Properties

Label 2240.4.a.ci.1.3
Level $2240$
Weight $4$
Character 2240.1
Self dual yes
Analytic conductor $132.164$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2240,4,Mod(1,2240)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2240, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2240.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2240 = 2^{6} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2240.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(132.164278413\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.817716.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 20x^{2} + 12x + 32 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 1120)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(1.56756\) of defining polynomial
Character \(\chi\) \(=\) 2240.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.96834 q^{3} -5.00000 q^{5} +7.00000 q^{7} -2.31560 q^{9} -22.8554 q^{11} -0.450727 q^{13} -24.8417 q^{15} -46.9410 q^{17} +113.126 q^{19} +34.7784 q^{21} +175.267 q^{23} +25.0000 q^{25} -145.650 q^{27} -172.586 q^{29} -213.349 q^{31} -113.553 q^{33} -35.0000 q^{35} +400.325 q^{37} -2.23936 q^{39} -375.755 q^{41} +131.262 q^{43} +11.5780 q^{45} +516.159 q^{47} +49.0000 q^{49} -233.219 q^{51} -48.1978 q^{53} +114.277 q^{55} +562.048 q^{57} -452.504 q^{59} -605.168 q^{61} -16.2092 q^{63} +2.25363 q^{65} -503.210 q^{67} +870.787 q^{69} +1149.94 q^{71} -1076.40 q^{73} +124.208 q^{75} -159.988 q^{77} -491.100 q^{79} -661.117 q^{81} +286.987 q^{83} +234.705 q^{85} -857.466 q^{87} -1042.74 q^{89} -3.15509 q^{91} -1059.99 q^{93} -565.630 q^{95} -674.847 q^{97} +52.9240 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 5 q^{3} - 20 q^{5} + 28 q^{7} + 23 q^{9} + 13 q^{11} + 39 q^{13} - 25 q^{15} - 233 q^{17} + 8 q^{19} + 35 q^{21} - 32 q^{23} + 100 q^{25} + 191 q^{27} + 181 q^{29} - 90 q^{31} - 645 q^{33} - 140 q^{35}+ \cdots - 138 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 4.96834 0.956157 0.478079 0.878317i \(-0.341333\pi\)
0.478079 + 0.878317i \(0.341333\pi\)
\(4\) 0 0
\(5\) −5.00000 −0.447214
\(6\) 0 0
\(7\) 7.00000 0.377964
\(8\) 0 0
\(9\) −2.31560 −0.0857630
\(10\) 0 0
\(11\) −22.8554 −0.626469 −0.313235 0.949676i \(-0.601413\pi\)
−0.313235 + 0.949676i \(0.601413\pi\)
\(12\) 0 0
\(13\) −0.450727 −0.00961609 −0.00480804 0.999988i \(-0.501530\pi\)
−0.00480804 + 0.999988i \(0.501530\pi\)
\(14\) 0 0
\(15\) −24.8417 −0.427607
\(16\) 0 0
\(17\) −46.9410 −0.669697 −0.334849 0.942272i \(-0.608685\pi\)
−0.334849 + 0.942272i \(0.608685\pi\)
\(18\) 0 0
\(19\) 113.126 1.36594 0.682971 0.730446i \(-0.260688\pi\)
0.682971 + 0.730446i \(0.260688\pi\)
\(20\) 0 0
\(21\) 34.7784 0.361394
\(22\) 0 0
\(23\) 175.267 1.58894 0.794472 0.607300i \(-0.207748\pi\)
0.794472 + 0.607300i \(0.207748\pi\)
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) 0 0
\(27\) −145.650 −1.03816
\(28\) 0 0
\(29\) −172.586 −1.10512 −0.552559 0.833474i \(-0.686349\pi\)
−0.552559 + 0.833474i \(0.686349\pi\)
\(30\) 0 0
\(31\) −213.349 −1.23608 −0.618042 0.786145i \(-0.712074\pi\)
−0.618042 + 0.786145i \(0.712074\pi\)
\(32\) 0 0
\(33\) −113.553 −0.599003
\(34\) 0 0
\(35\) −35.0000 −0.169031
\(36\) 0 0
\(37\) 400.325 1.77873 0.889366 0.457196i \(-0.151146\pi\)
0.889366 + 0.457196i \(0.151146\pi\)
\(38\) 0 0
\(39\) −2.23936 −0.00919449
\(40\) 0 0
\(41\) −375.755 −1.43130 −0.715648 0.698462i \(-0.753868\pi\)
−0.715648 + 0.698462i \(0.753868\pi\)
\(42\) 0 0
\(43\) 131.262 0.465517 0.232759 0.972535i \(-0.425225\pi\)
0.232759 + 0.972535i \(0.425225\pi\)
\(44\) 0 0
\(45\) 11.5780 0.0383544
\(46\) 0 0
\(47\) 516.159 1.60190 0.800952 0.598728i \(-0.204327\pi\)
0.800952 + 0.598728i \(0.204327\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) 0 0
\(51\) −233.219 −0.640336
\(52\) 0 0
\(53\) −48.1978 −0.124915 −0.0624573 0.998048i \(-0.519894\pi\)
−0.0624573 + 0.998048i \(0.519894\pi\)
\(54\) 0 0
\(55\) 114.277 0.280165
\(56\) 0 0
\(57\) 562.048 1.30605
\(58\) 0 0
\(59\) −452.504 −0.998492 −0.499246 0.866460i \(-0.666390\pi\)
−0.499246 + 0.866460i \(0.666390\pi\)
\(60\) 0 0
\(61\) −605.168 −1.27023 −0.635113 0.772419i \(-0.719046\pi\)
−0.635113 + 0.772419i \(0.719046\pi\)
\(62\) 0 0
\(63\) −16.2092 −0.0324154
\(64\) 0 0
\(65\) 2.25363 0.00430044
\(66\) 0 0
\(67\) −503.210 −0.917566 −0.458783 0.888548i \(-0.651714\pi\)
−0.458783 + 0.888548i \(0.651714\pi\)
\(68\) 0 0
\(69\) 870.787 1.51928
\(70\) 0 0
\(71\) 1149.94 1.92215 0.961077 0.276280i \(-0.0891016\pi\)
0.961077 + 0.276280i \(0.0891016\pi\)
\(72\) 0 0
\(73\) −1076.40 −1.72580 −0.862900 0.505374i \(-0.831355\pi\)
−0.862900 + 0.505374i \(0.831355\pi\)
\(74\) 0 0
\(75\) 124.208 0.191231
\(76\) 0 0
\(77\) −159.988 −0.236783
\(78\) 0 0
\(79\) −491.100 −0.699406 −0.349703 0.936861i \(-0.613717\pi\)
−0.349703 + 0.936861i \(0.613717\pi\)
\(80\) 0 0
\(81\) −661.117 −0.906882
\(82\) 0 0
\(83\) 286.987 0.379529 0.189764 0.981830i \(-0.439228\pi\)
0.189764 + 0.981830i \(0.439228\pi\)
\(84\) 0 0
\(85\) 234.705 0.299498
\(86\) 0 0
\(87\) −857.466 −1.05667
\(88\) 0 0
\(89\) −1042.74 −1.24191 −0.620956 0.783845i \(-0.713256\pi\)
−0.620956 + 0.783845i \(0.713256\pi\)
\(90\) 0 0
\(91\) −3.15509 −0.00363454
\(92\) 0 0
\(93\) −1059.99 −1.18189
\(94\) 0 0
\(95\) −565.630 −0.610867
\(96\) 0 0
\(97\) −674.847 −0.706395 −0.353197 0.935549i \(-0.614906\pi\)
−0.353197 + 0.935549i \(0.614906\pi\)
\(98\) 0 0
\(99\) 52.9240 0.0537279
\(100\) 0 0
\(101\) −218.795 −0.215554 −0.107777 0.994175i \(-0.534373\pi\)
−0.107777 + 0.994175i \(0.534373\pi\)
\(102\) 0 0
\(103\) −1219.78 −1.16688 −0.583438 0.812158i \(-0.698293\pi\)
−0.583438 + 0.812158i \(0.698293\pi\)
\(104\) 0 0
\(105\) −173.892 −0.161620
\(106\) 0 0
\(107\) 1582.05 1.42937 0.714685 0.699446i \(-0.246570\pi\)
0.714685 + 0.699446i \(0.246570\pi\)
\(108\) 0 0
\(109\) −1252.11 −1.10028 −0.550139 0.835073i \(-0.685425\pi\)
−0.550139 + 0.835073i \(0.685425\pi\)
\(110\) 0 0
\(111\) 1988.95 1.70075
\(112\) 0 0
\(113\) −1377.44 −1.14671 −0.573355 0.819307i \(-0.694358\pi\)
−0.573355 + 0.819307i \(0.694358\pi\)
\(114\) 0 0
\(115\) −876.336 −0.710598
\(116\) 0 0
\(117\) 1.04370 0.000824705 0
\(118\) 0 0
\(119\) −328.587 −0.253122
\(120\) 0 0
\(121\) −808.631 −0.607537
\(122\) 0 0
\(123\) −1866.88 −1.36854
\(124\) 0 0
\(125\) −125.000 −0.0894427
\(126\) 0 0
\(127\) −1531.99 −1.07041 −0.535206 0.844722i \(-0.679766\pi\)
−0.535206 + 0.844722i \(0.679766\pi\)
\(128\) 0 0
\(129\) 652.154 0.445108
\(130\) 0 0
\(131\) −684.715 −0.456671 −0.228335 0.973583i \(-0.573328\pi\)
−0.228335 + 0.973583i \(0.573328\pi\)
\(132\) 0 0
\(133\) 791.882 0.516277
\(134\) 0 0
\(135\) 728.249 0.464279
\(136\) 0 0
\(137\) −47.8521 −0.0298415 −0.0149207 0.999889i \(-0.504750\pi\)
−0.0149207 + 0.999889i \(0.504750\pi\)
\(138\) 0 0
\(139\) 547.426 0.334043 0.167022 0.985953i \(-0.446585\pi\)
0.167022 + 0.985953i \(0.446585\pi\)
\(140\) 0 0
\(141\) 2564.45 1.53167
\(142\) 0 0
\(143\) 10.3015 0.00602418
\(144\) 0 0
\(145\) 862.930 0.494224
\(146\) 0 0
\(147\) 243.449 0.136594
\(148\) 0 0
\(149\) 2459.90 1.35250 0.676250 0.736672i \(-0.263604\pi\)
0.676250 + 0.736672i \(0.263604\pi\)
\(150\) 0 0
\(151\) −1525.50 −0.822142 −0.411071 0.911603i \(-0.634845\pi\)
−0.411071 + 0.911603i \(0.634845\pi\)
\(152\) 0 0
\(153\) 108.697 0.0574353
\(154\) 0 0
\(155\) 1066.74 0.552793
\(156\) 0 0
\(157\) 3098.22 1.57493 0.787467 0.616357i \(-0.211392\pi\)
0.787467 + 0.616357i \(0.211392\pi\)
\(158\) 0 0
\(159\) −239.463 −0.119438
\(160\) 0 0
\(161\) 1226.87 0.600565
\(162\) 0 0
\(163\) −1282.69 −0.616367 −0.308184 0.951327i \(-0.599721\pi\)
−0.308184 + 0.951327i \(0.599721\pi\)
\(164\) 0 0
\(165\) 567.767 0.267882
\(166\) 0 0
\(167\) −2182.07 −1.01110 −0.505550 0.862797i \(-0.668710\pi\)
−0.505550 + 0.862797i \(0.668710\pi\)
\(168\) 0 0
\(169\) −2196.80 −0.999908
\(170\) 0 0
\(171\) −261.955 −0.117147
\(172\) 0 0
\(173\) 3324.16 1.46088 0.730438 0.682979i \(-0.239316\pi\)
0.730438 + 0.682979i \(0.239316\pi\)
\(174\) 0 0
\(175\) 175.000 0.0755929
\(176\) 0 0
\(177\) −2248.19 −0.954715
\(178\) 0 0
\(179\) 2501.60 1.04457 0.522285 0.852771i \(-0.325080\pi\)
0.522285 + 0.852771i \(0.325080\pi\)
\(180\) 0 0
\(181\) −4697.30 −1.92899 −0.964497 0.264094i \(-0.914927\pi\)
−0.964497 + 0.264094i \(0.914927\pi\)
\(182\) 0 0
\(183\) −3006.68 −1.21454
\(184\) 0 0
\(185\) −2001.63 −0.795473
\(186\) 0 0
\(187\) 1072.85 0.419545
\(188\) 0 0
\(189\) −1019.55 −0.392388
\(190\) 0 0
\(191\) −2751.84 −1.04249 −0.521246 0.853406i \(-0.674533\pi\)
−0.521246 + 0.853406i \(0.674533\pi\)
\(192\) 0 0
\(193\) 1138.94 0.424781 0.212390 0.977185i \(-0.431875\pi\)
0.212390 + 0.977185i \(0.431875\pi\)
\(194\) 0 0
\(195\) 11.1968 0.00411190
\(196\) 0 0
\(197\) −2358.84 −0.853099 −0.426550 0.904464i \(-0.640271\pi\)
−0.426550 + 0.904464i \(0.640271\pi\)
\(198\) 0 0
\(199\) −2330.05 −0.830014 −0.415007 0.909818i \(-0.636221\pi\)
−0.415007 + 0.909818i \(0.636221\pi\)
\(200\) 0 0
\(201\) −2500.12 −0.877338
\(202\) 0 0
\(203\) −1208.10 −0.417695
\(204\) 0 0
\(205\) 1878.78 0.640095
\(206\) 0 0
\(207\) −405.849 −0.136273
\(208\) 0 0
\(209\) −2585.54 −0.855720
\(210\) 0 0
\(211\) −3133.89 −1.02249 −0.511246 0.859435i \(-0.670816\pi\)
−0.511246 + 0.859435i \(0.670816\pi\)
\(212\) 0 0
\(213\) 5713.30 1.83788
\(214\) 0 0
\(215\) −656.309 −0.208186
\(216\) 0 0
\(217\) −1493.44 −0.467196
\(218\) 0 0
\(219\) −5347.94 −1.65014
\(220\) 0 0
\(221\) 21.1575 0.00643987
\(222\) 0 0
\(223\) 4203.14 1.26217 0.631083 0.775715i \(-0.282611\pi\)
0.631083 + 0.775715i \(0.282611\pi\)
\(224\) 0 0
\(225\) −57.8900 −0.0171526
\(226\) 0 0
\(227\) −1116.15 −0.326351 −0.163175 0.986597i \(-0.552174\pi\)
−0.163175 + 0.986597i \(0.552174\pi\)
\(228\) 0 0
\(229\) 2227.72 0.642847 0.321423 0.946936i \(-0.395839\pi\)
0.321423 + 0.946936i \(0.395839\pi\)
\(230\) 0 0
\(231\) −794.873 −0.226402
\(232\) 0 0
\(233\) 1360.52 0.382535 0.191268 0.981538i \(-0.438740\pi\)
0.191268 + 0.981538i \(0.438740\pi\)
\(234\) 0 0
\(235\) −2580.79 −0.716393
\(236\) 0 0
\(237\) −2439.95 −0.668742
\(238\) 0 0
\(239\) −5361.84 −1.45117 −0.725583 0.688135i \(-0.758430\pi\)
−0.725583 + 0.688135i \(0.758430\pi\)
\(240\) 0 0
\(241\) −6792.05 −1.81541 −0.907706 0.419608i \(-0.862168\pi\)
−0.907706 + 0.419608i \(0.862168\pi\)
\(242\) 0 0
\(243\) 647.894 0.171039
\(244\) 0 0
\(245\) −245.000 −0.0638877
\(246\) 0 0
\(247\) −50.9889 −0.0131350
\(248\) 0 0
\(249\) 1425.85 0.362889
\(250\) 0 0
\(251\) −3237.44 −0.814124 −0.407062 0.913401i \(-0.633447\pi\)
−0.407062 + 0.913401i \(0.633447\pi\)
\(252\) 0 0
\(253\) −4005.80 −0.995425
\(254\) 0 0
\(255\) 1166.09 0.286367
\(256\) 0 0
\(257\) 3371.52 0.818325 0.409162 0.912462i \(-0.365821\pi\)
0.409162 + 0.912462i \(0.365821\pi\)
\(258\) 0 0
\(259\) 2802.28 0.672297
\(260\) 0 0
\(261\) 399.641 0.0947783
\(262\) 0 0
\(263\) −2591.22 −0.607534 −0.303767 0.952746i \(-0.598244\pi\)
−0.303767 + 0.952746i \(0.598244\pi\)
\(264\) 0 0
\(265\) 240.989 0.0558635
\(266\) 0 0
\(267\) −5180.69 −1.18746
\(268\) 0 0
\(269\) −2574.98 −0.583641 −0.291821 0.956473i \(-0.594261\pi\)
−0.291821 + 0.956473i \(0.594261\pi\)
\(270\) 0 0
\(271\) 458.239 0.102716 0.0513580 0.998680i \(-0.483645\pi\)
0.0513580 + 0.998680i \(0.483645\pi\)
\(272\) 0 0
\(273\) −15.6755 −0.00347519
\(274\) 0 0
\(275\) −571.385 −0.125294
\(276\) 0 0
\(277\) 7899.72 1.71353 0.856766 0.515706i \(-0.172470\pi\)
0.856766 + 0.515706i \(0.172470\pi\)
\(278\) 0 0
\(279\) 494.031 0.106010
\(280\) 0 0
\(281\) 5443.55 1.15564 0.577820 0.816164i \(-0.303903\pi\)
0.577820 + 0.816164i \(0.303903\pi\)
\(282\) 0 0
\(283\) 7375.80 1.54928 0.774639 0.632404i \(-0.217932\pi\)
0.774639 + 0.632404i \(0.217932\pi\)
\(284\) 0 0
\(285\) −2810.24 −0.584085
\(286\) 0 0
\(287\) −2630.29 −0.540979
\(288\) 0 0
\(289\) −2709.55 −0.551506
\(290\) 0 0
\(291\) −3352.87 −0.675425
\(292\) 0 0
\(293\) 7931.69 1.58148 0.790741 0.612150i \(-0.209695\pi\)
0.790741 + 0.612150i \(0.209695\pi\)
\(294\) 0 0
\(295\) 2262.52 0.446539
\(296\) 0 0
\(297\) 3328.88 0.650375
\(298\) 0 0
\(299\) −78.9976 −0.0152794
\(300\) 0 0
\(301\) 918.833 0.175949
\(302\) 0 0
\(303\) −1087.05 −0.206104
\(304\) 0 0
\(305\) 3025.84 0.568062
\(306\) 0 0
\(307\) −350.327 −0.0651278 −0.0325639 0.999470i \(-0.510367\pi\)
−0.0325639 + 0.999470i \(0.510367\pi\)
\(308\) 0 0
\(309\) −6060.27 −1.11572
\(310\) 0 0
\(311\) 8242.06 1.50278 0.751390 0.659859i \(-0.229384\pi\)
0.751390 + 0.659859i \(0.229384\pi\)
\(312\) 0 0
\(313\) −8490.82 −1.53332 −0.766661 0.642052i \(-0.778083\pi\)
−0.766661 + 0.642052i \(0.778083\pi\)
\(314\) 0 0
\(315\) 81.0461 0.0144966
\(316\) 0 0
\(317\) 2789.84 0.494299 0.247150 0.968977i \(-0.420506\pi\)
0.247150 + 0.968977i \(0.420506\pi\)
\(318\) 0 0
\(319\) 3944.52 0.692322
\(320\) 0 0
\(321\) 7860.17 1.36670
\(322\) 0 0
\(323\) −5310.24 −0.914767
\(324\) 0 0
\(325\) −11.2682 −0.00192322
\(326\) 0 0
\(327\) −6220.91 −1.05204
\(328\) 0 0
\(329\) 3613.11 0.605463
\(330\) 0 0
\(331\) −6921.94 −1.14944 −0.574719 0.818350i \(-0.694889\pi\)
−0.574719 + 0.818350i \(0.694889\pi\)
\(332\) 0 0
\(333\) −926.994 −0.152549
\(334\) 0 0
\(335\) 2516.05 0.410348
\(336\) 0 0
\(337\) 10153.5 1.64124 0.820619 0.571475i \(-0.193629\pi\)
0.820619 + 0.571475i \(0.193629\pi\)
\(338\) 0 0
\(339\) −6843.57 −1.09644
\(340\) 0 0
\(341\) 4876.17 0.774368
\(342\) 0 0
\(343\) 343.000 0.0539949
\(344\) 0 0
\(345\) −4353.93 −0.679443
\(346\) 0 0
\(347\) 4729.44 0.731670 0.365835 0.930680i \(-0.380783\pi\)
0.365835 + 0.930680i \(0.380783\pi\)
\(348\) 0 0
\(349\) −756.020 −0.115957 −0.0579783 0.998318i \(-0.518465\pi\)
−0.0579783 + 0.998318i \(0.518465\pi\)
\(350\) 0 0
\(351\) 65.6483 0.00998304
\(352\) 0 0
\(353\) −3113.40 −0.469432 −0.234716 0.972064i \(-0.575416\pi\)
−0.234716 + 0.972064i \(0.575416\pi\)
\(354\) 0 0
\(355\) −5749.71 −0.859614
\(356\) 0 0
\(357\) −1632.53 −0.242024
\(358\) 0 0
\(359\) −5835.64 −0.857920 −0.428960 0.903323i \(-0.641120\pi\)
−0.428960 + 0.903323i \(0.641120\pi\)
\(360\) 0 0
\(361\) 5938.49 0.865795
\(362\) 0 0
\(363\) −4017.55 −0.580901
\(364\) 0 0
\(365\) 5382.02 0.771802
\(366\) 0 0
\(367\) −9837.20 −1.39918 −0.699588 0.714546i \(-0.746633\pi\)
−0.699588 + 0.714546i \(0.746633\pi\)
\(368\) 0 0
\(369\) 870.099 0.122752
\(370\) 0 0
\(371\) −337.384 −0.0472133
\(372\) 0 0
\(373\) 1271.19 0.176461 0.0882303 0.996100i \(-0.471879\pi\)
0.0882303 + 0.996100i \(0.471879\pi\)
\(374\) 0 0
\(375\) −621.042 −0.0855213
\(376\) 0 0
\(377\) 77.7891 0.0106269
\(378\) 0 0
\(379\) −4604.99 −0.624123 −0.312062 0.950062i \(-0.601020\pi\)
−0.312062 + 0.950062i \(0.601020\pi\)
\(380\) 0 0
\(381\) −7611.45 −1.02348
\(382\) 0 0
\(383\) −1634.45 −0.218058 −0.109029 0.994039i \(-0.534774\pi\)
−0.109029 + 0.994039i \(0.534774\pi\)
\(384\) 0 0
\(385\) 799.939 0.105893
\(386\) 0 0
\(387\) −303.950 −0.0399242
\(388\) 0 0
\(389\) −6462.01 −0.842254 −0.421127 0.907002i \(-0.638365\pi\)
−0.421127 + 0.907002i \(0.638365\pi\)
\(390\) 0 0
\(391\) −8227.21 −1.06411
\(392\) 0 0
\(393\) −3401.90 −0.436649
\(394\) 0 0
\(395\) 2455.50 0.312784
\(396\) 0 0
\(397\) −7817.65 −0.988304 −0.494152 0.869376i \(-0.664521\pi\)
−0.494152 + 0.869376i \(0.664521\pi\)
\(398\) 0 0
\(399\) 3934.34 0.493642
\(400\) 0 0
\(401\) 11331.7 1.41117 0.705585 0.708625i \(-0.250684\pi\)
0.705585 + 0.708625i \(0.250684\pi\)
\(402\) 0 0
\(403\) 96.1620 0.0118863
\(404\) 0 0
\(405\) 3305.58 0.405570
\(406\) 0 0
\(407\) −9149.59 −1.11432
\(408\) 0 0
\(409\) −3964.56 −0.479302 −0.239651 0.970859i \(-0.577033\pi\)
−0.239651 + 0.970859i \(0.577033\pi\)
\(410\) 0 0
\(411\) −237.746 −0.0285332
\(412\) 0 0
\(413\) −3167.53 −0.377394
\(414\) 0 0
\(415\) −1434.93 −0.169730
\(416\) 0 0
\(417\) 2719.80 0.319398
\(418\) 0 0
\(419\) −5153.89 −0.600916 −0.300458 0.953795i \(-0.597140\pi\)
−0.300458 + 0.953795i \(0.597140\pi\)
\(420\) 0 0
\(421\) −9154.46 −1.05976 −0.529882 0.848071i \(-0.677764\pi\)
−0.529882 + 0.848071i \(0.677764\pi\)
\(422\) 0 0
\(423\) −1195.22 −0.137384
\(424\) 0 0
\(425\) −1173.52 −0.133939
\(426\) 0 0
\(427\) −4236.17 −0.480100
\(428\) 0 0
\(429\) 51.1815 0.00576006
\(430\) 0 0
\(431\) 16866.0 1.88494 0.942469 0.334294i \(-0.108498\pi\)
0.942469 + 0.334294i \(0.108498\pi\)
\(432\) 0 0
\(433\) 7415.34 0.822999 0.411500 0.911410i \(-0.365005\pi\)
0.411500 + 0.911410i \(0.365005\pi\)
\(434\) 0 0
\(435\) 4287.33 0.472556
\(436\) 0 0
\(437\) 19827.3 2.17041
\(438\) 0 0
\(439\) −11509.2 −1.25126 −0.625629 0.780121i \(-0.715158\pi\)
−0.625629 + 0.780121i \(0.715158\pi\)
\(440\) 0 0
\(441\) −113.464 −0.0122519
\(442\) 0 0
\(443\) −3262.78 −0.349931 −0.174966 0.984575i \(-0.555981\pi\)
−0.174966 + 0.984575i \(0.555981\pi\)
\(444\) 0 0
\(445\) 5213.70 0.555400
\(446\) 0 0
\(447\) 12221.6 1.29320
\(448\) 0 0
\(449\) −2342.43 −0.246205 −0.123103 0.992394i \(-0.539284\pi\)
−0.123103 + 0.992394i \(0.539284\pi\)
\(450\) 0 0
\(451\) 8588.03 0.896662
\(452\) 0 0
\(453\) −7579.21 −0.786098
\(454\) 0 0
\(455\) 15.7754 0.00162542
\(456\) 0 0
\(457\) 16429.3 1.68169 0.840844 0.541277i \(-0.182059\pi\)
0.840844 + 0.541277i \(0.182059\pi\)
\(458\) 0 0
\(459\) 6836.94 0.695253
\(460\) 0 0
\(461\) −6240.94 −0.630519 −0.315260 0.949005i \(-0.602092\pi\)
−0.315260 + 0.949005i \(0.602092\pi\)
\(462\) 0 0
\(463\) −7559.25 −0.758764 −0.379382 0.925240i \(-0.623863\pi\)
−0.379382 + 0.925240i \(0.623863\pi\)
\(464\) 0 0
\(465\) 5299.95 0.528557
\(466\) 0 0
\(467\) 6127.85 0.607201 0.303601 0.952799i \(-0.401811\pi\)
0.303601 + 0.952799i \(0.401811\pi\)
\(468\) 0 0
\(469\) −3522.47 −0.346807
\(470\) 0 0
\(471\) 15393.0 1.50588
\(472\) 0 0
\(473\) −3000.04 −0.291632
\(474\) 0 0
\(475\) 2828.15 0.273188
\(476\) 0 0
\(477\) 111.607 0.0107131
\(478\) 0 0
\(479\) −10823.4 −1.03243 −0.516214 0.856459i \(-0.672659\pi\)
−0.516214 + 0.856459i \(0.672659\pi\)
\(480\) 0 0
\(481\) −180.437 −0.0171044
\(482\) 0 0
\(483\) 6095.51 0.574234
\(484\) 0 0
\(485\) 3374.23 0.315909
\(486\) 0 0
\(487\) −7892.91 −0.734419 −0.367209 0.930138i \(-0.619687\pi\)
−0.367209 + 0.930138i \(0.619687\pi\)
\(488\) 0 0
\(489\) −6372.83 −0.589344
\(490\) 0 0
\(491\) −3104.54 −0.285349 −0.142674 0.989770i \(-0.545570\pi\)
−0.142674 + 0.989770i \(0.545570\pi\)
\(492\) 0 0
\(493\) 8101.35 0.740095
\(494\) 0 0
\(495\) −264.620 −0.0240278
\(496\) 0 0
\(497\) 8049.59 0.726506
\(498\) 0 0
\(499\) −5677.84 −0.509369 −0.254684 0.967024i \(-0.581972\pi\)
−0.254684 + 0.967024i \(0.581972\pi\)
\(500\) 0 0
\(501\) −10841.3 −0.966771
\(502\) 0 0
\(503\) −36.3259 −0.00322006 −0.00161003 0.999999i \(-0.500512\pi\)
−0.00161003 + 0.999999i \(0.500512\pi\)
\(504\) 0 0
\(505\) 1093.98 0.0963987
\(506\) 0 0
\(507\) −10914.4 −0.956069
\(508\) 0 0
\(509\) −2613.79 −0.227611 −0.113805 0.993503i \(-0.536304\pi\)
−0.113805 + 0.993503i \(0.536304\pi\)
\(510\) 0 0
\(511\) −7534.82 −0.652291
\(512\) 0 0
\(513\) −16476.8 −1.41807
\(514\) 0 0
\(515\) 6098.89 0.521843
\(516\) 0 0
\(517\) −11797.0 −1.00354
\(518\) 0 0
\(519\) 16515.6 1.39683
\(520\) 0 0
\(521\) 2865.84 0.240988 0.120494 0.992714i \(-0.461552\pi\)
0.120494 + 0.992714i \(0.461552\pi\)
\(522\) 0 0
\(523\) −20595.8 −1.72197 −0.860987 0.508627i \(-0.830153\pi\)
−0.860987 + 0.508627i \(0.830153\pi\)
\(524\) 0 0
\(525\) 869.459 0.0722787
\(526\) 0 0
\(527\) 10014.8 0.827802
\(528\) 0 0
\(529\) 18551.6 1.52475
\(530\) 0 0
\(531\) 1047.82 0.0856337
\(532\) 0 0
\(533\) 169.363 0.0137635
\(534\) 0 0
\(535\) −7910.26 −0.639234
\(536\) 0 0
\(537\) 12428.8 0.998773
\(538\) 0 0
\(539\) −1119.91 −0.0894956
\(540\) 0 0
\(541\) 4228.02 0.336001 0.168001 0.985787i \(-0.446269\pi\)
0.168001 + 0.985787i \(0.446269\pi\)
\(542\) 0 0
\(543\) −23337.8 −1.84442
\(544\) 0 0
\(545\) 6260.55 0.492059
\(546\) 0 0
\(547\) −8575.91 −0.670346 −0.335173 0.942157i \(-0.608795\pi\)
−0.335173 + 0.942157i \(0.608795\pi\)
\(548\) 0 0
\(549\) 1401.33 0.108938
\(550\) 0 0
\(551\) −19524.0 −1.50953
\(552\) 0 0
\(553\) −3437.70 −0.264351
\(554\) 0 0
\(555\) −9944.76 −0.760597
\(556\) 0 0
\(557\) −19783.7 −1.50496 −0.752481 0.658614i \(-0.771143\pi\)
−0.752481 + 0.658614i \(0.771143\pi\)
\(558\) 0 0
\(559\) −59.1632 −0.00447646
\(560\) 0 0
\(561\) 5330.30 0.401151
\(562\) 0 0
\(563\) 12145.1 0.909158 0.454579 0.890706i \(-0.349790\pi\)
0.454579 + 0.890706i \(0.349790\pi\)
\(564\) 0 0
\(565\) 6887.18 0.512824
\(566\) 0 0
\(567\) −4627.82 −0.342769
\(568\) 0 0
\(569\) −14348.4 −1.05715 −0.528575 0.848887i \(-0.677273\pi\)
−0.528575 + 0.848887i \(0.677273\pi\)
\(570\) 0 0
\(571\) 23201.2 1.70042 0.850209 0.526445i \(-0.176475\pi\)
0.850209 + 0.526445i \(0.176475\pi\)
\(572\) 0 0
\(573\) −13672.1 −0.996787
\(574\) 0 0
\(575\) 4381.68 0.317789
\(576\) 0 0
\(577\) −936.733 −0.0675853 −0.0337926 0.999429i \(-0.510759\pi\)
−0.0337926 + 0.999429i \(0.510759\pi\)
\(578\) 0 0
\(579\) 5658.64 0.406157
\(580\) 0 0
\(581\) 2008.91 0.143448
\(582\) 0 0
\(583\) 1101.58 0.0782551
\(584\) 0 0
\(585\) −5.21852 −0.000368819 0
\(586\) 0 0
\(587\) 12738.1 0.895672 0.447836 0.894116i \(-0.352195\pi\)
0.447836 + 0.894116i \(0.352195\pi\)
\(588\) 0 0
\(589\) −24135.3 −1.68842
\(590\) 0 0
\(591\) −11719.5 −0.815697
\(592\) 0 0
\(593\) −11634.9 −0.805714 −0.402857 0.915263i \(-0.631983\pi\)
−0.402857 + 0.915263i \(0.631983\pi\)
\(594\) 0 0
\(595\) 1642.93 0.113200
\(596\) 0 0
\(597\) −11576.5 −0.793624
\(598\) 0 0
\(599\) 517.243 0.0352821 0.0176410 0.999844i \(-0.494384\pi\)
0.0176410 + 0.999844i \(0.494384\pi\)
\(600\) 0 0
\(601\) 9170.49 0.622416 0.311208 0.950342i \(-0.399266\pi\)
0.311208 + 0.950342i \(0.399266\pi\)
\(602\) 0 0
\(603\) 1165.23 0.0786932
\(604\) 0 0
\(605\) 4043.16 0.271699
\(606\) 0 0
\(607\) −4824.78 −0.322622 −0.161311 0.986904i \(-0.551572\pi\)
−0.161311 + 0.986904i \(0.551572\pi\)
\(608\) 0 0
\(609\) −6002.26 −0.399383
\(610\) 0 0
\(611\) −232.647 −0.0154041
\(612\) 0 0
\(613\) 13329.2 0.878243 0.439121 0.898428i \(-0.355290\pi\)
0.439121 + 0.898428i \(0.355290\pi\)
\(614\) 0 0
\(615\) 9334.40 0.612031
\(616\) 0 0
\(617\) −21964.7 −1.43317 −0.716584 0.697501i \(-0.754295\pi\)
−0.716584 + 0.697501i \(0.754295\pi\)
\(618\) 0 0
\(619\) 8756.27 0.568569 0.284284 0.958740i \(-0.408244\pi\)
0.284284 + 0.958740i \(0.408244\pi\)
\(620\) 0 0
\(621\) −25527.6 −1.64958
\(622\) 0 0
\(623\) −7299.18 −0.469399
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) 0 0
\(627\) −12845.8 −0.818203
\(628\) 0 0
\(629\) −18791.7 −1.19121
\(630\) 0 0
\(631\) −1613.61 −0.101802 −0.0509008 0.998704i \(-0.516209\pi\)
−0.0509008 + 0.998704i \(0.516209\pi\)
\(632\) 0 0
\(633\) −15570.2 −0.977663
\(634\) 0 0
\(635\) 7659.96 0.478702
\(636\) 0 0
\(637\) −22.0856 −0.00137373
\(638\) 0 0
\(639\) −2662.81 −0.164850
\(640\) 0 0
\(641\) 26646.3 1.64191 0.820956 0.570991i \(-0.193441\pi\)
0.820956 + 0.570991i \(0.193441\pi\)
\(642\) 0 0
\(643\) 14540.5 0.891790 0.445895 0.895085i \(-0.352885\pi\)
0.445895 + 0.895085i \(0.352885\pi\)
\(644\) 0 0
\(645\) −3260.77 −0.199058
\(646\) 0 0
\(647\) −12367.3 −0.751483 −0.375742 0.926724i \(-0.622612\pi\)
−0.375742 + 0.926724i \(0.622612\pi\)
\(648\) 0 0
\(649\) 10342.2 0.625524
\(650\) 0 0
\(651\) −7419.93 −0.446713
\(652\) 0 0
\(653\) 4725.94 0.283217 0.141608 0.989923i \(-0.454773\pi\)
0.141608 + 0.989923i \(0.454773\pi\)
\(654\) 0 0
\(655\) 3423.58 0.204229
\(656\) 0 0
\(657\) 2492.52 0.148010
\(658\) 0 0
\(659\) 1139.07 0.0673323 0.0336662 0.999433i \(-0.489282\pi\)
0.0336662 + 0.999433i \(0.489282\pi\)
\(660\) 0 0
\(661\) −13905.2 −0.818228 −0.409114 0.912483i \(-0.634162\pi\)
−0.409114 + 0.912483i \(0.634162\pi\)
\(662\) 0 0
\(663\) 105.118 0.00615753
\(664\) 0 0
\(665\) −3959.41 −0.230886
\(666\) 0 0
\(667\) −30248.7 −1.75597
\(668\) 0 0
\(669\) 20882.6 1.20683
\(670\) 0 0
\(671\) 13831.3 0.795757
\(672\) 0 0
\(673\) 4861.17 0.278431 0.139216 0.990262i \(-0.455542\pi\)
0.139216 + 0.990262i \(0.455542\pi\)
\(674\) 0 0
\(675\) −3641.25 −0.207632
\(676\) 0 0
\(677\) 13983.8 0.793859 0.396930 0.917849i \(-0.370076\pi\)
0.396930 + 0.917849i \(0.370076\pi\)
\(678\) 0 0
\(679\) −4723.93 −0.266992
\(680\) 0 0
\(681\) −5545.42 −0.312043
\(682\) 0 0
\(683\) −11906.5 −0.667039 −0.333520 0.942743i \(-0.608236\pi\)
−0.333520 + 0.942743i \(0.608236\pi\)
\(684\) 0 0
\(685\) 239.261 0.0133455
\(686\) 0 0
\(687\) 11068.1 0.614663
\(688\) 0 0
\(689\) 21.7240 0.00120119
\(690\) 0 0
\(691\) 14847.6 0.817409 0.408705 0.912667i \(-0.365981\pi\)
0.408705 + 0.912667i \(0.365981\pi\)
\(692\) 0 0
\(693\) 370.468 0.0203072
\(694\) 0 0
\(695\) −2737.13 −0.149389
\(696\) 0 0
\(697\) 17638.3 0.958535
\(698\) 0 0
\(699\) 6759.54 0.365764
\(700\) 0 0
\(701\) −10193.6 −0.549227 −0.274613 0.961555i \(-0.588550\pi\)
−0.274613 + 0.961555i \(0.588550\pi\)
\(702\) 0 0
\(703\) 45287.2 2.42964
\(704\) 0 0
\(705\) −12822.3 −0.684985
\(706\) 0 0
\(707\) −1531.57 −0.0814718
\(708\) 0 0
\(709\) −15601.0 −0.826388 −0.413194 0.910643i \(-0.635587\pi\)
−0.413194 + 0.910643i \(0.635587\pi\)
\(710\) 0 0
\(711\) 1137.19 0.0599832
\(712\) 0 0
\(713\) −37393.1 −1.96407
\(714\) 0 0
\(715\) −51.5077 −0.00269409
\(716\) 0 0
\(717\) −26639.4 −1.38754
\(718\) 0 0
\(719\) 2514.26 0.130412 0.0652058 0.997872i \(-0.479230\pi\)
0.0652058 + 0.997872i \(0.479230\pi\)
\(720\) 0 0
\(721\) −8538.44 −0.441038
\(722\) 0 0
\(723\) −33745.2 −1.73582
\(724\) 0 0
\(725\) −4314.65 −0.221024
\(726\) 0 0
\(727\) 14012.5 0.714850 0.357425 0.933942i \(-0.383655\pi\)
0.357425 + 0.933942i \(0.383655\pi\)
\(728\) 0 0
\(729\) 21069.1 1.07042
\(730\) 0 0
\(731\) −6161.56 −0.311756
\(732\) 0 0
\(733\) 31576.6 1.59114 0.795572 0.605859i \(-0.207170\pi\)
0.795572 + 0.605859i \(0.207170\pi\)
\(734\) 0 0
\(735\) −1217.24 −0.0610867
\(736\) 0 0
\(737\) 11501.1 0.574827
\(738\) 0 0
\(739\) 4425.41 0.220286 0.110143 0.993916i \(-0.464869\pi\)
0.110143 + 0.993916i \(0.464869\pi\)
\(740\) 0 0
\(741\) −253.330 −0.0125591
\(742\) 0 0
\(743\) 10718.2 0.529225 0.264612 0.964355i \(-0.414756\pi\)
0.264612 + 0.964355i \(0.414756\pi\)
\(744\) 0 0
\(745\) −12299.5 −0.604857
\(746\) 0 0
\(747\) −664.547 −0.0325495
\(748\) 0 0
\(749\) 11074.4 0.540251
\(750\) 0 0
\(751\) 17956.6 0.872500 0.436250 0.899826i \(-0.356306\pi\)
0.436250 + 0.899826i \(0.356306\pi\)
\(752\) 0 0
\(753\) −16084.7 −0.778431
\(754\) 0 0
\(755\) 7627.50 0.367673
\(756\) 0 0
\(757\) 21607.2 1.03742 0.518711 0.854950i \(-0.326412\pi\)
0.518711 + 0.854950i \(0.326412\pi\)
\(758\) 0 0
\(759\) −19902.2 −0.951783
\(760\) 0 0
\(761\) 8681.22 0.413527 0.206764 0.978391i \(-0.433707\pi\)
0.206764 + 0.978391i \(0.433707\pi\)
\(762\) 0 0
\(763\) −8764.77 −0.415866
\(764\) 0 0
\(765\) −543.483 −0.0256858
\(766\) 0 0
\(767\) 203.956 0.00960158
\(768\) 0 0
\(769\) −25645.8 −1.20262 −0.601308 0.799017i \(-0.705354\pi\)
−0.601308 + 0.799017i \(0.705354\pi\)
\(770\) 0 0
\(771\) 16750.8 0.782447
\(772\) 0 0
\(773\) −14965.6 −0.696347 −0.348173 0.937430i \(-0.613198\pi\)
−0.348173 + 0.937430i \(0.613198\pi\)
\(774\) 0 0
\(775\) −5333.72 −0.247217
\(776\) 0 0
\(777\) 13922.7 0.642822
\(778\) 0 0
\(779\) −42507.7 −1.95506
\(780\) 0 0
\(781\) −26282.4 −1.20417
\(782\) 0 0
\(783\) 25137.1 1.14729
\(784\) 0 0
\(785\) −15491.1 −0.704332
\(786\) 0 0
\(787\) 27057.1 1.22551 0.612757 0.790271i \(-0.290060\pi\)
0.612757 + 0.790271i \(0.290060\pi\)
\(788\) 0 0
\(789\) −12874.1 −0.580898
\(790\) 0 0
\(791\) −9642.05 −0.433416
\(792\) 0 0
\(793\) 272.765 0.0122146
\(794\) 0 0
\(795\) 1197.31 0.0534143
\(796\) 0 0
\(797\) 25376.5 1.12783 0.563916 0.825832i \(-0.309294\pi\)
0.563916 + 0.825832i \(0.309294\pi\)
\(798\) 0 0
\(799\) −24229.0 −1.07279
\(800\) 0 0
\(801\) 2414.57 0.106510
\(802\) 0 0
\(803\) 24601.6 1.08116
\(804\) 0 0
\(805\) −6134.35 −0.268581
\(806\) 0 0
\(807\) −12793.4 −0.558053
\(808\) 0 0
\(809\) −31482.0 −1.36817 −0.684083 0.729404i \(-0.739798\pi\)
−0.684083 + 0.729404i \(0.739798\pi\)
\(810\) 0 0
\(811\) 7203.51 0.311898 0.155949 0.987765i \(-0.450156\pi\)
0.155949 + 0.987765i \(0.450156\pi\)
\(812\) 0 0
\(813\) 2276.69 0.0982126
\(814\) 0 0
\(815\) 6413.44 0.275648
\(816\) 0 0
\(817\) 14849.1 0.635869
\(818\) 0 0
\(819\) 7.30593 0.000311709 0
\(820\) 0 0
\(821\) 26185.2 1.11312 0.556558 0.830809i \(-0.312122\pi\)
0.556558 + 0.830809i \(0.312122\pi\)
\(822\) 0 0
\(823\) −12956.4 −0.548761 −0.274381 0.961621i \(-0.588473\pi\)
−0.274381 + 0.961621i \(0.588473\pi\)
\(824\) 0 0
\(825\) −2838.83 −0.119801
\(826\) 0 0
\(827\) −22038.3 −0.926660 −0.463330 0.886186i \(-0.653346\pi\)
−0.463330 + 0.886186i \(0.653346\pi\)
\(828\) 0 0
\(829\) −5453.92 −0.228495 −0.114248 0.993452i \(-0.536446\pi\)
−0.114248 + 0.993452i \(0.536446\pi\)
\(830\) 0 0
\(831\) 39248.5 1.63841
\(832\) 0 0
\(833\) −2300.11 −0.0956710
\(834\) 0 0
\(835\) 10910.4 0.452178
\(836\) 0 0
\(837\) 31074.2 1.28325
\(838\) 0 0
\(839\) 41299.4 1.69942 0.849711 0.527249i \(-0.176777\pi\)
0.849711 + 0.527249i \(0.176777\pi\)
\(840\) 0 0
\(841\) 5396.94 0.221286
\(842\) 0 0
\(843\) 27045.4 1.10497
\(844\) 0 0
\(845\) 10984.0 0.447172
\(846\) 0 0
\(847\) −5660.42 −0.229627
\(848\) 0 0
\(849\) 36645.5 1.48135
\(850\) 0 0
\(851\) 70163.9 2.82631
\(852\) 0 0
\(853\) 20935.0 0.840331 0.420165 0.907448i \(-0.361972\pi\)
0.420165 + 0.907448i \(0.361972\pi\)
\(854\) 0 0
\(855\) 1309.77 0.0523898
\(856\) 0 0
\(857\) −7754.92 −0.309105 −0.154552 0.987985i \(-0.549394\pi\)
−0.154552 + 0.987985i \(0.549394\pi\)
\(858\) 0 0
\(859\) −27629.6 −1.09745 −0.548725 0.836003i \(-0.684887\pi\)
−0.548725 + 0.836003i \(0.684887\pi\)
\(860\) 0 0
\(861\) −13068.2 −0.517261
\(862\) 0 0
\(863\) 44014.7 1.73613 0.868064 0.496453i \(-0.165364\pi\)
0.868064 + 0.496453i \(0.165364\pi\)
\(864\) 0 0
\(865\) −16620.8 −0.653323
\(866\) 0 0
\(867\) −13461.9 −0.527326
\(868\) 0 0
\(869\) 11224.3 0.438156
\(870\) 0 0
\(871\) 226.810 0.00882339
\(872\) 0 0
\(873\) 1562.68 0.0605825
\(874\) 0 0
\(875\) −875.000 −0.0338062
\(876\) 0 0
\(877\) −16804.5 −0.647033 −0.323516 0.946223i \(-0.604865\pi\)
−0.323516 + 0.946223i \(0.604865\pi\)
\(878\) 0 0
\(879\) 39407.3 1.51215
\(880\) 0 0
\(881\) −6832.51 −0.261286 −0.130643 0.991429i \(-0.541704\pi\)
−0.130643 + 0.991429i \(0.541704\pi\)
\(882\) 0 0
\(883\) −15038.8 −0.573154 −0.286577 0.958057i \(-0.592517\pi\)
−0.286577 + 0.958057i \(0.592517\pi\)
\(884\) 0 0
\(885\) 11241.0 0.426962
\(886\) 0 0
\(887\) 24951.9 0.944535 0.472268 0.881455i \(-0.343436\pi\)
0.472268 + 0.881455i \(0.343436\pi\)
\(888\) 0 0
\(889\) −10723.9 −0.404577
\(890\) 0 0
\(891\) 15110.1 0.568133
\(892\) 0 0
\(893\) 58391.0 2.18811
\(894\) 0 0
\(895\) −12508.0 −0.467146
\(896\) 0 0
\(897\) −392.487 −0.0146095
\(898\) 0 0
\(899\) 36821.0 1.36602
\(900\) 0 0
\(901\) 2262.45 0.0836550
\(902\) 0 0
\(903\) 4565.08 0.168235
\(904\) 0 0
\(905\) 23486.5 0.862672
\(906\) 0 0
\(907\) −1411.04 −0.0516568 −0.0258284 0.999666i \(-0.508222\pi\)
−0.0258284 + 0.999666i \(0.508222\pi\)
\(908\) 0 0
\(909\) 506.643 0.0184866
\(910\) 0 0
\(911\) 8018.14 0.291606 0.145803 0.989314i \(-0.453423\pi\)
0.145803 + 0.989314i \(0.453423\pi\)
\(912\) 0 0
\(913\) −6559.20 −0.237763
\(914\) 0 0
\(915\) 15033.4 0.543157
\(916\) 0 0
\(917\) −4793.01 −0.172605
\(918\) 0 0
\(919\) 26941.6 0.967053 0.483526 0.875330i \(-0.339356\pi\)
0.483526 + 0.875330i \(0.339356\pi\)
\(920\) 0 0
\(921\) −1740.54 −0.0622724
\(922\) 0 0
\(923\) −518.309 −0.0184836
\(924\) 0 0
\(925\) 10008.1 0.355746
\(926\) 0 0
\(927\) 2824.52 0.100075
\(928\) 0 0
\(929\) −46912.7 −1.65679 −0.828395 0.560145i \(-0.810745\pi\)
−0.828395 + 0.560145i \(0.810745\pi\)
\(930\) 0 0
\(931\) 5543.17 0.195134
\(932\) 0 0
\(933\) 40949.4 1.43689
\(934\) 0 0
\(935\) −5364.27 −0.187626
\(936\) 0 0
\(937\) 3893.83 0.135759 0.0678794 0.997694i \(-0.478377\pi\)
0.0678794 + 0.997694i \(0.478377\pi\)
\(938\) 0 0
\(939\) −42185.3 −1.46610
\(940\) 0 0
\(941\) 9391.41 0.325347 0.162673 0.986680i \(-0.447988\pi\)
0.162673 + 0.986680i \(0.447988\pi\)
\(942\) 0 0
\(943\) −65857.5 −2.27425
\(944\) 0 0
\(945\) 5097.75 0.175481
\(946\) 0 0
\(947\) −52526.7 −1.80242 −0.901208 0.433386i \(-0.857319\pi\)
−0.901208 + 0.433386i \(0.857319\pi\)
\(948\) 0 0
\(949\) 485.164 0.0165954
\(950\) 0 0
\(951\) 13860.9 0.472628
\(952\) 0 0
\(953\) −44616.6 −1.51655 −0.758276 0.651934i \(-0.773958\pi\)
−0.758276 + 0.651934i \(0.773958\pi\)
\(954\) 0 0
\(955\) 13759.2 0.466217
\(956\) 0 0
\(957\) 19597.7 0.661969
\(958\) 0 0
\(959\) −334.965 −0.0112790
\(960\) 0 0
\(961\) 15726.7 0.527902
\(962\) 0 0
\(963\) −3663.40 −0.122587
\(964\) 0 0
\(965\) −5694.70 −0.189968
\(966\) 0 0
\(967\) 20663.4 0.687166 0.343583 0.939122i \(-0.388359\pi\)
0.343583 + 0.939122i \(0.388359\pi\)
\(968\) 0 0
\(969\) −26383.1 −0.874661
\(970\) 0 0
\(971\) 34537.9 1.14148 0.570738 0.821133i \(-0.306657\pi\)
0.570738 + 0.821133i \(0.306657\pi\)
\(972\) 0 0
\(973\) 3831.98 0.126257
\(974\) 0 0
\(975\) −55.9841 −0.00183890
\(976\) 0 0
\(977\) 29955.6 0.980925 0.490462 0.871462i \(-0.336828\pi\)
0.490462 + 0.871462i \(0.336828\pi\)
\(978\) 0 0
\(979\) 23832.2 0.778020
\(980\) 0 0
\(981\) 2899.39 0.0943632
\(982\) 0 0
\(983\) −59845.2 −1.94177 −0.970887 0.239536i \(-0.923005\pi\)
−0.970887 + 0.239536i \(0.923005\pi\)
\(984\) 0 0
\(985\) 11794.2 0.381517
\(986\) 0 0
\(987\) 17951.2 0.578918
\(988\) 0 0
\(989\) 23005.9 0.739682
\(990\) 0 0
\(991\) −29394.8 −0.942236 −0.471118 0.882070i \(-0.656149\pi\)
−0.471118 + 0.882070i \(0.656149\pi\)
\(992\) 0 0
\(993\) −34390.6 −1.09904
\(994\) 0 0
\(995\) 11650.2 0.371194
\(996\) 0 0
\(997\) −13546.2 −0.430303 −0.215151 0.976581i \(-0.569024\pi\)
−0.215151 + 0.976581i \(0.569024\pi\)
\(998\) 0 0
\(999\) −58307.3 −1.84661
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2240.4.a.ci.1.3 4
4.3 odd 2 2240.4.a.cd.1.2 4
8.3 odd 2 1120.4.a.m.1.3 yes 4
8.5 even 2 1120.4.a.h.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1120.4.a.h.1.2 4 8.5 even 2
1120.4.a.m.1.3 yes 4 8.3 odd 2
2240.4.a.cd.1.2 4 4.3 odd 2
2240.4.a.ci.1.3 4 1.1 even 1 trivial