Properties

Label 2240.4.a.bi.1.1
Level $2240$
Weight $4$
Character 2240.1
Self dual yes
Analytic conductor $132.164$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2240,4,Mod(1,2240)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2240, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2240.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2240 = 2^{6} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2240.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(132.164278413\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 70)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 2240.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+8.00000 q^{3} +5.00000 q^{5} -7.00000 q^{7} +37.0000 q^{9} -68.0000 q^{11} -34.0000 q^{13} +40.0000 q^{15} +74.0000 q^{17} +128.000 q^{19} -56.0000 q^{21} -80.0000 q^{23} +25.0000 q^{25} +80.0000 q^{27} -286.000 q^{29} -24.0000 q^{31} -544.000 q^{33} -35.0000 q^{35} -294.000 q^{37} -272.000 q^{39} +66.0000 q^{41} +124.000 q^{43} +185.000 q^{45} +312.000 q^{47} +49.0000 q^{49} +592.000 q^{51} +34.0000 q^{53} -340.000 q^{55} +1024.00 q^{57} -168.000 q^{59} -170.000 q^{61} -259.000 q^{63} -170.000 q^{65} -564.000 q^{67} -640.000 q^{69} +616.000 q^{71} +250.000 q^{73} +200.000 q^{75} +476.000 q^{77} -944.000 q^{79} -359.000 q^{81} -672.000 q^{83} +370.000 q^{85} -2288.00 q^{87} -1430.00 q^{89} +238.000 q^{91} -192.000 q^{93} +640.000 q^{95} -1270.00 q^{97} -2516.00 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 8.00000 1.53960 0.769800 0.638285i \(-0.220356\pi\)
0.769800 + 0.638285i \(0.220356\pi\)
\(4\) 0 0
\(5\) 5.00000 0.447214
\(6\) 0 0
\(7\) −7.00000 −0.377964
\(8\) 0 0
\(9\) 37.0000 1.37037
\(10\) 0 0
\(11\) −68.0000 −1.86389 −0.931944 0.362602i \(-0.881889\pi\)
−0.931944 + 0.362602i \(0.881889\pi\)
\(12\) 0 0
\(13\) −34.0000 −0.725377 −0.362689 0.931910i \(-0.618141\pi\)
−0.362689 + 0.931910i \(0.618141\pi\)
\(14\) 0 0
\(15\) 40.0000 0.688530
\(16\) 0 0
\(17\) 74.0000 1.05574 0.527872 0.849324i \(-0.322990\pi\)
0.527872 + 0.849324i \(0.322990\pi\)
\(18\) 0 0
\(19\) 128.000 1.54554 0.772769 0.634688i \(-0.218871\pi\)
0.772769 + 0.634688i \(0.218871\pi\)
\(20\) 0 0
\(21\) −56.0000 −0.581914
\(22\) 0 0
\(23\) −80.0000 −0.725268 −0.362634 0.931932i \(-0.618122\pi\)
−0.362634 + 0.931932i \(0.618122\pi\)
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) 0 0
\(27\) 80.0000 0.570222
\(28\) 0 0
\(29\) −286.000 −1.83134 −0.915670 0.401931i \(-0.868339\pi\)
−0.915670 + 0.401931i \(0.868339\pi\)
\(30\) 0 0
\(31\) −24.0000 −0.139049 −0.0695246 0.997580i \(-0.522148\pi\)
−0.0695246 + 0.997580i \(0.522148\pi\)
\(32\) 0 0
\(33\) −544.000 −2.86964
\(34\) 0 0
\(35\) −35.0000 −0.169031
\(36\) 0 0
\(37\) −294.000 −1.30631 −0.653153 0.757226i \(-0.726554\pi\)
−0.653153 + 0.757226i \(0.726554\pi\)
\(38\) 0 0
\(39\) −272.000 −1.11679
\(40\) 0 0
\(41\) 66.0000 0.251402 0.125701 0.992068i \(-0.459882\pi\)
0.125701 + 0.992068i \(0.459882\pi\)
\(42\) 0 0
\(43\) 124.000 0.439763 0.219882 0.975527i \(-0.429433\pi\)
0.219882 + 0.975527i \(0.429433\pi\)
\(44\) 0 0
\(45\) 185.000 0.612848
\(46\) 0 0
\(47\) 312.000 0.968295 0.484148 0.874986i \(-0.339130\pi\)
0.484148 + 0.874986i \(0.339130\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) 0 0
\(51\) 592.000 1.62542
\(52\) 0 0
\(53\) 34.0000 0.0881181 0.0440590 0.999029i \(-0.485971\pi\)
0.0440590 + 0.999029i \(0.485971\pi\)
\(54\) 0 0
\(55\) −340.000 −0.833556
\(56\) 0 0
\(57\) 1024.00 2.37951
\(58\) 0 0
\(59\) −168.000 −0.370707 −0.185354 0.982672i \(-0.559343\pi\)
−0.185354 + 0.982672i \(0.559343\pi\)
\(60\) 0 0
\(61\) −170.000 −0.356824 −0.178412 0.983956i \(-0.557096\pi\)
−0.178412 + 0.983956i \(0.557096\pi\)
\(62\) 0 0
\(63\) −259.000 −0.517951
\(64\) 0 0
\(65\) −170.000 −0.324399
\(66\) 0 0
\(67\) −564.000 −1.02841 −0.514206 0.857667i \(-0.671913\pi\)
−0.514206 + 0.857667i \(0.671913\pi\)
\(68\) 0 0
\(69\) −640.000 −1.11662
\(70\) 0 0
\(71\) 616.000 1.02966 0.514829 0.857293i \(-0.327855\pi\)
0.514829 + 0.857293i \(0.327855\pi\)
\(72\) 0 0
\(73\) 250.000 0.400826 0.200413 0.979712i \(-0.435772\pi\)
0.200413 + 0.979712i \(0.435772\pi\)
\(74\) 0 0
\(75\) 200.000 0.307920
\(76\) 0 0
\(77\) 476.000 0.704484
\(78\) 0 0
\(79\) −944.000 −1.34441 −0.672204 0.740366i \(-0.734652\pi\)
−0.672204 + 0.740366i \(0.734652\pi\)
\(80\) 0 0
\(81\) −359.000 −0.492455
\(82\) 0 0
\(83\) −672.000 −0.888694 −0.444347 0.895855i \(-0.646564\pi\)
−0.444347 + 0.895855i \(0.646564\pi\)
\(84\) 0 0
\(85\) 370.000 0.472143
\(86\) 0 0
\(87\) −2288.00 −2.81953
\(88\) 0 0
\(89\) −1430.00 −1.70314 −0.851571 0.524239i \(-0.824350\pi\)
−0.851571 + 0.524239i \(0.824350\pi\)
\(90\) 0 0
\(91\) 238.000 0.274167
\(92\) 0 0
\(93\) −192.000 −0.214080
\(94\) 0 0
\(95\) 640.000 0.691185
\(96\) 0 0
\(97\) −1270.00 −1.32937 −0.664685 0.747123i \(-0.731434\pi\)
−0.664685 + 0.747123i \(0.731434\pi\)
\(98\) 0 0
\(99\) −2516.00 −2.55422
\(100\) 0 0
\(101\) −930.000 −0.916222 −0.458111 0.888895i \(-0.651474\pi\)
−0.458111 + 0.888895i \(0.651474\pi\)
\(102\) 0 0
\(103\) 160.000 0.153061 0.0765304 0.997067i \(-0.475616\pi\)
0.0765304 + 0.997067i \(0.475616\pi\)
\(104\) 0 0
\(105\) −280.000 −0.260240
\(106\) 0 0
\(107\) −1404.00 −1.26850 −0.634251 0.773127i \(-0.718692\pi\)
−0.634251 + 0.773127i \(0.718692\pi\)
\(108\) 0 0
\(109\) 274.000 0.240775 0.120387 0.992727i \(-0.461586\pi\)
0.120387 + 0.992727i \(0.461586\pi\)
\(110\) 0 0
\(111\) −2352.00 −2.01119
\(112\) 0 0
\(113\) −798.000 −0.664332 −0.332166 0.943221i \(-0.607779\pi\)
−0.332166 + 0.943221i \(0.607779\pi\)
\(114\) 0 0
\(115\) −400.000 −0.324349
\(116\) 0 0
\(117\) −1258.00 −0.994035
\(118\) 0 0
\(119\) −518.000 −0.399033
\(120\) 0 0
\(121\) 3293.00 2.47408
\(122\) 0 0
\(123\) 528.000 0.387058
\(124\) 0 0
\(125\) 125.000 0.0894427
\(126\) 0 0
\(127\) −904.000 −0.631630 −0.315815 0.948821i \(-0.602278\pi\)
−0.315815 + 0.948821i \(0.602278\pi\)
\(128\) 0 0
\(129\) 992.000 0.677060
\(130\) 0 0
\(131\) 2080.00 1.38726 0.693628 0.720334i \(-0.256011\pi\)
0.693628 + 0.720334i \(0.256011\pi\)
\(132\) 0 0
\(133\) −896.000 −0.584158
\(134\) 0 0
\(135\) 400.000 0.255011
\(136\) 0 0
\(137\) 2218.00 1.38319 0.691593 0.722287i \(-0.256909\pi\)
0.691593 + 0.722287i \(0.256909\pi\)
\(138\) 0 0
\(139\) −2432.00 −1.48403 −0.742013 0.670386i \(-0.766129\pi\)
−0.742013 + 0.670386i \(0.766129\pi\)
\(140\) 0 0
\(141\) 2496.00 1.49079
\(142\) 0 0
\(143\) 2312.00 1.35202
\(144\) 0 0
\(145\) −1430.00 −0.819000
\(146\) 0 0
\(147\) 392.000 0.219943
\(148\) 0 0
\(149\) −1598.00 −0.878612 −0.439306 0.898337i \(-0.644776\pi\)
−0.439306 + 0.898337i \(0.644776\pi\)
\(150\) 0 0
\(151\) −2672.00 −1.44003 −0.720014 0.693959i \(-0.755865\pi\)
−0.720014 + 0.693959i \(0.755865\pi\)
\(152\) 0 0
\(153\) 2738.00 1.44676
\(154\) 0 0
\(155\) −120.000 −0.0621847
\(156\) 0 0
\(157\) −1170.00 −0.594753 −0.297376 0.954760i \(-0.596112\pi\)
−0.297376 + 0.954760i \(0.596112\pi\)
\(158\) 0 0
\(159\) 272.000 0.135667
\(160\) 0 0
\(161\) 560.000 0.274125
\(162\) 0 0
\(163\) −1580.00 −0.759234 −0.379617 0.925144i \(-0.623944\pi\)
−0.379617 + 0.925144i \(0.623944\pi\)
\(164\) 0 0
\(165\) −2720.00 −1.28334
\(166\) 0 0
\(167\) −704.000 −0.326211 −0.163105 0.986609i \(-0.552151\pi\)
−0.163105 + 0.986609i \(0.552151\pi\)
\(168\) 0 0
\(169\) −1041.00 −0.473828
\(170\) 0 0
\(171\) 4736.00 2.11796
\(172\) 0 0
\(173\) −18.0000 −0.00791049 −0.00395524 0.999992i \(-0.501259\pi\)
−0.00395524 + 0.999992i \(0.501259\pi\)
\(174\) 0 0
\(175\) −175.000 −0.0755929
\(176\) 0 0
\(177\) −1344.00 −0.570741
\(178\) 0 0
\(179\) 4268.00 1.78215 0.891076 0.453854i \(-0.149951\pi\)
0.891076 + 0.453854i \(0.149951\pi\)
\(180\) 0 0
\(181\) −282.000 −0.115806 −0.0579030 0.998322i \(-0.518441\pi\)
−0.0579030 + 0.998322i \(0.518441\pi\)
\(182\) 0 0
\(183\) −1360.00 −0.549367
\(184\) 0 0
\(185\) −1470.00 −0.584198
\(186\) 0 0
\(187\) −5032.00 −1.96779
\(188\) 0 0
\(189\) −560.000 −0.215524
\(190\) 0 0
\(191\) 1424.00 0.539461 0.269730 0.962936i \(-0.413065\pi\)
0.269730 + 0.962936i \(0.413065\pi\)
\(192\) 0 0
\(193\) −1870.00 −0.697438 −0.348719 0.937227i \(-0.613383\pi\)
−0.348719 + 0.937227i \(0.613383\pi\)
\(194\) 0 0
\(195\) −1360.00 −0.499444
\(196\) 0 0
\(197\) 3618.00 1.30849 0.654243 0.756284i \(-0.272987\pi\)
0.654243 + 0.756284i \(0.272987\pi\)
\(198\) 0 0
\(199\) 2736.00 0.974623 0.487311 0.873228i \(-0.337978\pi\)
0.487311 + 0.873228i \(0.337978\pi\)
\(200\) 0 0
\(201\) −4512.00 −1.58334
\(202\) 0 0
\(203\) 2002.00 0.692182
\(204\) 0 0
\(205\) 330.000 0.112430
\(206\) 0 0
\(207\) −2960.00 −0.993885
\(208\) 0 0
\(209\) −8704.00 −2.88071
\(210\) 0 0
\(211\) 348.000 0.113542 0.0567709 0.998387i \(-0.481920\pi\)
0.0567709 + 0.998387i \(0.481920\pi\)
\(212\) 0 0
\(213\) 4928.00 1.58526
\(214\) 0 0
\(215\) 620.000 0.196668
\(216\) 0 0
\(217\) 168.000 0.0525557
\(218\) 0 0
\(219\) 2000.00 0.617112
\(220\) 0 0
\(221\) −2516.00 −0.765812
\(222\) 0 0
\(223\) 5888.00 1.76811 0.884057 0.467378i \(-0.154801\pi\)
0.884057 + 0.467378i \(0.154801\pi\)
\(224\) 0 0
\(225\) 925.000 0.274074
\(226\) 0 0
\(227\) 4304.00 1.25844 0.629221 0.777226i \(-0.283374\pi\)
0.629221 + 0.777226i \(0.283374\pi\)
\(228\) 0 0
\(229\) −3674.00 −1.06020 −0.530098 0.847937i \(-0.677845\pi\)
−0.530098 + 0.847937i \(0.677845\pi\)
\(230\) 0 0
\(231\) 3808.00 1.08462
\(232\) 0 0
\(233\) −838.000 −0.235619 −0.117809 0.993036i \(-0.537587\pi\)
−0.117809 + 0.993036i \(0.537587\pi\)
\(234\) 0 0
\(235\) 1560.00 0.433035
\(236\) 0 0
\(237\) −7552.00 −2.06985
\(238\) 0 0
\(239\) 5832.00 1.57841 0.789207 0.614128i \(-0.210492\pi\)
0.789207 + 0.614128i \(0.210492\pi\)
\(240\) 0 0
\(241\) 1690.00 0.451711 0.225856 0.974161i \(-0.427482\pi\)
0.225856 + 0.974161i \(0.427482\pi\)
\(242\) 0 0
\(243\) −5032.00 −1.32841
\(244\) 0 0
\(245\) 245.000 0.0638877
\(246\) 0 0
\(247\) −4352.00 −1.12110
\(248\) 0 0
\(249\) −5376.00 −1.36823
\(250\) 0 0
\(251\) −5760.00 −1.44848 −0.724239 0.689549i \(-0.757809\pi\)
−0.724239 + 0.689549i \(0.757809\pi\)
\(252\) 0 0
\(253\) 5440.00 1.35182
\(254\) 0 0
\(255\) 2960.00 0.726911
\(256\) 0 0
\(257\) −350.000 −0.0849510 −0.0424755 0.999098i \(-0.513524\pi\)
−0.0424755 + 0.999098i \(0.513524\pi\)
\(258\) 0 0
\(259\) 2058.00 0.493737
\(260\) 0 0
\(261\) −10582.0 −2.50961
\(262\) 0 0
\(263\) −2968.00 −0.695873 −0.347937 0.937518i \(-0.613118\pi\)
−0.347937 + 0.937518i \(0.613118\pi\)
\(264\) 0 0
\(265\) 170.000 0.0394076
\(266\) 0 0
\(267\) −11440.0 −2.62216
\(268\) 0 0
\(269\) 4494.00 1.01860 0.509301 0.860588i \(-0.329904\pi\)
0.509301 + 0.860588i \(0.329904\pi\)
\(270\) 0 0
\(271\) 1312.00 0.294090 0.147045 0.989130i \(-0.453024\pi\)
0.147045 + 0.989130i \(0.453024\pi\)
\(272\) 0 0
\(273\) 1904.00 0.422107
\(274\) 0 0
\(275\) −1700.00 −0.372778
\(276\) 0 0
\(277\) 5234.00 1.13531 0.567654 0.823267i \(-0.307851\pi\)
0.567654 + 0.823267i \(0.307851\pi\)
\(278\) 0 0
\(279\) −888.000 −0.190549
\(280\) 0 0
\(281\) −5718.00 −1.21390 −0.606952 0.794738i \(-0.707608\pi\)
−0.606952 + 0.794738i \(0.707608\pi\)
\(282\) 0 0
\(283\) 3752.00 0.788103 0.394052 0.919088i \(-0.371073\pi\)
0.394052 + 0.919088i \(0.371073\pi\)
\(284\) 0 0
\(285\) 5120.00 1.06415
\(286\) 0 0
\(287\) −462.000 −0.0950209
\(288\) 0 0
\(289\) 563.000 0.114594
\(290\) 0 0
\(291\) −10160.0 −2.04670
\(292\) 0 0
\(293\) −7698.00 −1.53489 −0.767444 0.641116i \(-0.778472\pi\)
−0.767444 + 0.641116i \(0.778472\pi\)
\(294\) 0 0
\(295\) −840.000 −0.165785
\(296\) 0 0
\(297\) −5440.00 −1.06283
\(298\) 0 0
\(299\) 2720.00 0.526093
\(300\) 0 0
\(301\) −868.000 −0.166215
\(302\) 0 0
\(303\) −7440.00 −1.41062
\(304\) 0 0
\(305\) −850.000 −0.159577
\(306\) 0 0
\(307\) 1456.00 0.270679 0.135339 0.990799i \(-0.456788\pi\)
0.135339 + 0.990799i \(0.456788\pi\)
\(308\) 0 0
\(309\) 1280.00 0.235653
\(310\) 0 0
\(311\) 9592.00 1.74891 0.874457 0.485103i \(-0.161218\pi\)
0.874457 + 0.485103i \(0.161218\pi\)
\(312\) 0 0
\(313\) 3570.00 0.644691 0.322346 0.946622i \(-0.395529\pi\)
0.322346 + 0.946622i \(0.395529\pi\)
\(314\) 0 0
\(315\) −1295.00 −0.231635
\(316\) 0 0
\(317\) 3866.00 0.684972 0.342486 0.939523i \(-0.388731\pi\)
0.342486 + 0.939523i \(0.388731\pi\)
\(318\) 0 0
\(319\) 19448.0 3.41341
\(320\) 0 0
\(321\) −11232.0 −1.95299
\(322\) 0 0
\(323\) 9472.00 1.63169
\(324\) 0 0
\(325\) −850.000 −0.145075
\(326\) 0 0
\(327\) 2192.00 0.370697
\(328\) 0 0
\(329\) −2184.00 −0.365981
\(330\) 0 0
\(331\) 2940.00 0.488209 0.244104 0.969749i \(-0.421506\pi\)
0.244104 + 0.969749i \(0.421506\pi\)
\(332\) 0 0
\(333\) −10878.0 −1.79012
\(334\) 0 0
\(335\) −2820.00 −0.459920
\(336\) 0 0
\(337\) −414.000 −0.0669199 −0.0334600 0.999440i \(-0.510653\pi\)
−0.0334600 + 0.999440i \(0.510653\pi\)
\(338\) 0 0
\(339\) −6384.00 −1.02281
\(340\) 0 0
\(341\) 1632.00 0.259172
\(342\) 0 0
\(343\) −343.000 −0.0539949
\(344\) 0 0
\(345\) −3200.00 −0.499369
\(346\) 0 0
\(347\) 5068.00 0.784048 0.392024 0.919955i \(-0.371775\pi\)
0.392024 + 0.919955i \(0.371775\pi\)
\(348\) 0 0
\(349\) −2882.00 −0.442034 −0.221017 0.975270i \(-0.570938\pi\)
−0.221017 + 0.975270i \(0.570938\pi\)
\(350\) 0 0
\(351\) −2720.00 −0.413626
\(352\) 0 0
\(353\) −6350.00 −0.957440 −0.478720 0.877968i \(-0.658899\pi\)
−0.478720 + 0.877968i \(0.658899\pi\)
\(354\) 0 0
\(355\) 3080.00 0.460477
\(356\) 0 0
\(357\) −4144.00 −0.614352
\(358\) 0 0
\(359\) 4656.00 0.684497 0.342248 0.939610i \(-0.388812\pi\)
0.342248 + 0.939610i \(0.388812\pi\)
\(360\) 0 0
\(361\) 9525.00 1.38869
\(362\) 0 0
\(363\) 26344.0 3.80909
\(364\) 0 0
\(365\) 1250.00 0.179255
\(366\) 0 0
\(367\) −8336.00 −1.18566 −0.592828 0.805329i \(-0.701989\pi\)
−0.592828 + 0.805329i \(0.701989\pi\)
\(368\) 0 0
\(369\) 2442.00 0.344513
\(370\) 0 0
\(371\) −238.000 −0.0333055
\(372\) 0 0
\(373\) −4862.00 −0.674919 −0.337460 0.941340i \(-0.609568\pi\)
−0.337460 + 0.941340i \(0.609568\pi\)
\(374\) 0 0
\(375\) 1000.00 0.137706
\(376\) 0 0
\(377\) 9724.00 1.32841
\(378\) 0 0
\(379\) 3932.00 0.532911 0.266456 0.963847i \(-0.414147\pi\)
0.266456 + 0.963847i \(0.414147\pi\)
\(380\) 0 0
\(381\) −7232.00 −0.972458
\(382\) 0 0
\(383\) −8120.00 −1.08332 −0.541661 0.840597i \(-0.682204\pi\)
−0.541661 + 0.840597i \(0.682204\pi\)
\(384\) 0 0
\(385\) 2380.00 0.315055
\(386\) 0 0
\(387\) 4588.00 0.602639
\(388\) 0 0
\(389\) 4346.00 0.566455 0.283227 0.959053i \(-0.408595\pi\)
0.283227 + 0.959053i \(0.408595\pi\)
\(390\) 0 0
\(391\) −5920.00 −0.765696
\(392\) 0 0
\(393\) 16640.0 2.13582
\(394\) 0 0
\(395\) −4720.00 −0.601238
\(396\) 0 0
\(397\) 4494.00 0.568129 0.284065 0.958805i \(-0.408317\pi\)
0.284065 + 0.958805i \(0.408317\pi\)
\(398\) 0 0
\(399\) −7168.00 −0.899371
\(400\) 0 0
\(401\) 2578.00 0.321045 0.160523 0.987032i \(-0.448682\pi\)
0.160523 + 0.987032i \(0.448682\pi\)
\(402\) 0 0
\(403\) 816.000 0.100863
\(404\) 0 0
\(405\) −1795.00 −0.220233
\(406\) 0 0
\(407\) 19992.0 2.43481
\(408\) 0 0
\(409\) 3730.00 0.450945 0.225473 0.974249i \(-0.427607\pi\)
0.225473 + 0.974249i \(0.427607\pi\)
\(410\) 0 0
\(411\) 17744.0 2.12955
\(412\) 0 0
\(413\) 1176.00 0.140114
\(414\) 0 0
\(415\) −3360.00 −0.397436
\(416\) 0 0
\(417\) −19456.0 −2.28481
\(418\) 0 0
\(419\) 2872.00 0.334860 0.167430 0.985884i \(-0.446453\pi\)
0.167430 + 0.985884i \(0.446453\pi\)
\(420\) 0 0
\(421\) 2210.00 0.255840 0.127920 0.991784i \(-0.459170\pi\)
0.127920 + 0.991784i \(0.459170\pi\)
\(422\) 0 0
\(423\) 11544.0 1.32692
\(424\) 0 0
\(425\) 1850.00 0.211149
\(426\) 0 0
\(427\) 1190.00 0.134867
\(428\) 0 0
\(429\) 18496.0 2.08157
\(430\) 0 0
\(431\) −456.000 −0.0509623 −0.0254811 0.999675i \(-0.508112\pi\)
−0.0254811 + 0.999675i \(0.508112\pi\)
\(432\) 0 0
\(433\) −5318.00 −0.590223 −0.295112 0.955463i \(-0.595357\pi\)
−0.295112 + 0.955463i \(0.595357\pi\)
\(434\) 0 0
\(435\) −11440.0 −1.26093
\(436\) 0 0
\(437\) −10240.0 −1.12093
\(438\) 0 0
\(439\) 16264.0 1.76820 0.884098 0.467301i \(-0.154774\pi\)
0.884098 + 0.467301i \(0.154774\pi\)
\(440\) 0 0
\(441\) 1813.00 0.195767
\(442\) 0 0
\(443\) −4812.00 −0.516084 −0.258042 0.966134i \(-0.583077\pi\)
−0.258042 + 0.966134i \(0.583077\pi\)
\(444\) 0 0
\(445\) −7150.00 −0.761669
\(446\) 0 0
\(447\) −12784.0 −1.35271
\(448\) 0 0
\(449\) −2590.00 −0.272226 −0.136113 0.990693i \(-0.543461\pi\)
−0.136113 + 0.990693i \(0.543461\pi\)
\(450\) 0 0
\(451\) −4488.00 −0.468585
\(452\) 0 0
\(453\) −21376.0 −2.21707
\(454\) 0 0
\(455\) 1190.00 0.122611
\(456\) 0 0
\(457\) −14294.0 −1.46312 −0.731559 0.681778i \(-0.761207\pi\)
−0.731559 + 0.681778i \(0.761207\pi\)
\(458\) 0 0
\(459\) 5920.00 0.602009
\(460\) 0 0
\(461\) −8258.00 −0.834302 −0.417151 0.908837i \(-0.636971\pi\)
−0.417151 + 0.908837i \(0.636971\pi\)
\(462\) 0 0
\(463\) −7344.00 −0.737159 −0.368580 0.929596i \(-0.620156\pi\)
−0.368580 + 0.929596i \(0.620156\pi\)
\(464\) 0 0
\(465\) −960.000 −0.0957396
\(466\) 0 0
\(467\) −6288.00 −0.623071 −0.311535 0.950235i \(-0.600843\pi\)
−0.311535 + 0.950235i \(0.600843\pi\)
\(468\) 0 0
\(469\) 3948.00 0.388703
\(470\) 0 0
\(471\) −9360.00 −0.915682
\(472\) 0 0
\(473\) −8432.00 −0.819670
\(474\) 0 0
\(475\) 3200.00 0.309108
\(476\) 0 0
\(477\) 1258.00 0.120754
\(478\) 0 0
\(479\) 392.000 0.0373924 0.0186962 0.999825i \(-0.494048\pi\)
0.0186962 + 0.999825i \(0.494048\pi\)
\(480\) 0 0
\(481\) 9996.00 0.947564
\(482\) 0 0
\(483\) 4480.00 0.422044
\(484\) 0 0
\(485\) −6350.00 −0.594513
\(486\) 0 0
\(487\) −512.000 −0.0476405 −0.0238203 0.999716i \(-0.507583\pi\)
−0.0238203 + 0.999716i \(0.507583\pi\)
\(488\) 0 0
\(489\) −12640.0 −1.16892
\(490\) 0 0
\(491\) −13308.0 −1.22318 −0.611590 0.791175i \(-0.709470\pi\)
−0.611590 + 0.791175i \(0.709470\pi\)
\(492\) 0 0
\(493\) −21164.0 −1.93343
\(494\) 0 0
\(495\) −12580.0 −1.14228
\(496\) 0 0
\(497\) −4312.00 −0.389174
\(498\) 0 0
\(499\) 6252.00 0.560878 0.280439 0.959872i \(-0.409520\pi\)
0.280439 + 0.959872i \(0.409520\pi\)
\(500\) 0 0
\(501\) −5632.00 −0.502234
\(502\) 0 0
\(503\) 12568.0 1.11407 0.557037 0.830488i \(-0.311938\pi\)
0.557037 + 0.830488i \(0.311938\pi\)
\(504\) 0 0
\(505\) −4650.00 −0.409747
\(506\) 0 0
\(507\) −8328.00 −0.729506
\(508\) 0 0
\(509\) 5502.00 0.479120 0.239560 0.970882i \(-0.422997\pi\)
0.239560 + 0.970882i \(0.422997\pi\)
\(510\) 0 0
\(511\) −1750.00 −0.151498
\(512\) 0 0
\(513\) 10240.0 0.881300
\(514\) 0 0
\(515\) 800.000 0.0684509
\(516\) 0 0
\(517\) −21216.0 −1.80479
\(518\) 0 0
\(519\) −144.000 −0.0121790
\(520\) 0 0
\(521\) −19086.0 −1.60494 −0.802469 0.596694i \(-0.796481\pi\)
−0.802469 + 0.596694i \(0.796481\pi\)
\(522\) 0 0
\(523\) 16184.0 1.35311 0.676555 0.736392i \(-0.263472\pi\)
0.676555 + 0.736392i \(0.263472\pi\)
\(524\) 0 0
\(525\) −1400.00 −0.116383
\(526\) 0 0
\(527\) −1776.00 −0.146800
\(528\) 0 0
\(529\) −5767.00 −0.473987
\(530\) 0 0
\(531\) −6216.00 −0.508006
\(532\) 0 0
\(533\) −2244.00 −0.182361
\(534\) 0 0
\(535\) −7020.00 −0.567292
\(536\) 0 0
\(537\) 34144.0 2.74380
\(538\) 0 0
\(539\) −3332.00 −0.266270
\(540\) 0 0
\(541\) 16042.0 1.27486 0.637430 0.770508i \(-0.279997\pi\)
0.637430 + 0.770508i \(0.279997\pi\)
\(542\) 0 0
\(543\) −2256.00 −0.178295
\(544\) 0 0
\(545\) 1370.00 0.107678
\(546\) 0 0
\(547\) 6180.00 0.483067 0.241534 0.970392i \(-0.422350\pi\)
0.241534 + 0.970392i \(0.422350\pi\)
\(548\) 0 0
\(549\) −6290.00 −0.488981
\(550\) 0 0
\(551\) −36608.0 −2.83041
\(552\) 0 0
\(553\) 6608.00 0.508139
\(554\) 0 0
\(555\) −11760.0 −0.899431
\(556\) 0 0
\(557\) −9078.00 −0.690569 −0.345285 0.938498i \(-0.612218\pi\)
−0.345285 + 0.938498i \(0.612218\pi\)
\(558\) 0 0
\(559\) −4216.00 −0.318994
\(560\) 0 0
\(561\) −40256.0 −3.02961
\(562\) 0 0
\(563\) −9464.00 −0.708455 −0.354227 0.935159i \(-0.615256\pi\)
−0.354227 + 0.935159i \(0.615256\pi\)
\(564\) 0 0
\(565\) −3990.00 −0.297098
\(566\) 0 0
\(567\) 2513.00 0.186131
\(568\) 0 0
\(569\) 15722.0 1.15835 0.579174 0.815204i \(-0.303375\pi\)
0.579174 + 0.815204i \(0.303375\pi\)
\(570\) 0 0
\(571\) 17084.0 1.25209 0.626045 0.779787i \(-0.284673\pi\)
0.626045 + 0.779787i \(0.284673\pi\)
\(572\) 0 0
\(573\) 11392.0 0.830554
\(574\) 0 0
\(575\) −2000.00 −0.145054
\(576\) 0 0
\(577\) −16526.0 −1.19235 −0.596175 0.802854i \(-0.703314\pi\)
−0.596175 + 0.802854i \(0.703314\pi\)
\(578\) 0 0
\(579\) −14960.0 −1.07378
\(580\) 0 0
\(581\) 4704.00 0.335895
\(582\) 0 0
\(583\) −2312.00 −0.164242
\(584\) 0 0
\(585\) −6290.00 −0.444546
\(586\) 0 0
\(587\) −2832.00 −0.199130 −0.0995649 0.995031i \(-0.531745\pi\)
−0.0995649 + 0.995031i \(0.531745\pi\)
\(588\) 0 0
\(589\) −3072.00 −0.214906
\(590\) 0 0
\(591\) 28944.0 2.01455
\(592\) 0 0
\(593\) 9666.00 0.669368 0.334684 0.942330i \(-0.391370\pi\)
0.334684 + 0.942330i \(0.391370\pi\)
\(594\) 0 0
\(595\) −2590.00 −0.178453
\(596\) 0 0
\(597\) 21888.0 1.50053
\(598\) 0 0
\(599\) 4536.00 0.309409 0.154704 0.987961i \(-0.450557\pi\)
0.154704 + 0.987961i \(0.450557\pi\)
\(600\) 0 0
\(601\) −15542.0 −1.05486 −0.527430 0.849598i \(-0.676844\pi\)
−0.527430 + 0.849598i \(0.676844\pi\)
\(602\) 0 0
\(603\) −20868.0 −1.40930
\(604\) 0 0
\(605\) 16465.0 1.10644
\(606\) 0 0
\(607\) −23648.0 −1.58129 −0.790645 0.612275i \(-0.790254\pi\)
−0.790645 + 0.612275i \(0.790254\pi\)
\(608\) 0 0
\(609\) 16016.0 1.06568
\(610\) 0 0
\(611\) −10608.0 −0.702379
\(612\) 0 0
\(613\) 906.000 0.0596949 0.0298475 0.999554i \(-0.490498\pi\)
0.0298475 + 0.999554i \(0.490498\pi\)
\(614\) 0 0
\(615\) 2640.00 0.173098
\(616\) 0 0
\(617\) 26666.0 1.73992 0.869962 0.493119i \(-0.164143\pi\)
0.869962 + 0.493119i \(0.164143\pi\)
\(618\) 0 0
\(619\) 3352.00 0.217655 0.108827 0.994061i \(-0.465290\pi\)
0.108827 + 0.994061i \(0.465290\pi\)
\(620\) 0 0
\(621\) −6400.00 −0.413564
\(622\) 0 0
\(623\) 10010.0 0.643727
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) 0 0
\(627\) −69632.0 −4.43514
\(628\) 0 0
\(629\) −21756.0 −1.37912
\(630\) 0 0
\(631\) 2792.00 0.176145 0.0880727 0.996114i \(-0.471929\pi\)
0.0880727 + 0.996114i \(0.471929\pi\)
\(632\) 0 0
\(633\) 2784.00 0.174809
\(634\) 0 0
\(635\) −4520.00 −0.282474
\(636\) 0 0
\(637\) −1666.00 −0.103625
\(638\) 0 0
\(639\) 22792.0 1.41101
\(640\) 0 0
\(641\) 19330.0 1.19109 0.595545 0.803322i \(-0.296936\pi\)
0.595545 + 0.803322i \(0.296936\pi\)
\(642\) 0 0
\(643\) 15160.0 0.929785 0.464893 0.885367i \(-0.346093\pi\)
0.464893 + 0.885367i \(0.346093\pi\)
\(644\) 0 0
\(645\) 4960.00 0.302790
\(646\) 0 0
\(647\) −23472.0 −1.42624 −0.713122 0.701040i \(-0.752719\pi\)
−0.713122 + 0.701040i \(0.752719\pi\)
\(648\) 0 0
\(649\) 11424.0 0.690957
\(650\) 0 0
\(651\) 1344.00 0.0809148
\(652\) 0 0
\(653\) −542.000 −0.0324810 −0.0162405 0.999868i \(-0.505170\pi\)
−0.0162405 + 0.999868i \(0.505170\pi\)
\(654\) 0 0
\(655\) 10400.0 0.620399
\(656\) 0 0
\(657\) 9250.00 0.549280
\(658\) 0 0
\(659\) 19764.0 1.16828 0.584140 0.811653i \(-0.301432\pi\)
0.584140 + 0.811653i \(0.301432\pi\)
\(660\) 0 0
\(661\) −4130.00 −0.243023 −0.121512 0.992590i \(-0.538774\pi\)
−0.121512 + 0.992590i \(0.538774\pi\)
\(662\) 0 0
\(663\) −20128.0 −1.17904
\(664\) 0 0
\(665\) −4480.00 −0.261244
\(666\) 0 0
\(667\) 22880.0 1.32821
\(668\) 0 0
\(669\) 47104.0 2.72219
\(670\) 0 0
\(671\) 11560.0 0.665080
\(672\) 0 0
\(673\) −24366.0 −1.39560 −0.697801 0.716292i \(-0.745838\pi\)
−0.697801 + 0.716292i \(0.745838\pi\)
\(674\) 0 0
\(675\) 2000.00 0.114044
\(676\) 0 0
\(677\) 16790.0 0.953164 0.476582 0.879130i \(-0.341876\pi\)
0.476582 + 0.879130i \(0.341876\pi\)
\(678\) 0 0
\(679\) 8890.00 0.502455
\(680\) 0 0
\(681\) 34432.0 1.93750
\(682\) 0 0
\(683\) 7764.00 0.434965 0.217483 0.976064i \(-0.430215\pi\)
0.217483 + 0.976064i \(0.430215\pi\)
\(684\) 0 0
\(685\) 11090.0 0.618580
\(686\) 0 0
\(687\) −29392.0 −1.63228
\(688\) 0 0
\(689\) −1156.00 −0.0639189
\(690\) 0 0
\(691\) 2064.00 0.113630 0.0568149 0.998385i \(-0.481905\pi\)
0.0568149 + 0.998385i \(0.481905\pi\)
\(692\) 0 0
\(693\) 17612.0 0.965403
\(694\) 0 0
\(695\) −12160.0 −0.663676
\(696\) 0 0
\(697\) 4884.00 0.265416
\(698\) 0 0
\(699\) −6704.00 −0.362759
\(700\) 0 0
\(701\) −1230.00 −0.0662717 −0.0331358 0.999451i \(-0.510549\pi\)
−0.0331358 + 0.999451i \(0.510549\pi\)
\(702\) 0 0
\(703\) −37632.0 −2.01894
\(704\) 0 0
\(705\) 12480.0 0.666701
\(706\) 0 0
\(707\) 6510.00 0.346300
\(708\) 0 0
\(709\) −5158.00 −0.273220 −0.136610 0.990625i \(-0.543621\pi\)
−0.136610 + 0.990625i \(0.543621\pi\)
\(710\) 0 0
\(711\) −34928.0 −1.84234
\(712\) 0 0
\(713\) 1920.00 0.100848
\(714\) 0 0
\(715\) 11560.0 0.604643
\(716\) 0 0
\(717\) 46656.0 2.43013
\(718\) 0 0
\(719\) −23800.0 −1.23448 −0.617239 0.786775i \(-0.711749\pi\)
−0.617239 + 0.786775i \(0.711749\pi\)
\(720\) 0 0
\(721\) −1120.00 −0.0578516
\(722\) 0 0
\(723\) 13520.0 0.695455
\(724\) 0 0
\(725\) −7150.00 −0.366268
\(726\) 0 0
\(727\) −12832.0 −0.654625 −0.327313 0.944916i \(-0.606143\pi\)
−0.327313 + 0.944916i \(0.606143\pi\)
\(728\) 0 0
\(729\) −30563.0 −1.55276
\(730\) 0 0
\(731\) 9176.00 0.464277
\(732\) 0 0
\(733\) −15370.0 −0.774494 −0.387247 0.921976i \(-0.626574\pi\)
−0.387247 + 0.921976i \(0.626574\pi\)
\(734\) 0 0
\(735\) 1960.00 0.0983615
\(736\) 0 0
\(737\) 38352.0 1.91684
\(738\) 0 0
\(739\) −16940.0 −0.843231 −0.421616 0.906775i \(-0.638537\pi\)
−0.421616 + 0.906775i \(0.638537\pi\)
\(740\) 0 0
\(741\) −34816.0 −1.72604
\(742\) 0 0
\(743\) 39792.0 1.96477 0.982387 0.186858i \(-0.0598305\pi\)
0.982387 + 0.186858i \(0.0598305\pi\)
\(744\) 0 0
\(745\) −7990.00 −0.392927
\(746\) 0 0
\(747\) −24864.0 −1.21784
\(748\) 0 0
\(749\) 9828.00 0.479449
\(750\) 0 0
\(751\) −776.000 −0.0377052 −0.0188526 0.999822i \(-0.506001\pi\)
−0.0188526 + 0.999822i \(0.506001\pi\)
\(752\) 0 0
\(753\) −46080.0 −2.23008
\(754\) 0 0
\(755\) −13360.0 −0.644000
\(756\) 0 0
\(757\) 17882.0 0.858563 0.429282 0.903171i \(-0.358767\pi\)
0.429282 + 0.903171i \(0.358767\pi\)
\(758\) 0 0
\(759\) 43520.0 2.08126
\(760\) 0 0
\(761\) 6946.00 0.330870 0.165435 0.986221i \(-0.447097\pi\)
0.165435 + 0.986221i \(0.447097\pi\)
\(762\) 0 0
\(763\) −1918.00 −0.0910043
\(764\) 0 0
\(765\) 13690.0 0.647010
\(766\) 0 0
\(767\) 5712.00 0.268903
\(768\) 0 0
\(769\) 35002.0 1.64136 0.820679 0.571389i \(-0.193595\pi\)
0.820679 + 0.571389i \(0.193595\pi\)
\(770\) 0 0
\(771\) −2800.00 −0.130791
\(772\) 0 0
\(773\) 14414.0 0.670680 0.335340 0.942097i \(-0.391149\pi\)
0.335340 + 0.942097i \(0.391149\pi\)
\(774\) 0 0
\(775\) −600.000 −0.0278099
\(776\) 0 0
\(777\) 16464.0 0.760158
\(778\) 0 0
\(779\) 8448.00 0.388551
\(780\) 0 0
\(781\) −41888.0 −1.91917
\(782\) 0 0
\(783\) −22880.0 −1.04427
\(784\) 0 0
\(785\) −5850.00 −0.265981
\(786\) 0 0
\(787\) 7312.00 0.331188 0.165594 0.986194i \(-0.447046\pi\)
0.165594 + 0.986194i \(0.447046\pi\)
\(788\) 0 0
\(789\) −23744.0 −1.07137
\(790\) 0 0
\(791\) 5586.00 0.251094
\(792\) 0 0
\(793\) 5780.00 0.258832
\(794\) 0 0
\(795\) 1360.00 0.0606720
\(796\) 0 0
\(797\) −4290.00 −0.190664 −0.0953322 0.995446i \(-0.530391\pi\)
−0.0953322 + 0.995446i \(0.530391\pi\)
\(798\) 0 0
\(799\) 23088.0 1.02227
\(800\) 0 0
\(801\) −52910.0 −2.33394
\(802\) 0 0
\(803\) −17000.0 −0.747095
\(804\) 0 0
\(805\) 2800.00 0.122593
\(806\) 0 0
\(807\) 35952.0 1.56824
\(808\) 0 0
\(809\) −28246.0 −1.22754 −0.613768 0.789487i \(-0.710347\pi\)
−0.613768 + 0.789487i \(0.710347\pi\)
\(810\) 0 0
\(811\) 15656.0 0.677875 0.338937 0.940809i \(-0.389933\pi\)
0.338937 + 0.940809i \(0.389933\pi\)
\(812\) 0 0
\(813\) 10496.0 0.452781
\(814\) 0 0
\(815\) −7900.00 −0.339540
\(816\) 0 0
\(817\) 15872.0 0.679671
\(818\) 0 0
\(819\) 8806.00 0.375710
\(820\) 0 0
\(821\) 27506.0 1.16926 0.584632 0.811298i \(-0.301239\pi\)
0.584632 + 0.811298i \(0.301239\pi\)
\(822\) 0 0
\(823\) 36552.0 1.54814 0.774072 0.633097i \(-0.218217\pi\)
0.774072 + 0.633097i \(0.218217\pi\)
\(824\) 0 0
\(825\) −13600.0 −0.573929
\(826\) 0 0
\(827\) −18892.0 −0.794364 −0.397182 0.917740i \(-0.630012\pi\)
−0.397182 + 0.917740i \(0.630012\pi\)
\(828\) 0 0
\(829\) 19446.0 0.814701 0.407351 0.913272i \(-0.366453\pi\)
0.407351 + 0.913272i \(0.366453\pi\)
\(830\) 0 0
\(831\) 41872.0 1.74792
\(832\) 0 0
\(833\) 3626.00 0.150820
\(834\) 0 0
\(835\) −3520.00 −0.145886
\(836\) 0 0
\(837\) −1920.00 −0.0792890
\(838\) 0 0
\(839\) 12416.0 0.510903 0.255452 0.966822i \(-0.417776\pi\)
0.255452 + 0.966822i \(0.417776\pi\)
\(840\) 0 0
\(841\) 57407.0 2.35381
\(842\) 0 0
\(843\) −45744.0 −1.86893
\(844\) 0 0
\(845\) −5205.00 −0.211902
\(846\) 0 0
\(847\) −23051.0 −0.935114
\(848\) 0 0
\(849\) 30016.0 1.21336
\(850\) 0 0
\(851\) 23520.0 0.947421
\(852\) 0 0
\(853\) −19210.0 −0.771088 −0.385544 0.922689i \(-0.625986\pi\)
−0.385544 + 0.922689i \(0.625986\pi\)
\(854\) 0 0
\(855\) 23680.0 0.947180
\(856\) 0 0
\(857\) 530.000 0.0211254 0.0105627 0.999944i \(-0.496638\pi\)
0.0105627 + 0.999944i \(0.496638\pi\)
\(858\) 0 0
\(859\) 2624.00 0.104226 0.0521128 0.998641i \(-0.483404\pi\)
0.0521128 + 0.998641i \(0.483404\pi\)
\(860\) 0 0
\(861\) −3696.00 −0.146294
\(862\) 0 0
\(863\) 37136.0 1.46480 0.732401 0.680874i \(-0.238400\pi\)
0.732401 + 0.680874i \(0.238400\pi\)
\(864\) 0 0
\(865\) −90.0000 −0.00353768
\(866\) 0 0
\(867\) 4504.00 0.176429
\(868\) 0 0
\(869\) 64192.0 2.50583
\(870\) 0 0
\(871\) 19176.0 0.745986
\(872\) 0 0
\(873\) −46990.0 −1.82173
\(874\) 0 0
\(875\) −875.000 −0.0338062
\(876\) 0 0
\(877\) −44606.0 −1.71749 −0.858744 0.512404i \(-0.828755\pi\)
−0.858744 + 0.512404i \(0.828755\pi\)
\(878\) 0 0
\(879\) −61584.0 −2.36311
\(880\) 0 0
\(881\) −41806.0 −1.59873 −0.799364 0.600847i \(-0.794830\pi\)
−0.799364 + 0.600847i \(0.794830\pi\)
\(882\) 0 0
\(883\) −8324.00 −0.317242 −0.158621 0.987340i \(-0.550705\pi\)
−0.158621 + 0.987340i \(0.550705\pi\)
\(884\) 0 0
\(885\) −6720.00 −0.255243
\(886\) 0 0
\(887\) −6592.00 −0.249535 −0.124768 0.992186i \(-0.539819\pi\)
−0.124768 + 0.992186i \(0.539819\pi\)
\(888\) 0 0
\(889\) 6328.00 0.238734
\(890\) 0 0
\(891\) 24412.0 0.917882
\(892\) 0 0
\(893\) 39936.0 1.49654
\(894\) 0 0
\(895\) 21340.0 0.797003
\(896\) 0 0
\(897\) 21760.0 0.809972
\(898\) 0 0
\(899\) 6864.00 0.254647
\(900\) 0 0
\(901\) 2516.00 0.0930301
\(902\) 0 0
\(903\) −6944.00 −0.255905
\(904\) 0 0
\(905\) −1410.00 −0.0517900
\(906\) 0 0
\(907\) −43948.0 −1.60890 −0.804448 0.594023i \(-0.797539\pi\)
−0.804448 + 0.594023i \(0.797539\pi\)
\(908\) 0 0
\(909\) −34410.0 −1.25556
\(910\) 0 0
\(911\) 14936.0 0.543196 0.271598 0.962411i \(-0.412448\pi\)
0.271598 + 0.962411i \(0.412448\pi\)
\(912\) 0 0
\(913\) 45696.0 1.65643
\(914\) 0 0
\(915\) −6800.00 −0.245684
\(916\) 0 0
\(917\) −14560.0 −0.524333
\(918\) 0 0
\(919\) 8104.00 0.290888 0.145444 0.989366i \(-0.453539\pi\)
0.145444 + 0.989366i \(0.453539\pi\)
\(920\) 0 0
\(921\) 11648.0 0.416737
\(922\) 0 0
\(923\) −20944.0 −0.746891
\(924\) 0 0
\(925\) −7350.00 −0.261261
\(926\) 0 0
\(927\) 5920.00 0.209750
\(928\) 0 0
\(929\) −43622.0 −1.54057 −0.770286 0.637699i \(-0.779887\pi\)
−0.770286 + 0.637699i \(0.779887\pi\)
\(930\) 0 0
\(931\) 6272.00 0.220791
\(932\) 0 0
\(933\) 76736.0 2.69263
\(934\) 0 0
\(935\) −25160.0 −0.880021
\(936\) 0 0
\(937\) −30278.0 −1.05564 −0.527822 0.849355i \(-0.676991\pi\)
−0.527822 + 0.849355i \(0.676991\pi\)
\(938\) 0 0
\(939\) 28560.0 0.992567
\(940\) 0 0
\(941\) −45594.0 −1.57951 −0.789757 0.613420i \(-0.789793\pi\)
−0.789757 + 0.613420i \(0.789793\pi\)
\(942\) 0 0
\(943\) −5280.00 −0.182333
\(944\) 0 0
\(945\) −2800.00 −0.0963852
\(946\) 0 0
\(947\) −5836.00 −0.200258 −0.100129 0.994974i \(-0.531926\pi\)
−0.100129 + 0.994974i \(0.531926\pi\)
\(948\) 0 0
\(949\) −8500.00 −0.290750
\(950\) 0 0
\(951\) 30928.0 1.05458
\(952\) 0 0
\(953\) 7274.00 0.247249 0.123624 0.992329i \(-0.460548\pi\)
0.123624 + 0.992329i \(0.460548\pi\)
\(954\) 0 0
\(955\) 7120.00 0.241254
\(956\) 0 0
\(957\) 155584. 5.25529
\(958\) 0 0
\(959\) −15526.0 −0.522795
\(960\) 0 0
\(961\) −29215.0 −0.980665
\(962\) 0 0
\(963\) −51948.0 −1.73832
\(964\) 0 0
\(965\) −9350.00 −0.311904
\(966\) 0 0
\(967\) −2432.00 −0.0808768 −0.0404384 0.999182i \(-0.512875\pi\)
−0.0404384 + 0.999182i \(0.512875\pi\)
\(968\) 0 0
\(969\) 75776.0 2.51215
\(970\) 0 0
\(971\) 7496.00 0.247743 0.123871 0.992298i \(-0.460469\pi\)
0.123871 + 0.992298i \(0.460469\pi\)
\(972\) 0 0
\(973\) 17024.0 0.560909
\(974\) 0 0
\(975\) −6800.00 −0.223358
\(976\) 0 0
\(977\) −56574.0 −1.85257 −0.926286 0.376822i \(-0.877017\pi\)
−0.926286 + 0.376822i \(0.877017\pi\)
\(978\) 0 0
\(979\) 97240.0 3.17447
\(980\) 0 0
\(981\) 10138.0 0.329950
\(982\) 0 0
\(983\) −25776.0 −0.836345 −0.418172 0.908368i \(-0.637329\pi\)
−0.418172 + 0.908368i \(0.637329\pi\)
\(984\) 0 0
\(985\) 18090.0 0.585173
\(986\) 0 0
\(987\) −17472.0 −0.563465
\(988\) 0 0
\(989\) −9920.00 −0.318946
\(990\) 0 0
\(991\) −60080.0 −1.92584 −0.962918 0.269793i \(-0.913045\pi\)
−0.962918 + 0.269793i \(0.913045\pi\)
\(992\) 0 0
\(993\) 23520.0 0.751646
\(994\) 0 0
\(995\) 13680.0 0.435864
\(996\) 0 0
\(997\) −49906.0 −1.58529 −0.792647 0.609680i \(-0.791298\pi\)
−0.792647 + 0.609680i \(0.791298\pi\)
\(998\) 0 0
\(999\) −23520.0 −0.744885
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2240.4.a.bi.1.1 1
4.3 odd 2 2240.4.a.d.1.1 1
8.3 odd 2 560.4.a.q.1.1 1
8.5 even 2 70.4.a.a.1.1 1
24.5 odd 2 630.4.a.s.1.1 1
40.13 odd 4 350.4.c.n.99.2 2
40.29 even 2 350.4.a.v.1.1 1
40.37 odd 4 350.4.c.n.99.1 2
56.5 odd 6 490.4.e.j.361.1 2
56.13 odd 2 490.4.a.g.1.1 1
56.37 even 6 490.4.e.r.361.1 2
56.45 odd 6 490.4.e.j.471.1 2
56.53 even 6 490.4.e.r.471.1 2
280.69 odd 2 2450.4.a.x.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
70.4.a.a.1.1 1 8.5 even 2
350.4.a.v.1.1 1 40.29 even 2
350.4.c.n.99.1 2 40.37 odd 4
350.4.c.n.99.2 2 40.13 odd 4
490.4.a.g.1.1 1 56.13 odd 2
490.4.e.j.361.1 2 56.5 odd 6
490.4.e.j.471.1 2 56.45 odd 6
490.4.e.r.361.1 2 56.37 even 6
490.4.e.r.471.1 2 56.53 even 6
560.4.a.q.1.1 1 8.3 odd 2
630.4.a.s.1.1 1 24.5 odd 2
2240.4.a.d.1.1 1 4.3 odd 2
2240.4.a.bi.1.1 1 1.1 even 1 trivial
2450.4.a.x.1.1 1 280.69 odd 2