956\pi\)
0.279123 + 0.960255i \(0.409956\pi\)
\(212\) 0 0
\(213\) −5488.00 −1.76541
\(214\) 0 0
\(215\) 950.000 0.301346
\(216\) 0 0
\(217\) 28.0000 0.00875928
\(218\) 0 0
\(219\) −2870.00 −0.885555
\(220\) 0 0
\(221\) −943.000 −0.287027
\(222\) 0 0
\(223\) −795.000 −0.238732 −0.119366 0.992850i \(-0.538086\pi\)
−0.119366 + 0.992850i \(0.538086\pi\)
\(224\) 0 0
\(225\) 550.000 0.162963
\(226\) 0 0
\(227\) 5899.00 1.72480 0.862402 0.506225i \(-0.168959\pi\)
0.862402 + 0.506225i \(0.168959\pi\)
\(228\) 0 0
\(229\) 2468.00 0.712184 0.356092 0.934451i \(-0.384109\pi\)
0.356092 + 0.934451i \(0.384109\pi\)
\(230\) 0 0
\(231\) −441.000 −0.125609
\(232\) 0 0
\(233\) −3960.00 −1.11343 −0.556713 0.830705i \(-0.687938\pi\)
−0.556713 + 0.830705i \(0.687938\pi\)
\(234\) 0 0
\(235\) 835.000 0.231785
\(236\) 0 0
\(237\) −8477.00 −2.32338
\(238\) 0 0
\(239\) −1183.00 −0.320175 −0.160088 0.987103i \(-0.551178\pi\)
−0.160088 + 0.987103i \(0.551178\pi\)
\(240\) 0 0
\(241\) −2878.00 −0.769246 −0.384623 0.923074i \(-0.625669\pi\)
−0.384623 + 0.923074i \(0.625669\pi\)
\(242\) 0 0
\(243\) −4928.00 −1.30095
\(244\) 0 0
\(245\) −245.000 −0.0638877
\(246\) 0 0
\(247\) −782.000 −0.201447
\(248\) 0 0
\(249\) −7924.00 −2.01672
\(250\) 0 0
\(251\) 5570.00 1.40070 0.700349 0.713800i \(-0.253028\pi\)
0.700349 + 0.713800i \(0.253028\pi\)
\(252\) 0 0
\(253\) 54.0000 0.0134188
\(254\) 0 0
\(255\) −1435.00 −0.352405
\(256\) 0 0
\(257\) 2594.00 0.629608 0.314804 0.949157i \(-0.398061\pi\)
0.314804 + 0.949157i \(0.398061\pi\)
\(258\) 0 0
\(259\) 182.000 0.0436638
\(260\) 0 0
\(261\) −2882.00 −0.683492
\(262\) 0 0
\(263\) −638.000 −0.149585 −0.0747923 0.997199i \(-0.523829\pi\)
−0.0747923 + 0.997199i \(0.523829\pi\)
\(264\) 0 0
\(265\) −1840.00 −0.426529
\(266\) 0 0
\(267\) −504.000 −0.115522
\(268\) 0 0
\(269\) −1106.00 −0.250684 −0.125342 0.992114i \(-0.540003\pi\)
−0.125342 + 0.992114i \(0.540003\pi\)
\(270\) 0 0
\(271\) 8084.00 1.81206 0.906030 0.423214i \(-0.139098\pi\)
0.906030 + 0.423214i \(0.139098\pi\)
\(272\) 0 0
\(273\) 1127.00 0.249850
\(274\) 0 0
\(275\) 225.000 0.0493382
\(276\) 0 0
\(277\) 2854.00 0.619062 0.309531 0.950889i \(-0.399828\pi\)
0.309531 + 0.950889i \(0.399828\pi\)
\(278\) 0 0
\(279\) −88.0000 −0.0188832
\(280\) 0 0
\(281\) −165.000 −0.0350287 −0.0175144 0.999847i \(-0.505575\pi\)
−0.0175144 + 0.999847i \(0.505575\pi\)
\(282\) 0 0
\(283\) 4973.00 1.04457 0.522287 0.852770i \(-0.325079\pi\)
0.522287 + 0.852770i \(0.325079\pi\)
\(284\) 0 0
\(285\) −1190.00 −0.247332
\(286\) 0 0
\(287\) 1820.00 0.374325
\(288\) 0 0
\(289\) −3232.00 −0.657847
\(290\) 0 0
\(291\) −4949.00 −0.996961
\(292\) 0 0
\(293\) −7593.00 −1.51395 −0.756976 0.653443i \(-0.773324\pi\)
−0.756976 + 0.653443i \(0.773324\pi\)
\(294\) 0 0
\(295\) −1620.00 −0.319729
\(296\) 0 0
\(297\) −315.000 −0.0615426
\(298\) 0 0
\(299\) −138.000 −0.0266915
\(300\) 0 0
\(301\) 1330.00 0.254684
\(302\) 0 0
\(303\) 9870.00 1.87134
\(304\) 0 0
\(305\) −820.000 −0.153944
\(306\) 0 0
\(307\) 8205.00 1.52536 0.762678 0.646779i \(-0.223884\pi\)
0.762678 + 0.646779i \(0.223884\pi\)
\(308\) 0 0
\(309\) 5691.00 1.04773
\(310\) 0 0
\(311\) 1430.00 0.260733 0.130366 0.991466i \(-0.458385\pi\)
0.130366 + 0.991466i \(0.458385\pi\)
\(312\) 0 0
\(313\) −1081.00 −0.195213 −0.0976066 0.995225i \(-0.531119\pi\)
−0.0976066 + 0.995225i \(0.531119\pi\)
\(314\) 0 0
\(315\) 770.000 0.137729
\(316\) 0 0
\(317\) −5326.00 −0.943653 −0.471826 0.881691i \(-0.656405\pi\)
−0.471826 + 0.881691i \(0.656405\pi\)
\(318\) 0 0
\(319\) −1179.00 −0.206932
\(320\) 0 0
\(321\) 7546.00 1.31208
\(322\) 0 0
\(323\) 1394.00 0.240137
\(324\) 0 0
\(325\) −575.000 −0.0981393
\(326\) 0 0
\(327\) 14945.0 2.52740
\(328\) 0 0
\(329\) 1169.00 0.195894
\(330\) 0 0
\(331\) −1732.00 −0.287611 −0.143806 0.989606i \(-0.545934\pi\)
−0.143806 + 0.989606i \(0.545934\pi\)
\(332\) 0 0
\(333\) −572.000 −0.0941304
\(334\) 0 0
\(335\) −1000.00 −0.163092
\(336\) 0 0
\(337\) 2002.00 0.323608 0.161804 0.986823i \(-0.448269\pi\)
0.161804 + 0.986823i \(0.448269\pi\)
\(338\) 0 0
\(339\) 1106.00 0.177197
\(340\) 0 0
\(341\) −36.0000 −0.00571704
\(342\) 0 0
\(343\) −343.000 −0.0539949
\(344\) 0 0
\(345\) −210.000 −0.0327711
\(346\) 0 0
\(347\) 6054.00 0.936587 0.468294 0.883573i \(-0.344869\pi\)
0.468294 + 0.883573i \(0.344869\pi\)
\(348\) 0 0
\(349\) −10162.0 −1.55862 −0.779311 0.626637i \(-0.784431\pi\)
−0.779311 + 0.626637i \(0.784431\pi\)
\(350\) 0 0
\(351\) 805.000 0.122415
\(352\) 0 0
\(353\) 5893.00 0.888535 0.444267 0.895894i \(-0.353464\pi\)
0.444267 + 0.895894i \(0.353464\pi\)
\(354\) 0 0
\(355\) 3920.00 0.586062
\(356\) 0 0
\(357\) −2009.00 −0.297836
\(358\) 0 0
\(359\) −6896.00 −1.01381 −0.506904 0.862003i \(-0.669210\pi\)
−0.506904 + 0.862003i \(0.669210\pi\)
\(360\) 0 0
\(361\) −5703.00 −0.831462
\(362\) 0 0
\(363\) −8750.00 −1.26517
\(364\) 0 0
\(365\) 2050.00 0.293978
\(366\) 0 0
\(367\) 5729.00 0.814854 0.407427 0.913238i \(-0.366426\pi\)
0.407427 + 0.913238i \(0.366426\pi\)
\(368\) 0 0
\(369\) −5720.00 −0.806968
\(370\) 0 0
\(371\) −2576.00 −0.360483
\(372\) 0 0
\(373\) 11800.0 1.63802 0.819009 0.573780i \(-0.194524\pi\)
0.819009 + 0.573780i \(0.194524\pi\)
\(374\) 0 0
\(375\) −875.000 −0.120493
\(376\) 0 0
\(377\) 3013.00 0.411611
\(378\) 0 0
\(379\) 8548.00 1.15853 0.579263 0.815141i \(-0.303340\pi\)
0.579263 + 0.815141i \(0.303340\pi\)
\(380\) 0 0
\(381\) −4228.00 −0.568522
\(382\) 0 0
\(383\) −1668.00 −0.222535 −0.111267 0.993791i \(-0.535491\pi\)
−0.111267 + 0.993791i \(0.535491\pi\)
\(384\) 0 0
\(385\) 315.000 0.0416984
\(386\) 0 0
\(387\) −4180.00 −0.549047
\(388\) 0 0
\(389\) 739.000 0.0963208 0.0481604 0.998840i \(-0.484664\pi\)
0.0481604 + 0.998840i \(0.484664\pi\)
\(390\) 0 0
\(391\) 246.000 0.0318178
\(392\) 0 0
\(393\) −13398.0 −1.71969
\(394\) 0 0
\(395\) 6055.00 0.771291
\(396\) 0 0
\(397\) 1235.00 0.156128 0.0780641 0.996948i \(-0.475126\pi\)
0.0780641 + 0.996948i \(0.475126\pi\)
\(398\) 0 0
\(399\) −1666.00 −0.209033
\(400\) 0 0
\(401\) 11313.0 1.40884 0.704419 0.709784i \(-0.251208\pi\)
0.704419 + 0.709784i \(0.251208\pi\)
\(402\) 0 0
\(403\) 92.0000 0.0113718
\(404\) 0 0
\(405\) 4195.00 0.514694
\(406\) 0 0
\(407\) −234.000 −0.0284986
\(408\) 0 0
\(409\) −6942.00 −0.839266 −0.419633 0.907694i \(-0.637841\pi\)
−0.419633 + 0.907694i \(0.637841\pi\)
\(410\) 0 0
\(411\) −15008.0 −1.80119
\(412\) 0 0
\(413\) −2268.00 −0.270220
\(414\) 0 0
\(415\) 5660.00 0.669490
\(416\) 0 0
\(417\) −15862.0 −1.86275
\(418\) 0 0
\(419\) −120.000 −0.0139914 −0.00699568 0.999976i \(-0.502227\pi\)
−0.00699568 + 0.999976i \(0.502227\pi\)
\(420\) 0 0
\(421\) 9479.00 1.09734 0.548668 0.836041i \(-0.315135\pi\)
0.548668 + 0.836041i \(0.315135\pi\)
\(422\) 0 0
\(423\) −3674.00 −0.422307
\(424\) 0 0
\(425\) 1025.00 0.116988
\(426\) 0 0
\(427\) −1148.00 −0.130107
\(428\) 0 0
\(429\) −1449.00 −0.163073
\(430\) 0 0
\(431\) 16239.0 1.81486 0.907431 0.420202i \(-0.138041\pi\)
0.907431 + 0.420202i \(0.138041\pi\)
\(432\) 0 0
\(433\) −7058.00 −0.783339 −0.391670 0.920106i \(-0.628102\pi\)
−0.391670 + 0.920106i \(0.628102\pi\)
\(434\) 0 0
\(435\) 4585.00 0.505365
\(436\) 0 0
\(437\) 204.000 0.0223310
\(438\) 0 0
\(439\) −10810.0 −1.17525 −0.587623 0.809135i \(-0.699936\pi\)
−0.587623 + 0.809135i \(0.699936\pi\)
\(440\) 0 0
\(441\) 1078.00 0.116402
\(442\) 0 0
\(443\) −17830.0 −1.91225 −0.956127 0.292951i \(-0.905363\pi\)
−0.956127 + 0.292951i \(0.905363\pi\)
\(444\) 0 0
\(445\) 360.000 0.0383497
\(446\) 0 0
\(447\) 12978.0 1.37324
\(448\) 0 0
\(449\) 4743.00 0.498521 0.249261 0.968436i \(-0.419812\pi\)
0.249261 + 0.968436i \(0.419812\pi\)
\(450\) 0 0
\(451\) −2340.00 −0.244316
\(452\) 0 0
\(453\) 7259.00 0.752886
\(454\) 0 0
\(455\) −805.000 −0.0829428
\(456\) 0 0
\(457\) −2976.00 −0.304620 −0.152310 0.988333i \(-0.548671\pi\)
−0.152310 + 0.988333i \(0.548671\pi\)
\(458\) 0 0
\(459\) −1435.00 −0.145926
\(460\) 0 0
\(461\) −7872.00 −0.795305 −0.397652 0.917536i \(-0.630175\pi\)
−0.397652 + 0.917536i \(0.630175\pi\)
\(462\) 0 0
\(463\) −3148.00 −0.315983 −0.157991 0.987441i \(-0.550502\pi\)
−0.157991 + 0.987441i \(0.550502\pi\)
\(464\) 0 0
\(465\) 140.000 0.0139620
\(466\) 0 0
\(467\) 8321.00 0.824518 0.412259 0.911067i \(-0.364740\pi\)
0.412259 + 0.911067i \(0.364740\pi\)
\(468\) 0 0
\(469\) −1400.00 −0.137838
\(470\) 0 0
\(471\) −7406.00 −0.724523
\(472\) 0 0
\(473\) −1710.00 −0.166228
\(474\) 0 0
\(475\) 850.000 0.0821067
\(476\) 0 0
\(477\) 8096.00 0.777129
\(478\) 0 0
\(479\) −8518.00 −0.812521 −0.406260 0.913757i \(-0.633167\pi\)
−0.406260 + 0.913757i \(0.633167\pi\)
\(480\) 0 0
\(481\) 598.000 0.0566870
\(482\) 0 0
\(483\) −294.000 −0.0276966
\(484\) 0 0
\(485\) 3535.00 0.330961
\(486\) 0 0
\(487\) 934.000 0.0869067 0.0434534 0.999055i \(-0.486164\pi\)
0.0434534 + 0.999055i \(0.486164\pi\)
\(488\) 0 0
\(489\) −19670.0 −1.81904
\(490\) 0 0
\(491\) 10515.0 0.966467 0.483234 0.875492i \(-0.339462\pi\)
0.483234 + 0.875492i \(0.339462\pi\)
\(492\) 0 0
\(493\) −5371.00 −0.490665
\(494\) 0 0
\(495\) −990.000 −0.0898933
\(496\) 0 0
\(497\) 5488.00 0.495313
\(498\) 0 0
\(499\) 10157.0 0.911202 0.455601 0.890184i \(-0.349424\pi\)
0.455601 + 0.890184i \(0.349424\pi\)
\(500\) 0 0
\(501\) −9765.00 −0.870794
\(502\) 0 0
\(503\) −3197.00 −0.283394 −0.141697 0.989910i \(-0.545256\pi\)
−0.141697 + 0.989910i \(0.545256\pi\)
\(504\) 0 0
\(505\) −7050.00 −0.621229
\(506\) 0 0
\(507\) −11676.0 −1.02278
\(508\) 0 0
\(509\) −8250.00 −0.718418 −0.359209 0.933257i \(-0.616953\pi\)
−0.359209 + 0.933257i \(0.616953\pi\)
\(510\) 0 0
\(511\) 2870.00 0.248457
\(512\) 0 0
\(513\) −1190.00 −0.102417
\(514\) 0 0
\(515\) −4065.00 −0.347816
\(516\) 0 0
\(517\) −1503.00 −0.127857
\(518\) 0 0
\(519\) −31115.0 −2.63159
\(520\) 0 0
\(521\) −8818.00 −0.741504 −0.370752 0.928732i \(-0.620900\pi\)
−0.370752 + 0.928732i \(0.620900\pi\)
\(522\) 0 0
\(523\) 16844.0 1.40829 0.704146 0.710055i \(-0.251330\pi\)
0.704146 + 0.710055i \(0.251330\pi\)
\(524\) 0 0
\(525\) −1225.00 −0.101835
\(526\) 0 0
\(527\) −164.000 −0.0135559
\(528\) 0 0
\(529\) −12131.0 −0.997041
\(530\) 0 0
\(531\) 7128.00 0.582540
\(532\) 0 0
\(533\) 5980.00 0.485971
\(534\) 0 0
\(535\) −5390.00 −0.435570
\(536\) 0 0
\(537\) −12180.0 −0.978782
\(538\) 0 0
\(539\) 441.000 0.0352416
\(540\) 0 0
\(541\) −12659.0 −1.00601 −0.503006 0.864283i \(-0.667773\pi\)
−0.503006 + 0.864283i \(0.667773\pi\)
\(542\) 0 0
\(543\) −17416.0 −1.37641
\(544\) 0 0
\(545\) −10675.0 −0.839022
\(546\) 0 0
\(547\) 21092.0 1.64868 0.824341 0.566094i \(-0.191546\pi\)
0.824341 + 0.566094i \(0.191546\pi\)
\(548\) 0 0
\(549\) 3608.00 0.280484
\(550\) 0 0
\(551\) −4454.00 −0.344368
\(552\) 0 0
\(553\) 8477.00 0.651860
\(554\) 0 0
\(555\) 910.000 0.0695988
\(556\) 0 0
\(557\) −1232.00 −0.0937191 −0.0468595 0.998901i \(-0.514921\pi\)
−0.0468595 + 0.998901i \(0.514921\pi\)
\(558\) 0 0
\(559\) 4370.00 0.330646
\(560\) 0 0
\(561\) 2583.00 0.194393
\(562\) 0 0
\(563\) 9148.00 0.684800 0.342400 0.939554i \(-0.388760\pi\)
0.342400 + 0.939554i \(0.388760\pi\)
\(564\) 0 0
\(565\) −790.000 −0.0588240
\(566\) 0 0
\(567\) 5873.00 0.434996
\(568\) 0 0
\(569\) 19066.0 1.40472 0.702362 0.711820i \(-0.252129\pi\)
0.702362 + 0.711820i \(0.252129\pi\)
\(570\) 0 0
\(571\) −18884.0 −1.38401 −0.692006 0.721892i \(-0.743273\pi\)
−0.692006 + 0.721892i \(0.743273\pi\)
\(572\) 0 0
\(573\) −14371.0 −1.04774
\(574\) 0 0
\(575\) 150.000 0.0108790
\(576\) 0 0
\(577\) −14197.0 −1.02431 −0.512157 0.858892i \(-0.671153\pi\)
−0.512157 + 0.858892i \(0.671153\pi\)
\(578\) 0 0
\(579\) 3136.00 0.225091
\(580\) 0 0
\(581\) 7924.00 0.565823
\(582\) 0 0
\(583\) 3312.00 0.235281
\(584\) 0 0
\(585\) 2530.00 0.178808
\(586\) 0 0
\(587\) −2080.00 −0.146253 −0.0731267 0.997323i \(-0.523298\pi\)
−0.0731267 + 0.997323i \(0.523298\pi\)
\(588\) 0 0
\(589\) −136.000 −0.00951406
\(590\) 0 0
\(591\) −23184.0 −1.61364
\(592\) 0 0
\(593\) 22763.0 1.57633 0.788166 0.615463i \(-0.211031\pi\)
0.788166 + 0.615463i \(0.211031\pi\)
\(594\) 0 0
\(595\) 1435.00 0.0988727
\(596\) 0 0
\(597\) −7420.00 −0.508677
\(598\) 0 0
\(599\) −6113.00 −0.416979 −0.208489 0.978025i \(-0.566855\pi\)
−0.208489 + 0.978025i \(0.566855\pi\)
\(600\) 0 0
\(601\) −10230.0 −0.694327 −0.347163 0.937805i \(-0.612855\pi\)
−0.347163 + 0.937805i \(0.612855\pi\)
\(602\) 0 0
\(603\) 4400.00 0.297151
\(604\) 0 0
\(605\) 6250.00 0.419998
\(606\) 0 0
\(607\) −6597.00 −0.441127 −0.220563 0.975373i \(-0.570790\pi\)
−0.220563 + 0.975373i \(0.570790\pi\)
\(608\) 0 0
\(609\) 6419.00 0.427112
\(610\) 0 0
\(611\) 3841.00 0.254321
\(612\) 0 0
\(613\) −20762.0 −1.36798 −0.683988 0.729493i \(-0.739756\pi\)
−0.683988 + 0.729493i \(0.739756\pi\)
\(614\) 0 0
\(615\) 9100.00 0.596662
\(616\) 0 0
\(617\) −1994.00 −0.130106 −0.0650530 0.997882i \(-0.520722\pi\)
−0.0650530 + 0.997882i \(0.520722\pi\)
\(618\) 0 0
\(619\) −14362.0 −0.932565 −0.466282 0.884636i \(-0.654407\pi\)
−0.466282 + 0.884636i \(0.654407\pi\)
\(620\) 0 0
\(621\) −210.000 −0.0135701
\(622\) 0 0
\(623\) 504.000 0.0324115
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) 0 0
\(627\) 2142.00 0.136433
\(628\) 0 0
\(629\) −1066.00 −0.0675743
\(630\) 0 0
\(631\) −13337.0 −0.841422 −0.420711 0.907195i \(-0.638219\pi\)
−0.420711 + 0.907195i \(0.638219\pi\)
\(632\) 0 0
\(633\) 11977.0 0.752043
\(634\) 0 0
\(635\) 3020.00 0.188732
\(636\) 0 0
\(637\) −1127.00 −0.0700995
\(638\) 0 0
\(639\) −17248.0 −1.06779
\(640\) 0 0
\(641\) 12882.0 0.793773 0.396886 0.917868i \(-0.370091\pi\)
0.396886 + 0.917868i \(0.370091\pi\)
\(642\) 0 0
\(643\) −2465.00 −0.151182 −0.0755911 0.997139i \(-0.524084\pi\)
−0.0755911 + 0.997139i \(0.524084\pi\)
\(644\) 0 0
\(645\) 6650.00 0.405959
\(646\) 0 0
\(647\) 18696.0 1.13604 0.568018 0.823016i \(-0.307710\pi\)
0.568018 + 0.823016i \(0.307710\pi\)
\(648\) 0 0
\(649\) 2916.00 0.176368
\(650\) 0 0
\(651\) 196.000 0.0118001
\(652\) 0 0
\(653\) −1542.00 −0.0924091 −0.0462045 0.998932i \(-0.514713\pi\)
−0.0462045 + 0.998932i \(0.514713\pi\)
\(654\) 0 0
\(655\) 9570.00 0.570887
\(656\) 0 0
\(657\) −9020.00 −0.535622
\(658\) 0 0
\(659\) −2819.00 −0.166635 −0.0833176 0.996523i \(-0.526552\pi\)
−0.0833176 + 0.996523i \(0.526552\pi\)
\(660\) 0 0
\(661\) 30128.0 1.77283 0.886417 0.462887i \(-0.153187\pi\)
0.886417 + 0.462887i \(0.153187\pi\)
\(662\) 0 0
\(663\) −6601.00 −0.386669
\(664\) 0 0
\(665\) 1190.00 0.0693928
\(666\) 0 0
\(667\) −786.000 −0.0456282
\(668\) 0 0
\(669\) −5565.00 −0.321607
\(670\) 0 0
\(671\) 1476.00 0.0849186
\(672\) 0 0
\(673\) 12520.0 0.717103 0.358552 0.933510i \(-0.383271\pi\)
0.358552 + 0.933510i \(0.383271\pi\)
\(674\) 0 0
\(675\) −875.000 −0.0498945
\(676\) 0 0
\(677\) 8521.00 0.483735 0.241868 0.970309i \(-0.422240\pi\)
0.241868 + 0.970309i \(0.422240\pi\)
\(678\) 0 0
\(679\) 4949.00 0.279713
\(680\) 0 0
\(681\) 41293.0 2.32357
\(682\) 0 0
\(683\) −16788.0 −0.940520 −0.470260 0.882528i \(-0.655840\pi\)
−0.470260 + 0.882528i \(0.655840\pi\)
\(684\) 0 0
\(685\) 10720.0 0.597942
\(686\) 0 0
\(687\) 17276.0 0.959419
\(688\) 0 0
\(689\) −8464.00 −0.468001
\(690\) 0 0
\(691\) −14508.0 −0.798712 −0.399356 0.916796i \(-0.630766\pi\)
−0.399356 + 0.916796i \(0.630766\pi\)
\(692\) 0 0
\(693\) −1386.00 −0.0759737
\(694\) 0 0
\(695\) 11330.0 0.618376
\(696\) 0 0
\(697\) −10660.0 −0.579306
\(698\) 0 0
\(699\) −27720.0 −1.49995
\(700\) 0 0
\(701\) 17681.0 0.952642 0.476321 0.879271i \(-0.341970\pi\)
0.476321 + 0.879271i \(0.341970\pi\)
\(702\) 0 0
\(703\) −884.000 −0.0474263
\(704\) 0 0
\(705\) 5845.00 0.312249
\(706\) 0 0
\(707\) −9870.00 −0.525035
\(708\) 0 0
\(709\) 1093.00 0.0578963 0.0289481 0.999581i \(-0.490784\pi\)
0.0289481 + 0.999581i \(0.490784\pi\)
\(710\) 0 0
\(711\) −26642.0 −1.40528
\(712\) 0 0
\(713\) −24.0000 −0.00126060
\(714\) 0 0
\(715\) 1035.00 0.0541354
\(716\) 0 0
\(717\) −8281.00 −0.431324
\(718\) 0 0
\(719\) −8870.00 −0.460077 −0.230038 0.973182i \(-0.573885\pi\)
−0.230038 + 0.973182i \(0.573885\pi\)
\(720\) 0 0
\(721\) −5691.00 −0.293958
\(722\) 0 0
\(723\) −20146.0 −1.03629
\(724\) 0 0
\(725\) −3275.00 −0.167766
\(726\) 0 0
\(727\) 23368.0 1.19212 0.596060 0.802940i \(-0.296732\pi\)
0.596060 + 0.802940i \(0.296732\pi\)
\(728\) 0 0
\(729\) −11843.0 −0.601687
\(730\) 0 0
\(731\) −7790.00 −0.394150
\(732\) 0 0
\(733\) −6667.00 −0.335950 −0.167975 0.985791i \(-0.553723\pi\)
−0.167975 + 0.985791i \(0.553723\pi\)
\(734\) 0 0
\(735\) −1715.00 −0.0860663
\(736\) 0 0
\(737\) 1800.00 0.0899645
\(738\) 0 0
\(739\) −5015.00 −0.249634 −0.124817 0.992180i \(-0.539834\pi\)
−0.124817 + 0.992180i \(0.539834\pi\)
\(740\) 0 0
\(741\) −5474.00 −0.271380
\(742\) 0 0
\(743\) 15896.0 0.784882 0.392441 0.919777i \(-0.371631\pi\)
0.392441 + 0.919777i \(0.371631\pi\)
\(744\) 0 0
\(745\) −9270.00 −0.455875
\(746\) 0 0
\(747\) −24904.0 −1.21980
\(748\) 0 0
\(749\) −7546.00 −0.368124
\(750\) 0 0
\(751\) 16533.0 0.803326 0.401663 0.915788i \(-0.368432\pi\)
0.401663 + 0.915788i \(0.368432\pi\)
\(752\) 0 0
\(753\) 38990.0 1.88695
\(754\) 0 0
\(755\) −5185.00 −0.249936
\(756\) 0 0
\(757\) 16376.0 0.786256 0.393128 0.919484i \(-0.371393\pi\)
0.393128 + 0.919484i \(0.371393\pi\)
\(758\) 0 0
\(759\) 378.000 0.0180771
\(760\) 0 0
\(761\) 29482.0 1.40436 0.702182 0.711997i \(-0.252209\pi\)
0.702182 + 0.711997i \(0.252209\pi\)
\(762\) 0 0
\(763\) −14945.0 −0.709103
\(764\) 0 0
\(765\) −4510.00 −0.213150
\(766\) 0 0
\(767\) −7452.00 −0.350816
\(768\) 0 0
\(769\) −12942.0 −0.606893 −0.303446 0.952849i \(-0.598137\pi\)
−0.303446 + 0.952849i \(0.598137\pi\)
\(770\) 0 0
\(771\) 18158.0 0.848177
\(772\) 0 0
\(773\) −11599.0 −0.539699 −0.269849 0.962903i \(-0.586974\pi\)
−0.269849 + 0.962903i \(0.586974\pi\)
\(774\) 0 0
\(775\) −100.000 −0.00463498
\(776\) 0 0
\(777\) 1274.00 0.0588217
\(778\) 0 0
\(779\) −8840.00 −0.406580
\(780\) 0 0
\(781\) −7056.00 −0.323282
\(782\) 0 0
\(783\) 4585.00 0.209265
\(784\) 0 0
\(785\) 5290.00 0.240520
\(786\) 0 0
\(787\) 11987.0 0.542936 0.271468 0.962448i \(-0.412491\pi\)
0.271468 + 0.962448i \(0.412491\pi\)
\(788\) 0 0
\(789\) −4466.00 −0.201513
\(790\) 0 0
\(791\) −1106.00 −0.0497153
\(792\) 0 0
\(793\) −3772.00 −0.168913
\(794\) 0 0
\(795\) −12880.0 −0.574599
\(796\) 0 0
\(797\) −40989.0 −1.82171 −0.910856 0.412724i \(-0.864577\pi\)
−0.910856 + 0.412724i \(0.864577\pi\)
\(798\) 0 0
\(799\) −6847.00 −0.303166
\(800\) 0 0
\(801\) −1584.00 −0.0698725
\(802\) 0 0
\(803\) −3690.00 −0.162163
\(804\) 0 0
\(805\) 210.000 0.00919444
\(806\) 0 0
\(807\) −7742.00 −0.337709
\(808\) 0 0
\(809\) −8239.00 −0.358057 −0.179028 0.983844i \(-0.557295\pi\)
−0.179028 + 0.983844i \(0.557295\pi\)
\(810\) 0 0
\(811\) 18018.0 0.780145 0.390072 0.920784i \(-0.372450\pi\)
0.390072 + 0.920784i \(0.372450\pi\)
\(812\) 0 0
\(813\) 56588.0 2.44112
\(814\) 0 0
\(815\) 14050.0 0.603865
\(816\) 0 0
\(817\) −6460.00 −0.276630
\(818\) 0 0
\(819\) 3542.00 0.151120
\(820\) 0 0
\(821\) 31155.0 1.32438 0.662191 0.749335i \(-0.269627\pi\)
0.662191 + 0.749335i \(0.269627\pi\)
\(822\) 0 0
\(823\) −32860.0 −1.39177 −0.695886 0.718153i \(-0.744988\pi\)
−0.695886 + 0.718153i \(0.744988\pi\)
\(824\) 0 0
\(825\) 1575.00 0.0664660
\(826\) 0 0
\(827\) −9486.00 −0.398864 −0.199432 0.979912i \(-0.563910\pi\)
−0.199432 + 0.979912i \(0.563910\pi\)
\(828\) 0 0
\(829\) −5860.00 −0.245508 −0.122754 0.992437i \(-0.539173\pi\)
−0.122754 + 0.992437i \(0.539173\pi\)
\(830\) 0 0
\(831\) 19978.0 0.833970
\(832\) 0 0
\(833\) 2009.00 0.0835627
\(834\) 0 0
\(835\) 6975.00 0.289078
\(836\) 0 0
\(837\) 140.000 0.00578149
\(838\) 0 0
\(839\) 32454.0 1.33544 0.667721 0.744411i \(-0.267270\pi\)
0.667721 + 0.744411i \(0.267270\pi\)
\(840\) 0 0
\(841\) −7228.00 −0.296363
\(842\) 0 0
\(843\) −1155.00 −0.0471890
\(844\) 0 0
\(845\) 8340.00 0.339532
\(846\) 0 0
\(847\) 8750.00 0.354963
\(848\) 0 0
\(849\) 34811.0 1.40720
\(850\) 0 0
\(851\) −156.000 −0.00628391
\(852\) 0 0
\(853\) −45938.0 −1.84395 −0.921974 0.387252i \(-0.873424\pi\)
−0.921974 + 0.387252i \(0.873424\pi\)
\(854\) 0 0
\(855\) −3740.00 −0.149597
\(856\) 0 0
\(857\) −9930.00 −0.395802 −0.197901 0.980222i \(-0.563412\pi\)
−0.197901 + 0.980222i \(0.563412\pi\)
\(858\) 0 0
\(859\) 4628.00 0.183825 0.0919123 0.995767i \(-0.470702\pi\)
0.0919123 + 0.995767i \(0.470702\pi\)
\(860\) 0 0
\(861\) 12740.0 0.504272
\(862\) 0 0
\(863\) 46008.0 1.81475 0.907376 0.420320i \(-0.138082\pi\)
0.907376 + 0.420320i \(0.138082\pi\)
\(864\) 0 0
\(865\) 22225.0 0.873610
\(866\) 0 0
\(867\) −22624.0 −0.886218
\(868\) 0 0
\(869\) −10899.0 −0.425458
\(870\) 0 0
\(871\) −4600.00 −0.178950
\(872\) 0 0
\(873\) −15554.0 −0.603005
\(874\) 0 0
\(875\) 875.000 0.0338062
\(876\) 0 0
\(877\) 40074.0 1.54299 0.771495 0.636235i \(-0.219509\pi\)
0.771495 + 0.636235i \(0.219509\pi\)
\(878\) 0 0
\(879\) −53151.0 −2.03952
\(880\) 0 0
\(881\) −11744.0 −0.449109 −0.224555 0.974461i \(-0.572093\pi\)
−0.224555 + 0.974461i \(0.572093\pi\)
\(882\) 0 0
\(883\) −14128.0 −0.538443 −0.269221 0.963078i \(-0.586766\pi\)
−0.269221 + 0.963078i \(0.586766\pi\)
\(884\) 0 0
\(885\) −11340.0 −0.430723
\(886\) 0 0
\(887\) −16336.0 −0.618387 −0.309193 0.950999i \(-0.600059\pi\)
−0.309193 + 0.950999i \(0.600059\pi\)
\(888\) 0 0
\(889\) 4228.00 0.159508
\(890\) 0 0
\(891\) −7551.00 −0.283915
\(892\) 0 0
\(893\) −5678.00 −0.212774
\(894\) 0 0
\(895\) 8700.00 0.324926
\(896\) 0 0
\(897\) −966.000 −0.0359574
\(898\) 0 0
\(899\) 524.000 0.0194398
\(900\) 0 0
\(901\) 15088.0 0.557885
\(902\) 0 0
\(903\) 9310.00 0.343098
\(904\) 0 0
\(905\) 12440.0 0.456928
\(906\) 0 0
\(907\) 45202.0 1.65480 0.827402 0.561610i \(-0.189818\pi\)
0.827402 + 0.561610i \(0.189818\pi\)
\(908\) 0 0
\(909\) 31020.0 1.13187
\(910\) 0 0
\(911\) 35352.0 1.28569 0.642845 0.765996i \(-0.277754\pi\)
0.642845 + 0.765996i \(0.277754\pi\)
\(912\) 0 0
\(913\) −10188.0 −0.369303
\(914\) 0 0
\(915\) −5740.00 −0.207386
\(916\) 0 0
\(917\) 13398.0 0.482487
\(918\) 0 0
\(919\) −7527.00 −0.270177 −0.135089 0.990834i \(-0.543132\pi\)
−0.135089 + 0.990834i \(0.543132\pi\)
\(920\) 0 0
\(921\) 57435.0 2.05488
\(922\) 0 0
\(923\) 18032.0 0.643045
\(924\) 0 0
\(925\) −650.000 −0.0231047
\(926\) 0 0
\(927\) 17886.0 0.633714
\(928\) 0 0
\(929\) 28896.0 1.02050 0.510251 0.860025i \(-0.329552\pi\)
0.510251 + 0.860025i \(0.329552\pi\)
\(930\) 0 0
\(931\) 1666.00 0.0586476
\(932\) 0 0
\(933\) 10010.0 0.351246
\(934\) 0 0
\(935\) −1845.00 −0.0645326
\(936\) 0 0
\(937\) 3013.00 0.105048 0.0525242 0.998620i \(-0.483273\pi\)
0.0525242 + 0.998620i \(0.483273\pi\)
\(938\) 0 0
\(939\) −7567.00 −0.262982
\(940\) 0 0
\(941\) 51788.0 1.79409 0.897046 0.441937i \(-0.145709\pi\)
0.897046 + 0.441937i \(0.145709\pi\)
\(942\) 0 0
\(943\) −1560.00 −0.0538713
\(944\) 0 0
\(945\) −1225.00 −0.0421685
\(946\) 0 0
\(947\) 35600.0 1.22159 0.610794 0.791789i \(-0.290850\pi\)
0.610794 + 0.791789i \(0.290850\pi\)
\(948\) 0 0
\(949\) 9430.00 0.322561
\(950\) 0 0
\(951\) −37282.0 −1.27124
\(952\) 0 0
\(953\) −17800.0 −0.605035 −0.302518 0.953144i \(-0.597827\pi\)
−0.302518 + 0.953144i \(0.597827\pi\)
\(954\) 0 0
\(955\) 10265.0 0.347819
\(956\) 0 0
\(957\) −8253.00 −0.278769
\(958\) 0 0
\(959\) 15008.0 0.505353
\(960\) 0 0
\(961\) −29775.0 −0.999463
\(962\) 0 0
\(963\) 23716.0 0.793601
\(964\) 0 0
\(965\) −2240.00 −0.0747235
\(966\) 0 0
\(967\) 20406.0 0.678607 0.339303 0.940677i \(-0.389809\pi\)
0.339303 + 0.940677i \(0.389809\pi\)
\(968\) 0 0
\(969\) 9758.00 0.323501
\(970\) 0 0
\(971\) −25128.0 −0.830480 −0.415240 0.909712i \(-0.636302\pi\)
−0.415240 + 0.909712i \(0.636302\pi\)
\(972\) 0 0
\(973\) 15862.0 0.522623
\(974\) 0 0
\(975\) −4025.00 −0.132208
\(976\) 0 0
\(977\) −37470.0 −1.22699 −0.613496 0.789698i \(-0.710237\pi\)
−0.613496 + 0.789698i \(0.710237\pi\)
\(978\) 0 0
\(979\) −648.000 −0.0211544
\(980\) 0 0
\(981\) 46970.0 1.52868
\(982\) 0 0
\(983\) 27507.0 0.892510 0.446255 0.894906i \(-0.352757\pi\)
0.446255 + 0.894906i \(0.352757\pi\)
\(984\) 0 0
\(985\) 16560.0 0.535681
\(986\) 0 0
\(987\) 8183.00 0.263898
\(988\) 0 0
\(989\) −1140.00 −0.0366531
\(990\) 0 0
\(991\) 2960.00 0.0948814 0.0474407 0.998874i \(-0.484893\pi\)
0.0474407 + 0.998874i \(0.484893\pi\)
\(992\) 0 0
\(993\) −12124.0 −0.387456
\(994\) 0 0
\(995\) 5300.00 0.168866
\(996\) 0 0
\(997\) −27769.0 −0.882099 −0.441050 0.897483i \(-0.645394\pi\)
−0.441050 + 0.897483i \(0.645394\pi\)
\(998\) 0 0
\(999\) 910.000 0.0288199
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2240.4.a.bg.1.1 1
4.3 odd 2 2240.4.a.e.1.1 1
8.3 odd 2 280.4.a.d.1.1 1
8.5 even 2 560.4.a.d.1.1 1
40.3 even 4 1400.4.g.a.449.2 2
40.19 odd 2 1400.4.a.a.1.1 1
40.27 even 4 1400.4.g.a.449.1 2
56.27 even 2 1960.4.a.b.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
280.4.a.d.1.1 1 8.3 odd 2
560.4.a.d.1.1 1 8.5 even 2
1400.4.a.a.1.1 1 40.19 odd 2
1400.4.g.a.449.1 2 40.27 even 4
1400.4.g.a.449.2 2 40.3 even 4
1960.4.a.b.1.1 1 56.27 even 2
2240.4.a.e.1.1 1 4.3 odd 2
2240.4.a.bg.1.1 1 1.1 even 1 trivial