Properties

Label 2240.4.a.cj.1.4
Level $2240$
Weight $4$
Character 2240.1
Self dual yes
Analytic conductor $132.164$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2240,4,Mod(1,2240)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2240, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2240.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2240 = 2^{6} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2240.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(132.164278413\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.505876.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 12x^{2} + 14x + 14 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{3}\cdot 7 \)
Twist minimal: no (minimal twist has level 1120)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(2.15507\) of defining polynomial
Character \(\chi\) \(=\) 2240.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+8.94308 q^{3} -5.00000 q^{5} -7.00000 q^{7} +52.9787 q^{9} +35.8927 q^{11} -7.01392 q^{13} -44.7154 q^{15} -31.3558 q^{17} -90.2089 q^{19} -62.6016 q^{21} -99.9189 q^{23} +25.0000 q^{25} +232.330 q^{27} -192.069 q^{29} -164.095 q^{31} +320.991 q^{33} +35.0000 q^{35} -95.6928 q^{37} -62.7261 q^{39} -146.753 q^{41} -323.890 q^{43} -264.894 q^{45} +101.260 q^{47} +49.0000 q^{49} -280.418 q^{51} +120.176 q^{53} -179.464 q^{55} -806.745 q^{57} -608.600 q^{59} -832.769 q^{61} -370.851 q^{63} +35.0696 q^{65} +652.930 q^{67} -893.583 q^{69} +217.953 q^{71} +607.890 q^{73} +223.577 q^{75} -251.249 q^{77} +1039.99 q^{79} +647.318 q^{81} +736.325 q^{83} +156.779 q^{85} -1717.69 q^{87} -602.294 q^{89} +49.0975 q^{91} -1467.52 q^{93} +451.044 q^{95} +547.366 q^{97} +1901.55 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 7 q^{3} - 20 q^{5} - 28 q^{7} + 47 q^{9} + 91 q^{11} - 113 q^{13} - 35 q^{15} + 3 q^{17} + 112 q^{19} - 49 q^{21} - 168 q^{23} + 100 q^{25} + 133 q^{27} - 31 q^{29} - 126 q^{31} - 33 q^{33} + 140 q^{35}+ \cdots + 1050 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 8.94308 1.72110 0.860548 0.509369i \(-0.170121\pi\)
0.860548 + 0.509369i \(0.170121\pi\)
\(4\) 0 0
\(5\) −5.00000 −0.447214
\(6\) 0 0
\(7\) −7.00000 −0.377964
\(8\) 0 0
\(9\) 52.9787 1.96217
\(10\) 0 0
\(11\) 35.8927 0.983824 0.491912 0.870645i \(-0.336298\pi\)
0.491912 + 0.870645i \(0.336298\pi\)
\(12\) 0 0
\(13\) −7.01392 −0.149639 −0.0748197 0.997197i \(-0.523838\pi\)
−0.0748197 + 0.997197i \(0.523838\pi\)
\(14\) 0 0
\(15\) −44.7154 −0.769698
\(16\) 0 0
\(17\) −31.3558 −0.447348 −0.223674 0.974664i \(-0.571805\pi\)
−0.223674 + 0.974664i \(0.571805\pi\)
\(18\) 0 0
\(19\) −90.2089 −1.08923 −0.544614 0.838687i \(-0.683324\pi\)
−0.544614 + 0.838687i \(0.683324\pi\)
\(20\) 0 0
\(21\) −62.6016 −0.650513
\(22\) 0 0
\(23\) −99.9189 −0.905849 −0.452924 0.891549i \(-0.649619\pi\)
−0.452924 + 0.891549i \(0.649619\pi\)
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) 0 0
\(27\) 232.330 1.65599
\(28\) 0 0
\(29\) −192.069 −1.22987 −0.614937 0.788576i \(-0.710819\pi\)
−0.614937 + 0.788576i \(0.710819\pi\)
\(30\) 0 0
\(31\) −164.095 −0.950721 −0.475360 0.879791i \(-0.657682\pi\)
−0.475360 + 0.879791i \(0.657682\pi\)
\(32\) 0 0
\(33\) 320.991 1.69326
\(34\) 0 0
\(35\) 35.0000 0.169031
\(36\) 0 0
\(37\) −95.6928 −0.425184 −0.212592 0.977141i \(-0.568191\pi\)
−0.212592 + 0.977141i \(0.568191\pi\)
\(38\) 0 0
\(39\) −62.7261 −0.257544
\(40\) 0 0
\(41\) −146.753 −0.558998 −0.279499 0.960146i \(-0.590168\pi\)
−0.279499 + 0.960146i \(0.590168\pi\)
\(42\) 0 0
\(43\) −323.890 −1.14867 −0.574335 0.818621i \(-0.694739\pi\)
−0.574335 + 0.818621i \(0.694739\pi\)
\(44\) 0 0
\(45\) −264.894 −0.877511
\(46\) 0 0
\(47\) 101.260 0.314260 0.157130 0.987578i \(-0.449776\pi\)
0.157130 + 0.987578i \(0.449776\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) 0 0
\(51\) −280.418 −0.769928
\(52\) 0 0
\(53\) 120.176 0.311461 0.155731 0.987800i \(-0.450227\pi\)
0.155731 + 0.987800i \(0.450227\pi\)
\(54\) 0 0
\(55\) −179.464 −0.439979
\(56\) 0 0
\(57\) −806.745 −1.87467
\(58\) 0 0
\(59\) −608.600 −1.34293 −0.671466 0.741035i \(-0.734335\pi\)
−0.671466 + 0.741035i \(0.734335\pi\)
\(60\) 0 0
\(61\) −832.769 −1.74795 −0.873977 0.485968i \(-0.838467\pi\)
−0.873977 + 0.485968i \(0.838467\pi\)
\(62\) 0 0
\(63\) −370.851 −0.741632
\(64\) 0 0
\(65\) 35.0696 0.0669208
\(66\) 0 0
\(67\) 652.930 1.19057 0.595284 0.803515i \(-0.297040\pi\)
0.595284 + 0.803515i \(0.297040\pi\)
\(68\) 0 0
\(69\) −893.583 −1.55905
\(70\) 0 0
\(71\) 217.953 0.364313 0.182156 0.983270i \(-0.441692\pi\)
0.182156 + 0.983270i \(0.441692\pi\)
\(72\) 0 0
\(73\) 607.890 0.974632 0.487316 0.873226i \(-0.337976\pi\)
0.487316 + 0.873226i \(0.337976\pi\)
\(74\) 0 0
\(75\) 223.577 0.344219
\(76\) 0 0
\(77\) −251.249 −0.371850
\(78\) 0 0
\(79\) 1039.99 1.48111 0.740557 0.671994i \(-0.234562\pi\)
0.740557 + 0.671994i \(0.234562\pi\)
\(80\) 0 0
\(81\) 647.318 0.887953
\(82\) 0 0
\(83\) 736.325 0.973761 0.486881 0.873469i \(-0.338135\pi\)
0.486881 + 0.873469i \(0.338135\pi\)
\(84\) 0 0
\(85\) 156.779 0.200060
\(86\) 0 0
\(87\) −1717.69 −2.11673
\(88\) 0 0
\(89\) −602.294 −0.717337 −0.358668 0.933465i \(-0.616769\pi\)
−0.358668 + 0.933465i \(0.616769\pi\)
\(90\) 0 0
\(91\) 49.0975 0.0565584
\(92\) 0 0
\(93\) −1467.52 −1.63628
\(94\) 0 0
\(95\) 451.044 0.487118
\(96\) 0 0
\(97\) 547.366 0.572955 0.286477 0.958087i \(-0.407516\pi\)
0.286477 + 0.958087i \(0.407516\pi\)
\(98\) 0 0
\(99\) 1901.55 1.93043
\(100\) 0 0
\(101\) 656.708 0.646979 0.323490 0.946232i \(-0.395144\pi\)
0.323490 + 0.946232i \(0.395144\pi\)
\(102\) 0 0
\(103\) −93.1931 −0.0891514 −0.0445757 0.999006i \(-0.514194\pi\)
−0.0445757 + 0.999006i \(0.514194\pi\)
\(104\) 0 0
\(105\) 313.008 0.290918
\(106\) 0 0
\(107\) 583.092 0.526819 0.263410 0.964684i \(-0.415153\pi\)
0.263410 + 0.964684i \(0.415153\pi\)
\(108\) 0 0
\(109\) 1119.34 0.983608 0.491804 0.870706i \(-0.336338\pi\)
0.491804 + 0.870706i \(0.336338\pi\)
\(110\) 0 0
\(111\) −855.789 −0.731783
\(112\) 0 0
\(113\) −1959.55 −1.63132 −0.815659 0.578532i \(-0.803626\pi\)
−0.815659 + 0.578532i \(0.803626\pi\)
\(114\) 0 0
\(115\) 499.594 0.405108
\(116\) 0 0
\(117\) −371.589 −0.293619
\(118\) 0 0
\(119\) 219.491 0.169081
\(120\) 0 0
\(121\) −42.7131 −0.0320910
\(122\) 0 0
\(123\) −1312.42 −0.962090
\(124\) 0 0
\(125\) −125.000 −0.0894427
\(126\) 0 0
\(127\) −1112.45 −0.777275 −0.388638 0.921391i \(-0.627054\pi\)
−0.388638 + 0.921391i \(0.627054\pi\)
\(128\) 0 0
\(129\) −2896.58 −1.97697
\(130\) 0 0
\(131\) 2208.80 1.47316 0.736580 0.676350i \(-0.236439\pi\)
0.736580 + 0.676350i \(0.236439\pi\)
\(132\) 0 0
\(133\) 631.462 0.411690
\(134\) 0 0
\(135\) −1161.65 −0.740583
\(136\) 0 0
\(137\) −1560.31 −0.973037 −0.486519 0.873670i \(-0.661733\pi\)
−0.486519 + 0.873670i \(0.661733\pi\)
\(138\) 0 0
\(139\) 680.329 0.415142 0.207571 0.978220i \(-0.433444\pi\)
0.207571 + 0.978220i \(0.433444\pi\)
\(140\) 0 0
\(141\) 905.574 0.540873
\(142\) 0 0
\(143\) −251.749 −0.147219
\(144\) 0 0
\(145\) 960.346 0.550017
\(146\) 0 0
\(147\) 438.211 0.245871
\(148\) 0 0
\(149\) −2645.18 −1.45437 −0.727187 0.686439i \(-0.759173\pi\)
−0.727187 + 0.686439i \(0.759173\pi\)
\(150\) 0 0
\(151\) −1824.25 −0.983148 −0.491574 0.870836i \(-0.663578\pi\)
−0.491574 + 0.870836i \(0.663578\pi\)
\(152\) 0 0
\(153\) −1661.19 −0.877774
\(154\) 0 0
\(155\) 820.475 0.425175
\(156\) 0 0
\(157\) 2103.03 1.06905 0.534523 0.845154i \(-0.320491\pi\)
0.534523 + 0.845154i \(0.320491\pi\)
\(158\) 0 0
\(159\) 1074.74 0.536055
\(160\) 0 0
\(161\) 699.432 0.342379
\(162\) 0 0
\(163\) −2821.49 −1.35581 −0.677903 0.735151i \(-0.737111\pi\)
−0.677903 + 0.735151i \(0.737111\pi\)
\(164\) 0 0
\(165\) −1604.96 −0.757247
\(166\) 0 0
\(167\) −321.021 −0.148751 −0.0743753 0.997230i \(-0.523696\pi\)
−0.0743753 + 0.997230i \(0.523696\pi\)
\(168\) 0 0
\(169\) −2147.80 −0.977608
\(170\) 0 0
\(171\) −4779.15 −2.13726
\(172\) 0 0
\(173\) −222.556 −0.0978071 −0.0489036 0.998804i \(-0.515573\pi\)
−0.0489036 + 0.998804i \(0.515573\pi\)
\(174\) 0 0
\(175\) −175.000 −0.0755929
\(176\) 0 0
\(177\) −5442.76 −2.31132
\(178\) 0 0
\(179\) 566.489 0.236544 0.118272 0.992981i \(-0.462265\pi\)
0.118272 + 0.992981i \(0.462265\pi\)
\(180\) 0 0
\(181\) −3087.49 −1.26791 −0.633954 0.773371i \(-0.718569\pi\)
−0.633954 + 0.773371i \(0.718569\pi\)
\(182\) 0 0
\(183\) −7447.52 −3.00840
\(184\) 0 0
\(185\) 478.464 0.190148
\(186\) 0 0
\(187\) −1125.45 −0.440111
\(188\) 0 0
\(189\) −1626.31 −0.625907
\(190\) 0 0
\(191\) −696.772 −0.263961 −0.131981 0.991252i \(-0.542134\pi\)
−0.131981 + 0.991252i \(0.542134\pi\)
\(192\) 0 0
\(193\) −5071.55 −1.89149 −0.945747 0.324905i \(-0.894668\pi\)
−0.945747 + 0.324905i \(0.894668\pi\)
\(194\) 0 0
\(195\) 313.630 0.115177
\(196\) 0 0
\(197\) 2417.15 0.874185 0.437093 0.899417i \(-0.356008\pi\)
0.437093 + 0.899417i \(0.356008\pi\)
\(198\) 0 0
\(199\) 1653.91 0.589157 0.294579 0.955627i \(-0.404821\pi\)
0.294579 + 0.955627i \(0.404821\pi\)
\(200\) 0 0
\(201\) 5839.20 2.04908
\(202\) 0 0
\(203\) 1344.48 0.464849
\(204\) 0 0
\(205\) 733.764 0.249992
\(206\) 0 0
\(207\) −5293.57 −1.77743
\(208\) 0 0
\(209\) −3237.84 −1.07161
\(210\) 0 0
\(211\) 918.379 0.299639 0.149819 0.988713i \(-0.452131\pi\)
0.149819 + 0.988713i \(0.452131\pi\)
\(212\) 0 0
\(213\) 1949.17 0.627018
\(214\) 0 0
\(215\) 1619.45 0.513701
\(216\) 0 0
\(217\) 1148.67 0.359339
\(218\) 0 0
\(219\) 5436.41 1.67744
\(220\) 0 0
\(221\) 219.927 0.0669408
\(222\) 0 0
\(223\) −6310.29 −1.89493 −0.947463 0.319865i \(-0.896362\pi\)
−0.947463 + 0.319865i \(0.896362\pi\)
\(224\) 0 0
\(225\) 1324.47 0.392435
\(226\) 0 0
\(227\) −5907.16 −1.72719 −0.863594 0.504187i \(-0.831792\pi\)
−0.863594 + 0.504187i \(0.831792\pi\)
\(228\) 0 0
\(229\) 5044.70 1.45573 0.727867 0.685719i \(-0.240512\pi\)
0.727867 + 0.685719i \(0.240512\pi\)
\(230\) 0 0
\(231\) −2246.94 −0.639991
\(232\) 0 0
\(233\) −2882.29 −0.810408 −0.405204 0.914226i \(-0.632800\pi\)
−0.405204 + 0.914226i \(0.632800\pi\)
\(234\) 0 0
\(235\) −506.298 −0.140542
\(236\) 0 0
\(237\) 9300.71 2.54914
\(238\) 0 0
\(239\) −4746.48 −1.28462 −0.642310 0.766445i \(-0.722024\pi\)
−0.642310 + 0.766445i \(0.722024\pi\)
\(240\) 0 0
\(241\) 4622.72 1.23558 0.617792 0.786342i \(-0.288027\pi\)
0.617792 + 0.786342i \(0.288027\pi\)
\(242\) 0 0
\(243\) −483.883 −0.127741
\(244\) 0 0
\(245\) −245.000 −0.0638877
\(246\) 0 0
\(247\) 632.718 0.162991
\(248\) 0 0
\(249\) 6585.02 1.67594
\(250\) 0 0
\(251\) −6702.05 −1.68538 −0.842688 0.538402i \(-0.819028\pi\)
−0.842688 + 0.538402i \(0.819028\pi\)
\(252\) 0 0
\(253\) −3586.36 −0.891196
\(254\) 0 0
\(255\) 1402.09 0.344322
\(256\) 0 0
\(257\) 3266.63 0.792866 0.396433 0.918064i \(-0.370248\pi\)
0.396433 + 0.918064i \(0.370248\pi\)
\(258\) 0 0
\(259\) 669.850 0.160704
\(260\) 0 0
\(261\) −10175.6 −2.41323
\(262\) 0 0
\(263\) −6638.02 −1.55634 −0.778170 0.628053i \(-0.783852\pi\)
−0.778170 + 0.628053i \(0.783852\pi\)
\(264\) 0 0
\(265\) −600.880 −0.139290
\(266\) 0 0
\(267\) −5386.36 −1.23461
\(268\) 0 0
\(269\) 1564.17 0.354532 0.177266 0.984163i \(-0.443275\pi\)
0.177266 + 0.984163i \(0.443275\pi\)
\(270\) 0 0
\(271\) −3322.97 −0.744856 −0.372428 0.928061i \(-0.621475\pi\)
−0.372428 + 0.928061i \(0.621475\pi\)
\(272\) 0 0
\(273\) 439.083 0.0973425
\(274\) 0 0
\(275\) 897.318 0.196765
\(276\) 0 0
\(277\) 4636.34 1.00567 0.502835 0.864382i \(-0.332290\pi\)
0.502835 + 0.864382i \(0.332290\pi\)
\(278\) 0 0
\(279\) −8693.54 −1.86548
\(280\) 0 0
\(281\) 7272.19 1.54385 0.771926 0.635712i \(-0.219293\pi\)
0.771926 + 0.635712i \(0.219293\pi\)
\(282\) 0 0
\(283\) 3520.36 0.739448 0.369724 0.929142i \(-0.379452\pi\)
0.369724 + 0.929142i \(0.379452\pi\)
\(284\) 0 0
\(285\) 4033.73 0.838377
\(286\) 0 0
\(287\) 1027.27 0.211281
\(288\) 0 0
\(289\) −3929.81 −0.799880
\(290\) 0 0
\(291\) 4895.14 0.986111
\(292\) 0 0
\(293\) −3069.22 −0.611965 −0.305983 0.952037i \(-0.598985\pi\)
−0.305983 + 0.952037i \(0.598985\pi\)
\(294\) 0 0
\(295\) 3043.00 0.600578
\(296\) 0 0
\(297\) 8338.94 1.62921
\(298\) 0 0
\(299\) 700.823 0.135551
\(300\) 0 0
\(301\) 2267.23 0.434156
\(302\) 0 0
\(303\) 5873.00 1.11351
\(304\) 0 0
\(305\) 4163.85 0.781709
\(306\) 0 0
\(307\) −1538.81 −0.286073 −0.143037 0.989717i \(-0.545687\pi\)
−0.143037 + 0.989717i \(0.545687\pi\)
\(308\) 0 0
\(309\) −833.434 −0.153438
\(310\) 0 0
\(311\) 8510.17 1.55166 0.775832 0.630939i \(-0.217330\pi\)
0.775832 + 0.630939i \(0.217330\pi\)
\(312\) 0 0
\(313\) 5199.51 0.938958 0.469479 0.882944i \(-0.344442\pi\)
0.469479 + 0.882944i \(0.344442\pi\)
\(314\) 0 0
\(315\) 1854.25 0.331668
\(316\) 0 0
\(317\) 4994.18 0.884862 0.442431 0.896802i \(-0.354116\pi\)
0.442431 + 0.896802i \(0.354116\pi\)
\(318\) 0 0
\(319\) −6893.89 −1.20998
\(320\) 0 0
\(321\) 5214.64 0.906707
\(322\) 0 0
\(323\) 2828.57 0.487263
\(324\) 0 0
\(325\) −175.348 −0.0299279
\(326\) 0 0
\(327\) 10010.3 1.69288
\(328\) 0 0
\(329\) −708.818 −0.118779
\(330\) 0 0
\(331\) −453.883 −0.0753706 −0.0376853 0.999290i \(-0.511998\pi\)
−0.0376853 + 0.999290i \(0.511998\pi\)
\(332\) 0 0
\(333\) −5069.68 −0.834285
\(334\) 0 0
\(335\) −3264.65 −0.532438
\(336\) 0 0
\(337\) 231.967 0.0374957 0.0187479 0.999824i \(-0.494032\pi\)
0.0187479 + 0.999824i \(0.494032\pi\)
\(338\) 0 0
\(339\) −17524.4 −2.80766
\(340\) 0 0
\(341\) −5889.82 −0.935341
\(342\) 0 0
\(343\) −343.000 −0.0539949
\(344\) 0 0
\(345\) 4467.91 0.697230
\(346\) 0 0
\(347\) 2838.04 0.439060 0.219530 0.975606i \(-0.429548\pi\)
0.219530 + 0.975606i \(0.429548\pi\)
\(348\) 0 0
\(349\) 2421.05 0.371334 0.185667 0.982613i \(-0.440555\pi\)
0.185667 + 0.982613i \(0.440555\pi\)
\(350\) 0 0
\(351\) −1629.54 −0.247802
\(352\) 0 0
\(353\) 3893.76 0.587093 0.293546 0.955945i \(-0.405164\pi\)
0.293546 + 0.955945i \(0.405164\pi\)
\(354\) 0 0
\(355\) −1089.76 −0.162926
\(356\) 0 0
\(357\) 1962.92 0.291006
\(358\) 0 0
\(359\) 8210.64 1.20708 0.603539 0.797333i \(-0.293757\pi\)
0.603539 + 0.797333i \(0.293757\pi\)
\(360\) 0 0
\(361\) 1278.64 0.186418
\(362\) 0 0
\(363\) −381.987 −0.0552317
\(364\) 0 0
\(365\) −3039.45 −0.435869
\(366\) 0 0
\(367\) 11323.4 1.61056 0.805280 0.592894i \(-0.202015\pi\)
0.805280 + 0.592894i \(0.202015\pi\)
\(368\) 0 0
\(369\) −7774.77 −1.09685
\(370\) 0 0
\(371\) −841.232 −0.117721
\(372\) 0 0
\(373\) 11500.2 1.59641 0.798204 0.602387i \(-0.205784\pi\)
0.798204 + 0.602387i \(0.205784\pi\)
\(374\) 0 0
\(375\) −1117.89 −0.153940
\(376\) 0 0
\(377\) 1347.16 0.184038
\(378\) 0 0
\(379\) 2671.25 0.362039 0.181020 0.983480i \(-0.442060\pi\)
0.181020 + 0.983480i \(0.442060\pi\)
\(380\) 0 0
\(381\) −9948.73 −1.33777
\(382\) 0 0
\(383\) −7751.15 −1.03411 −0.517057 0.855951i \(-0.672972\pi\)
−0.517057 + 0.855951i \(0.672972\pi\)
\(384\) 0 0
\(385\) 1256.24 0.166297
\(386\) 0 0
\(387\) −17159.3 −2.25389
\(388\) 0 0
\(389\) −6127.19 −0.798614 −0.399307 0.916817i \(-0.630749\pi\)
−0.399307 + 0.916817i \(0.630749\pi\)
\(390\) 0 0
\(391\) 3133.04 0.405229
\(392\) 0 0
\(393\) 19753.5 2.53545
\(394\) 0 0
\(395\) −5199.95 −0.662374
\(396\) 0 0
\(397\) 11593.1 1.46560 0.732798 0.680446i \(-0.238214\pi\)
0.732798 + 0.680446i \(0.238214\pi\)
\(398\) 0 0
\(399\) 5647.22 0.708558
\(400\) 0 0
\(401\) −12315.8 −1.53371 −0.766857 0.641818i \(-0.778181\pi\)
−0.766857 + 0.641818i \(0.778181\pi\)
\(402\) 0 0
\(403\) 1150.95 0.142265
\(404\) 0 0
\(405\) −3236.59 −0.397105
\(406\) 0 0
\(407\) −3434.68 −0.418306
\(408\) 0 0
\(409\) 9058.63 1.09516 0.547580 0.836753i \(-0.315549\pi\)
0.547580 + 0.836753i \(0.315549\pi\)
\(410\) 0 0
\(411\) −13954.0 −1.67469
\(412\) 0 0
\(413\) 4260.20 0.507581
\(414\) 0 0
\(415\) −3681.63 −0.435479
\(416\) 0 0
\(417\) 6084.24 0.714500
\(418\) 0 0
\(419\) −1882.54 −0.219494 −0.109747 0.993960i \(-0.535004\pi\)
−0.109747 + 0.993960i \(0.535004\pi\)
\(420\) 0 0
\(421\) −7920.80 −0.916950 −0.458475 0.888707i \(-0.651604\pi\)
−0.458475 + 0.888707i \(0.651604\pi\)
\(422\) 0 0
\(423\) 5364.61 0.616634
\(424\) 0 0
\(425\) −783.896 −0.0894695
\(426\) 0 0
\(427\) 5829.38 0.660664
\(428\) 0 0
\(429\) −2251.41 −0.253378
\(430\) 0 0
\(431\) 3734.03 0.417313 0.208657 0.977989i \(-0.433091\pi\)
0.208657 + 0.977989i \(0.433091\pi\)
\(432\) 0 0
\(433\) −12255.6 −1.36020 −0.680102 0.733118i \(-0.738064\pi\)
−0.680102 + 0.733118i \(0.738064\pi\)
\(434\) 0 0
\(435\) 8588.46 0.946632
\(436\) 0 0
\(437\) 9013.57 0.986676
\(438\) 0 0
\(439\) 158.293 0.0172094 0.00860468 0.999963i \(-0.497261\pi\)
0.00860468 + 0.999963i \(0.497261\pi\)
\(440\) 0 0
\(441\) 2595.96 0.280311
\(442\) 0 0
\(443\) −189.022 −0.0202725 −0.0101363 0.999949i \(-0.503227\pi\)
−0.0101363 + 0.999949i \(0.503227\pi\)
\(444\) 0 0
\(445\) 3011.47 0.320803
\(446\) 0 0
\(447\) −23656.1 −2.50312
\(448\) 0 0
\(449\) −13984.7 −1.46989 −0.734943 0.678129i \(-0.762791\pi\)
−0.734943 + 0.678129i \(0.762791\pi\)
\(450\) 0 0
\(451\) −5267.35 −0.549956
\(452\) 0 0
\(453\) −16314.4 −1.69209
\(454\) 0 0
\(455\) −245.487 −0.0252937
\(456\) 0 0
\(457\) 7730.41 0.791277 0.395638 0.918406i \(-0.370523\pi\)
0.395638 + 0.918406i \(0.370523\pi\)
\(458\) 0 0
\(459\) −7284.89 −0.740805
\(460\) 0 0
\(461\) 15769.9 1.59322 0.796612 0.604491i \(-0.206623\pi\)
0.796612 + 0.604491i \(0.206623\pi\)
\(462\) 0 0
\(463\) 5236.42 0.525609 0.262805 0.964849i \(-0.415353\pi\)
0.262805 + 0.964849i \(0.415353\pi\)
\(464\) 0 0
\(465\) 7337.58 0.731768
\(466\) 0 0
\(467\) 10837.7 1.07390 0.536949 0.843614i \(-0.319577\pi\)
0.536949 + 0.843614i \(0.319577\pi\)
\(468\) 0 0
\(469\) −4570.51 −0.449992
\(470\) 0 0
\(471\) 18807.6 1.83993
\(472\) 0 0
\(473\) −11625.3 −1.13009
\(474\) 0 0
\(475\) −2255.22 −0.217846
\(476\) 0 0
\(477\) 6366.77 0.611141
\(478\) 0 0
\(479\) −8122.11 −0.774757 −0.387379 0.921921i \(-0.626619\pi\)
−0.387379 + 0.921921i \(0.626619\pi\)
\(480\) 0 0
\(481\) 671.182 0.0636243
\(482\) 0 0
\(483\) 6255.08 0.589267
\(484\) 0 0
\(485\) −2736.83 −0.256233
\(486\) 0 0
\(487\) −8318.71 −0.774039 −0.387019 0.922072i \(-0.626495\pi\)
−0.387019 + 0.922072i \(0.626495\pi\)
\(488\) 0 0
\(489\) −25232.8 −2.33347
\(490\) 0 0
\(491\) 19238.0 1.76823 0.884114 0.467271i \(-0.154763\pi\)
0.884114 + 0.467271i \(0.154763\pi\)
\(492\) 0 0
\(493\) 6022.49 0.550181
\(494\) 0 0
\(495\) −9507.75 −0.863316
\(496\) 0 0
\(497\) −1525.67 −0.137697
\(498\) 0 0
\(499\) −13070.7 −1.17260 −0.586299 0.810094i \(-0.699416\pi\)
−0.586299 + 0.810094i \(0.699416\pi\)
\(500\) 0 0
\(501\) −2870.91 −0.256014
\(502\) 0 0
\(503\) 3905.10 0.346162 0.173081 0.984908i \(-0.444628\pi\)
0.173081 + 0.984908i \(0.444628\pi\)
\(504\) 0 0
\(505\) −3283.54 −0.289338
\(506\) 0 0
\(507\) −19208.0 −1.68256
\(508\) 0 0
\(509\) 19251.0 1.67640 0.838198 0.545366i \(-0.183609\pi\)
0.838198 + 0.545366i \(0.183609\pi\)
\(510\) 0 0
\(511\) −4255.23 −0.368376
\(512\) 0 0
\(513\) −20958.2 −1.80376
\(514\) 0 0
\(515\) 465.966 0.0398697
\(516\) 0 0
\(517\) 3634.48 0.309177
\(518\) 0 0
\(519\) −1990.34 −0.168335
\(520\) 0 0
\(521\) −13343.1 −1.12202 −0.561009 0.827809i \(-0.689587\pi\)
−0.561009 + 0.827809i \(0.689587\pi\)
\(522\) 0 0
\(523\) −2572.34 −0.215068 −0.107534 0.994201i \(-0.534295\pi\)
−0.107534 + 0.994201i \(0.534295\pi\)
\(524\) 0 0
\(525\) −1565.04 −0.130103
\(526\) 0 0
\(527\) 5145.34 0.425302
\(528\) 0 0
\(529\) −2183.22 −0.179438
\(530\) 0 0
\(531\) −32242.9 −2.63507
\(532\) 0 0
\(533\) 1029.31 0.0836482
\(534\) 0 0
\(535\) −2915.46 −0.235601
\(536\) 0 0
\(537\) 5066.16 0.407115
\(538\) 0 0
\(539\) 1758.74 0.140546
\(540\) 0 0
\(541\) 17980.2 1.42889 0.714444 0.699692i \(-0.246680\pi\)
0.714444 + 0.699692i \(0.246680\pi\)
\(542\) 0 0
\(543\) −27611.7 −2.18219
\(544\) 0 0
\(545\) −5596.69 −0.439883
\(546\) 0 0
\(547\) −13099.0 −1.02390 −0.511951 0.859014i \(-0.671077\pi\)
−0.511951 + 0.859014i \(0.671077\pi\)
\(548\) 0 0
\(549\) −44119.0 −3.42979
\(550\) 0 0
\(551\) 17326.4 1.33961
\(552\) 0 0
\(553\) −7279.93 −0.559808
\(554\) 0 0
\(555\) 4278.94 0.327263
\(556\) 0 0
\(557\) 12194.3 0.927627 0.463814 0.885933i \(-0.346481\pi\)
0.463814 + 0.885933i \(0.346481\pi\)
\(558\) 0 0
\(559\) 2271.74 0.171886
\(560\) 0 0
\(561\) −10065.0 −0.757474
\(562\) 0 0
\(563\) −10399.7 −0.778499 −0.389249 0.921132i \(-0.627266\pi\)
−0.389249 + 0.921132i \(0.627266\pi\)
\(564\) 0 0
\(565\) 9797.75 0.729548
\(566\) 0 0
\(567\) −4531.23 −0.335615
\(568\) 0 0
\(569\) −5456.69 −0.402033 −0.201016 0.979588i \(-0.564424\pi\)
−0.201016 + 0.979588i \(0.564424\pi\)
\(570\) 0 0
\(571\) −17329.5 −1.27008 −0.635040 0.772479i \(-0.719016\pi\)
−0.635040 + 0.772479i \(0.719016\pi\)
\(572\) 0 0
\(573\) −6231.28 −0.454303
\(574\) 0 0
\(575\) −2497.97 −0.181170
\(576\) 0 0
\(577\) −20784.3 −1.49959 −0.749793 0.661673i \(-0.769847\pi\)
−0.749793 + 0.661673i \(0.769847\pi\)
\(578\) 0 0
\(579\) −45355.3 −3.25544
\(580\) 0 0
\(581\) −5154.28 −0.368047
\(582\) 0 0
\(583\) 4313.44 0.306423
\(584\) 0 0
\(585\) 1857.94 0.131310
\(586\) 0 0
\(587\) 9493.79 0.667548 0.333774 0.942653i \(-0.391678\pi\)
0.333774 + 0.942653i \(0.391678\pi\)
\(588\) 0 0
\(589\) 14802.8 1.03555
\(590\) 0 0
\(591\) 21616.7 1.50456
\(592\) 0 0
\(593\) 22130.7 1.53254 0.766272 0.642516i \(-0.222109\pi\)
0.766272 + 0.642516i \(0.222109\pi\)
\(594\) 0 0
\(595\) −1097.45 −0.0756155
\(596\) 0 0
\(597\) 14791.0 1.01400
\(598\) 0 0
\(599\) 176.484 0.0120383 0.00601914 0.999982i \(-0.498084\pi\)
0.00601914 + 0.999982i \(0.498084\pi\)
\(600\) 0 0
\(601\) 17561.7 1.19194 0.595970 0.803007i \(-0.296768\pi\)
0.595970 + 0.803007i \(0.296768\pi\)
\(602\) 0 0
\(603\) 34591.4 2.33610
\(604\) 0 0
\(605\) 213.566 0.0143515
\(606\) 0 0
\(607\) 15946.0 1.06627 0.533137 0.846029i \(-0.321013\pi\)
0.533137 + 0.846029i \(0.321013\pi\)
\(608\) 0 0
\(609\) 12023.8 0.800050
\(610\) 0 0
\(611\) −710.228 −0.0470258
\(612\) 0 0
\(613\) −21264.3 −1.40107 −0.700537 0.713616i \(-0.747056\pi\)
−0.700537 + 0.713616i \(0.747056\pi\)
\(614\) 0 0
\(615\) 6562.11 0.430260
\(616\) 0 0
\(617\) 23865.8 1.55722 0.778608 0.627510i \(-0.215926\pi\)
0.778608 + 0.627510i \(0.215926\pi\)
\(618\) 0 0
\(619\) −10066.5 −0.653648 −0.326824 0.945085i \(-0.605978\pi\)
−0.326824 + 0.945085i \(0.605978\pi\)
\(620\) 0 0
\(621\) −23214.1 −1.50008
\(622\) 0 0
\(623\) 4216.06 0.271128
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) 0 0
\(627\) −28956.3 −1.84434
\(628\) 0 0
\(629\) 3000.53 0.190205
\(630\) 0 0
\(631\) 21450.8 1.35332 0.676658 0.736297i \(-0.263427\pi\)
0.676658 + 0.736297i \(0.263427\pi\)
\(632\) 0 0
\(633\) 8213.13 0.515707
\(634\) 0 0
\(635\) 5562.25 0.347608
\(636\) 0 0
\(637\) −343.682 −0.0213771
\(638\) 0 0
\(639\) 11546.8 0.714845
\(640\) 0 0
\(641\) 763.570 0.0470502 0.0235251 0.999723i \(-0.492511\pi\)
0.0235251 + 0.999723i \(0.492511\pi\)
\(642\) 0 0
\(643\) −5687.92 −0.348848 −0.174424 0.984671i \(-0.555806\pi\)
−0.174424 + 0.984671i \(0.555806\pi\)
\(644\) 0 0
\(645\) 14482.9 0.884129
\(646\) 0 0
\(647\) −11490.6 −0.698209 −0.349104 0.937084i \(-0.613514\pi\)
−0.349104 + 0.937084i \(0.613514\pi\)
\(648\) 0 0
\(649\) −21844.3 −1.32121
\(650\) 0 0
\(651\) 10272.6 0.618457
\(652\) 0 0
\(653\) 21288.9 1.27580 0.637901 0.770119i \(-0.279803\pi\)
0.637901 + 0.770119i \(0.279803\pi\)
\(654\) 0 0
\(655\) −11044.0 −0.658817
\(656\) 0 0
\(657\) 32205.2 1.91240
\(658\) 0 0
\(659\) 11443.8 0.676460 0.338230 0.941063i \(-0.390172\pi\)
0.338230 + 0.941063i \(0.390172\pi\)
\(660\) 0 0
\(661\) 9948.40 0.585398 0.292699 0.956205i \(-0.405447\pi\)
0.292699 + 0.956205i \(0.405447\pi\)
\(662\) 0 0
\(663\) 1966.83 0.115212
\(664\) 0 0
\(665\) −3157.31 −0.184113
\(666\) 0 0
\(667\) 19191.3 1.11408
\(668\) 0 0
\(669\) −56433.5 −3.26135
\(670\) 0 0
\(671\) −29890.3 −1.71968
\(672\) 0 0
\(673\) −28899.0 −1.65524 −0.827618 0.561292i \(-0.810304\pi\)
−0.827618 + 0.561292i \(0.810304\pi\)
\(674\) 0 0
\(675\) 5808.24 0.331199
\(676\) 0 0
\(677\) −17095.8 −0.970524 −0.485262 0.874369i \(-0.661276\pi\)
−0.485262 + 0.874369i \(0.661276\pi\)
\(678\) 0 0
\(679\) −3831.56 −0.216557
\(680\) 0 0
\(681\) −52828.2 −2.97266
\(682\) 0 0
\(683\) 607.606 0.0340401 0.0170201 0.999855i \(-0.494582\pi\)
0.0170201 + 0.999855i \(0.494582\pi\)
\(684\) 0 0
\(685\) 7801.54 0.435156
\(686\) 0 0
\(687\) 45115.1 2.50546
\(688\) 0 0
\(689\) −842.905 −0.0466069
\(690\) 0 0
\(691\) 19169.7 1.05535 0.527676 0.849446i \(-0.323064\pi\)
0.527676 + 0.849446i \(0.323064\pi\)
\(692\) 0 0
\(693\) −13310.8 −0.729635
\(694\) 0 0
\(695\) −3401.65 −0.185657
\(696\) 0 0
\(697\) 4601.56 0.250066
\(698\) 0 0
\(699\) −25776.6 −1.39479
\(700\) 0 0
\(701\) 14769.1 0.795753 0.397876 0.917439i \(-0.369747\pi\)
0.397876 + 0.917439i \(0.369747\pi\)
\(702\) 0 0
\(703\) 8632.34 0.463122
\(704\) 0 0
\(705\) −4527.87 −0.241886
\(706\) 0 0
\(707\) −4596.96 −0.244535
\(708\) 0 0
\(709\) −16094.9 −0.852549 −0.426274 0.904594i \(-0.640174\pi\)
−0.426274 + 0.904594i \(0.640174\pi\)
\(710\) 0 0
\(711\) 55097.3 2.90620
\(712\) 0 0
\(713\) 16396.2 0.861209
\(714\) 0 0
\(715\) 1258.74 0.0658382
\(716\) 0 0
\(717\) −42448.1 −2.21095
\(718\) 0 0
\(719\) 10165.8 0.527286 0.263643 0.964620i \(-0.415076\pi\)
0.263643 + 0.964620i \(0.415076\pi\)
\(720\) 0 0
\(721\) 652.352 0.0336961
\(722\) 0 0
\(723\) 41341.4 2.12656
\(724\) 0 0
\(725\) −4801.73 −0.245975
\(726\) 0 0
\(727\) −33418.7 −1.70486 −0.852429 0.522842i \(-0.824872\pi\)
−0.852429 + 0.522842i \(0.824872\pi\)
\(728\) 0 0
\(729\) −21805.0 −1.10781
\(730\) 0 0
\(731\) 10155.8 0.513854
\(732\) 0 0
\(733\) −31249.5 −1.57466 −0.787331 0.616530i \(-0.788538\pi\)
−0.787331 + 0.616530i \(0.788538\pi\)
\(734\) 0 0
\(735\) −2191.05 −0.109957
\(736\) 0 0
\(737\) 23435.4 1.17131
\(738\) 0 0
\(739\) 15971.2 0.795009 0.397504 0.917600i \(-0.369876\pi\)
0.397504 + 0.917600i \(0.369876\pi\)
\(740\) 0 0
\(741\) 5658.45 0.280524
\(742\) 0 0
\(743\) −4034.27 −0.199197 −0.0995983 0.995028i \(-0.531756\pi\)
−0.0995983 + 0.995028i \(0.531756\pi\)
\(744\) 0 0
\(745\) 13225.9 0.650416
\(746\) 0 0
\(747\) 39009.6 1.91069
\(748\) 0 0
\(749\) −4081.65 −0.199119
\(750\) 0 0
\(751\) 8130.93 0.395076 0.197538 0.980295i \(-0.436705\pi\)
0.197538 + 0.980295i \(0.436705\pi\)
\(752\) 0 0
\(753\) −59937.0 −2.90070
\(754\) 0 0
\(755\) 9121.25 0.439677
\(756\) 0 0
\(757\) 23290.6 1.11824 0.559122 0.829085i \(-0.311138\pi\)
0.559122 + 0.829085i \(0.311138\pi\)
\(758\) 0 0
\(759\) −32073.1 −1.53383
\(760\) 0 0
\(761\) −7215.05 −0.343686 −0.171843 0.985124i \(-0.554972\pi\)
−0.171843 + 0.985124i \(0.554972\pi\)
\(762\) 0 0
\(763\) −7835.37 −0.371769
\(764\) 0 0
\(765\) 8305.96 0.392552
\(766\) 0 0
\(767\) 4268.68 0.200956
\(768\) 0 0
\(769\) 30628.6 1.43627 0.718137 0.695902i \(-0.244995\pi\)
0.718137 + 0.695902i \(0.244995\pi\)
\(770\) 0 0
\(771\) 29213.7 1.36460
\(772\) 0 0
\(773\) 33654.0 1.56591 0.782957 0.622075i \(-0.213710\pi\)
0.782957 + 0.622075i \(0.213710\pi\)
\(774\) 0 0
\(775\) −4102.38 −0.190144
\(776\) 0 0
\(777\) 5990.52 0.276588
\(778\) 0 0
\(779\) 13238.4 0.608877
\(780\) 0 0
\(781\) 7822.91 0.358420
\(782\) 0 0
\(783\) −44623.4 −2.03667
\(784\) 0 0
\(785\) −10515.2 −0.478092
\(786\) 0 0
\(787\) −22411.6 −1.01510 −0.507552 0.861621i \(-0.669449\pi\)
−0.507552 + 0.861621i \(0.669449\pi\)
\(788\) 0 0
\(789\) −59364.3 −2.67861
\(790\) 0 0
\(791\) 13716.9 0.616581
\(792\) 0 0
\(793\) 5840.98 0.261563
\(794\) 0 0
\(795\) −5373.72 −0.239731
\(796\) 0 0
\(797\) −4088.30 −0.181700 −0.0908501 0.995865i \(-0.528958\pi\)
−0.0908501 + 0.995865i \(0.528958\pi\)
\(798\) 0 0
\(799\) −3175.08 −0.140584
\(800\) 0 0
\(801\) −31908.7 −1.40754
\(802\) 0 0
\(803\) 21818.8 0.958866
\(804\) 0 0
\(805\) −3497.16 −0.153116
\(806\) 0 0
\(807\) 13988.5 0.610184
\(808\) 0 0
\(809\) 3262.90 0.141802 0.0709009 0.997483i \(-0.477413\pi\)
0.0709009 + 0.997483i \(0.477413\pi\)
\(810\) 0 0
\(811\) −27831.2 −1.20504 −0.602519 0.798104i \(-0.705836\pi\)
−0.602519 + 0.798104i \(0.705836\pi\)
\(812\) 0 0
\(813\) −29717.6 −1.28197
\(814\) 0 0
\(815\) 14107.5 0.606335
\(816\) 0 0
\(817\) 29217.8 1.25116
\(818\) 0 0
\(819\) 2601.12 0.110977
\(820\) 0 0
\(821\) −8701.78 −0.369908 −0.184954 0.982747i \(-0.559214\pi\)
−0.184954 + 0.982747i \(0.559214\pi\)
\(822\) 0 0
\(823\) −31027.9 −1.31418 −0.657088 0.753814i \(-0.728212\pi\)
−0.657088 + 0.753814i \(0.728212\pi\)
\(824\) 0 0
\(825\) 8024.79 0.338651
\(826\) 0 0
\(827\) −18262.0 −0.767874 −0.383937 0.923359i \(-0.625432\pi\)
−0.383937 + 0.923359i \(0.625432\pi\)
\(828\) 0 0
\(829\) −15237.0 −0.638364 −0.319182 0.947693i \(-0.603408\pi\)
−0.319182 + 0.947693i \(0.603408\pi\)
\(830\) 0 0
\(831\) 41463.2 1.73086
\(832\) 0 0
\(833\) −1536.44 −0.0639068
\(834\) 0 0
\(835\) 1605.10 0.0665232
\(836\) 0 0
\(837\) −38124.1 −1.57439
\(838\) 0 0
\(839\) −26690.2 −1.09827 −0.549134 0.835734i \(-0.685042\pi\)
−0.549134 + 0.835734i \(0.685042\pi\)
\(840\) 0 0
\(841\) 12501.6 0.512592
\(842\) 0 0
\(843\) 65035.8 2.65712
\(844\) 0 0
\(845\) 10739.0 0.437200
\(846\) 0 0
\(847\) 298.992 0.0121293
\(848\) 0 0
\(849\) 31482.9 1.27266
\(850\) 0 0
\(851\) 9561.52 0.385152
\(852\) 0 0
\(853\) −8719.68 −0.350007 −0.175004 0.984568i \(-0.555994\pi\)
−0.175004 + 0.984568i \(0.555994\pi\)
\(854\) 0 0
\(855\) 23895.7 0.955810
\(856\) 0 0
\(857\) 49470.6 1.97186 0.985930 0.167160i \(-0.0534597\pi\)
0.985930 + 0.167160i \(0.0534597\pi\)
\(858\) 0 0
\(859\) 19883.7 0.789782 0.394891 0.918728i \(-0.370782\pi\)
0.394891 + 0.918728i \(0.370782\pi\)
\(860\) 0 0
\(861\) 9186.95 0.363636
\(862\) 0 0
\(863\) −19430.2 −0.766409 −0.383205 0.923664i \(-0.625180\pi\)
−0.383205 + 0.923664i \(0.625180\pi\)
\(864\) 0 0
\(865\) 1112.78 0.0437407
\(866\) 0 0
\(867\) −35144.6 −1.37667
\(868\) 0 0
\(869\) 37328.0 1.45715
\(870\) 0 0
\(871\) −4579.60 −0.178156
\(872\) 0 0
\(873\) 28998.8 1.12424
\(874\) 0 0
\(875\) 875.000 0.0338062
\(876\) 0 0
\(877\) 21960.6 0.845560 0.422780 0.906232i \(-0.361054\pi\)
0.422780 + 0.906232i \(0.361054\pi\)
\(878\) 0 0
\(879\) −27448.3 −1.05325
\(880\) 0 0
\(881\) −14525.4 −0.555473 −0.277737 0.960657i \(-0.589584\pi\)
−0.277737 + 0.960657i \(0.589584\pi\)
\(882\) 0 0
\(883\) −7807.00 −0.297538 −0.148769 0.988872i \(-0.547531\pi\)
−0.148769 + 0.988872i \(0.547531\pi\)
\(884\) 0 0
\(885\) 27213.8 1.03365
\(886\) 0 0
\(887\) −20837.4 −0.788785 −0.394393 0.918942i \(-0.629045\pi\)
−0.394393 + 0.918942i \(0.629045\pi\)
\(888\) 0 0
\(889\) 7787.15 0.293782
\(890\) 0 0
\(891\) 23234.0 0.873590
\(892\) 0 0
\(893\) −9134.52 −0.342301
\(894\) 0 0
\(895\) −2832.44 −0.105786
\(896\) 0 0
\(897\) 6267.52 0.233296
\(898\) 0 0
\(899\) 31517.6 1.16927
\(900\) 0 0
\(901\) −3768.22 −0.139331
\(902\) 0 0
\(903\) 20276.0 0.747225
\(904\) 0 0
\(905\) 15437.4 0.567025
\(906\) 0 0
\(907\) −52475.2 −1.92107 −0.960534 0.278162i \(-0.910275\pi\)
−0.960534 + 0.278162i \(0.910275\pi\)
\(908\) 0 0
\(909\) 34791.6 1.26949
\(910\) 0 0
\(911\) −8902.53 −0.323769 −0.161885 0.986810i \(-0.551757\pi\)
−0.161885 + 0.986810i \(0.551757\pi\)
\(912\) 0 0
\(913\) 26428.7 0.958009
\(914\) 0 0
\(915\) 37237.6 1.34540
\(916\) 0 0
\(917\) −15461.6 −0.556802
\(918\) 0 0
\(919\) 46228.4 1.65934 0.829670 0.558255i \(-0.188529\pi\)
0.829670 + 0.558255i \(0.188529\pi\)
\(920\) 0 0
\(921\) −13761.7 −0.492360
\(922\) 0 0
\(923\) −1528.70 −0.0545156
\(924\) 0 0
\(925\) −2392.32 −0.0850368
\(926\) 0 0
\(927\) −4937.25 −0.174931
\(928\) 0 0
\(929\) −37088.2 −1.30982 −0.654911 0.755706i \(-0.727294\pi\)
−0.654911 + 0.755706i \(0.727294\pi\)
\(930\) 0 0
\(931\) −4420.23 −0.155604
\(932\) 0 0
\(933\) 76107.2 2.67057
\(934\) 0 0
\(935\) 5627.23 0.196824
\(936\) 0 0
\(937\) −22304.9 −0.777662 −0.388831 0.921309i \(-0.627121\pi\)
−0.388831 + 0.921309i \(0.627121\pi\)
\(938\) 0 0
\(939\) 46499.7 1.61604
\(940\) 0 0
\(941\) −27726.8 −0.960540 −0.480270 0.877121i \(-0.659461\pi\)
−0.480270 + 0.877121i \(0.659461\pi\)
\(942\) 0 0
\(943\) 14663.4 0.506368
\(944\) 0 0
\(945\) 8131.54 0.279914
\(946\) 0 0
\(947\) −9265.39 −0.317935 −0.158968 0.987284i \(-0.550817\pi\)
−0.158968 + 0.987284i \(0.550817\pi\)
\(948\) 0 0
\(949\) −4263.70 −0.145843
\(950\) 0 0
\(951\) 44663.4 1.52293
\(952\) 0 0
\(953\) −7247.40 −0.246344 −0.123172 0.992385i \(-0.539307\pi\)
−0.123172 + 0.992385i \(0.539307\pi\)
\(954\) 0 0
\(955\) 3483.86 0.118047
\(956\) 0 0
\(957\) −61652.6 −2.08249
\(958\) 0 0
\(959\) 10922.2 0.367774
\(960\) 0 0
\(961\) −2863.82 −0.0961304
\(962\) 0 0
\(963\) 30891.5 1.03371
\(964\) 0 0
\(965\) 25357.8 0.845902
\(966\) 0 0
\(967\) 46817.8 1.55694 0.778469 0.627683i \(-0.215996\pi\)
0.778469 + 0.627683i \(0.215996\pi\)
\(968\) 0 0
\(969\) 25296.2 0.838628
\(970\) 0 0
\(971\) 18137.9 0.599457 0.299729 0.954024i \(-0.403104\pi\)
0.299729 + 0.954024i \(0.403104\pi\)
\(972\) 0 0
\(973\) −4762.30 −0.156909
\(974\) 0 0
\(975\) −1568.15 −0.0515088
\(976\) 0 0
\(977\) 12235.7 0.400671 0.200336 0.979727i \(-0.435797\pi\)
0.200336 + 0.979727i \(0.435797\pi\)
\(978\) 0 0
\(979\) −21618.0 −0.705733
\(980\) 0 0
\(981\) 59301.1 1.93001
\(982\) 0 0
\(983\) −37510.9 −1.21710 −0.608551 0.793515i \(-0.708249\pi\)
−0.608551 + 0.793515i \(0.708249\pi\)
\(984\) 0 0
\(985\) −12085.7 −0.390947
\(986\) 0 0
\(987\) −6339.01 −0.204431
\(988\) 0 0
\(989\) 32362.7 1.04052
\(990\) 0 0
\(991\) −28734.1 −0.921060 −0.460530 0.887644i \(-0.652341\pi\)
−0.460530 + 0.887644i \(0.652341\pi\)
\(992\) 0 0
\(993\) −4059.11 −0.129720
\(994\) 0 0
\(995\) −8269.53 −0.263479
\(996\) 0 0
\(997\) −30360.9 −0.964434 −0.482217 0.876052i \(-0.660168\pi\)
−0.482217 + 0.876052i \(0.660168\pi\)
\(998\) 0 0
\(999\) −22232.3 −0.704102
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2240.4.a.cj.1.4 4
4.3 odd 2 2240.4.a.cb.1.1 4
8.3 odd 2 1120.4.a.o.1.4 yes 4
8.5 even 2 1120.4.a.g.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1120.4.a.g.1.1 4 8.5 even 2
1120.4.a.o.1.4 yes 4 8.3 odd 2
2240.4.a.cb.1.1 4 4.3 odd 2
2240.4.a.cj.1.4 4 1.1 even 1 trivial