Properties

Label 2240.4.a.cg
Level $2240$
Weight $4$
Character orbit 2240.a
Self dual yes
Analytic conductor $132.164$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2240,4,Mod(1,2240)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2240, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2240.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2240 = 2^{6} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2240.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(132.164278413\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 65x^{2} - 11x + 724 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 1120)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{3} + 5 q^{5} + 7 q^{7} + (\beta_{2} + 2 \beta_1 + 5) q^{9} + ( - \beta_{2} + 8) q^{11} + (\beta_{3} + \beta_{2} + 3 \beta_1 + 2) q^{13} + 5 \beta_1 q^{15} + (2 \beta_{3} - 2 \beta_{2} + \beta_1 + 6) q^{17}+ \cdots + (2 \beta_{3} + 6 \beta_{2} + \cdots - 248) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + q^{3} + 20 q^{5} + 28 q^{7} + 23 q^{9} + 31 q^{11} + 13 q^{13} + 5 q^{15} + 25 q^{17} + 68 q^{19} + 7 q^{21} - 36 q^{23} + 100 q^{25} + 175 q^{27} + 109 q^{29} + 66 q^{31} + 73 q^{33} + 140 q^{35}+ \cdots - 998 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} - 65x^{2} - 11x + 724 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 2\nu - 32 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} - 4\nu^{2} - 39\nu + 84 ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 2\beta _1 + 32 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 2\beta_{3} + 4\beta_{2} + 47\beta _1 + 44 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−6.16420
−4.24838
3.48924
7.92333
0 −6.16420 0 5.00000 0 7.00000 0 10.9973 0
1.2 0 −4.24838 0 5.00000 0 7.00000 0 −8.95131 0
1.3 0 3.48924 0 5.00000 0 7.00000 0 −14.8252 0
1.4 0 7.92333 0 5.00000 0 7.00000 0 35.7791 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(5\) \( -1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2240.4.a.cg 4
4.b odd 2 1 2240.4.a.cf 4
8.b even 2 1 1120.4.a.j 4
8.d odd 2 1 1120.4.a.k yes 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1120.4.a.j 4 8.b even 2 1
1120.4.a.k yes 4 8.d odd 2 1
2240.4.a.cf 4 4.b odd 2 1
2240.4.a.cg 4 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(2240))\):

\( T_{3}^{4} - T_{3}^{3} - 65T_{3}^{2} - 11T_{3} + 724 \) Copy content Toggle raw display
\( T_{11}^{4} - 31T_{11}^{3} - 293T_{11}^{2} + 4627T_{11} + 33520 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} - T^{3} + \cdots + 724 \) Copy content Toggle raw display
$5$ \( (T - 5)^{4} \) Copy content Toggle raw display
$7$ \( (T - 7)^{4} \) Copy content Toggle raw display
$11$ \( T^{4} - 31 T^{3} + \cdots + 33520 \) Copy content Toggle raw display
$13$ \( T^{4} - 13 T^{3} + \cdots + 2220550 \) Copy content Toggle raw display
$17$ \( T^{4} - 25 T^{3} + \cdots - 287350 \) Copy content Toggle raw display
$19$ \( T^{4} - 68 T^{3} + \cdots - 30637440 \) Copy content Toggle raw display
$23$ \( T^{4} + 36 T^{3} + \cdots + 100445184 \) Copy content Toggle raw display
$29$ \( T^{4} - 109 T^{3} + \cdots - 47381910 \) Copy content Toggle raw display
$31$ \( T^{4} - 66 T^{3} + \cdots + 8055360 \) Copy content Toggle raw display
$37$ \( T^{4} - 10 T^{3} + \cdots + 918676800 \) Copy content Toggle raw display
$41$ \( T^{4} + 72 T^{3} + \cdots - 671665200 \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots + 5708371712 \) Copy content Toggle raw display
$47$ \( T^{4} - 255 T^{3} + \cdots - 890784288 \) Copy content Toggle raw display
$53$ \( T^{4} - 510 T^{3} + \cdots + 535824000 \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 21420134400 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots - 23638540400 \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 12425516032 \) Copy content Toggle raw display
$71$ \( T^{4} + \cdots - 5405350400 \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots - 2160516560 \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots - 36565188120 \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots - 7818427392 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots - 21201471216 \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots - 72239327910 \) Copy content Toggle raw display
show more
show less