Properties

Label 2240.4.a.cn.1.3
Level $2240$
Weight $4$
Character 2240.1
Self dual yes
Analytic conductor $132.164$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2240,4,Mod(1,2240)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2240, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2240.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2240 = 2^{6} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2240.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(132.164278413\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 99x^{3} - 98x^{2} + 924x + 168 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{5} \)
Twist minimal: no (minimal twist has level 1120)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-0.179033\) of defining polynomial
Character \(\chi\) \(=\) 2240.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.17903 q^{3} +5.00000 q^{5} -7.00000 q^{7} -25.6099 q^{9} -52.0666 q^{11} +63.8274 q^{13} -5.89517 q^{15} +51.2353 q^{17} -56.1226 q^{19} +8.25323 q^{21} -97.1253 q^{23} +25.0000 q^{25} +62.0288 q^{27} +300.236 q^{29} +181.133 q^{31} +61.3882 q^{33} -35.0000 q^{35} -95.8142 q^{37} -75.2546 q^{39} +247.130 q^{41} +414.927 q^{43} -128.049 q^{45} -24.1145 q^{47} +49.0000 q^{49} -60.4081 q^{51} -399.051 q^{53} -260.333 q^{55} +66.1704 q^{57} -353.455 q^{59} -586.387 q^{61} +179.269 q^{63} +319.137 q^{65} -413.604 q^{67} +114.514 q^{69} -36.8541 q^{71} -472.474 q^{73} -29.4758 q^{75} +364.466 q^{77} +1101.84 q^{79} +618.333 q^{81} -267.578 q^{83} +256.176 q^{85} -353.988 q^{87} -336.727 q^{89} -446.792 q^{91} -213.562 q^{93} -280.613 q^{95} +375.268 q^{97} +1333.42 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 5 q^{3} + 25 q^{5} - 35 q^{7} + 68 q^{9} - 35 q^{11} + 39 q^{13} - 25 q^{15} - 29 q^{17} - 84 q^{19} + 35 q^{21} - 128 q^{23} + 125 q^{25} - 35 q^{27} - 73 q^{29} - 318 q^{31} + 205 q^{33} - 175 q^{35}+ \cdots - 3734 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.17903 −0.226905 −0.113453 0.993543i \(-0.536191\pi\)
−0.113453 + 0.993543i \(0.536191\pi\)
\(4\) 0 0
\(5\) 5.00000 0.447214
\(6\) 0 0
\(7\) −7.00000 −0.377964
\(8\) 0 0
\(9\) −25.6099 −0.948514
\(10\) 0 0
\(11\) −52.0666 −1.42715 −0.713576 0.700578i \(-0.752926\pi\)
−0.713576 + 0.700578i \(0.752926\pi\)
\(12\) 0 0
\(13\) 63.8274 1.36173 0.680867 0.732407i \(-0.261603\pi\)
0.680867 + 0.732407i \(0.261603\pi\)
\(14\) 0 0
\(15\) −5.89517 −0.101475
\(16\) 0 0
\(17\) 51.2353 0.730963 0.365482 0.930819i \(-0.380904\pi\)
0.365482 + 0.930819i \(0.380904\pi\)
\(18\) 0 0
\(19\) −56.1226 −0.677653 −0.338827 0.940849i \(-0.610030\pi\)
−0.338827 + 0.940849i \(0.610030\pi\)
\(20\) 0 0
\(21\) 8.25323 0.0857621
\(22\) 0 0
\(23\) −97.1253 −0.880523 −0.440262 0.897870i \(-0.645114\pi\)
−0.440262 + 0.897870i \(0.645114\pi\)
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) 0 0
\(27\) 62.0288 0.442128
\(28\) 0 0
\(29\) 300.236 1.92250 0.961249 0.275681i \(-0.0889034\pi\)
0.961249 + 0.275681i \(0.0889034\pi\)
\(30\) 0 0
\(31\) 181.133 1.04943 0.524717 0.851277i \(-0.324171\pi\)
0.524717 + 0.851277i \(0.324171\pi\)
\(32\) 0 0
\(33\) 61.3882 0.323828
\(34\) 0 0
\(35\) −35.0000 −0.169031
\(36\) 0 0
\(37\) −95.8142 −0.425723 −0.212862 0.977082i \(-0.568278\pi\)
−0.212862 + 0.977082i \(0.568278\pi\)
\(38\) 0 0
\(39\) −75.2546 −0.308984
\(40\) 0 0
\(41\) 247.130 0.941346 0.470673 0.882308i \(-0.344011\pi\)
0.470673 + 0.882308i \(0.344011\pi\)
\(42\) 0 0
\(43\) 414.927 1.47153 0.735765 0.677237i \(-0.236823\pi\)
0.735765 + 0.677237i \(0.236823\pi\)
\(44\) 0 0
\(45\) −128.049 −0.424188
\(46\) 0 0
\(47\) −24.1145 −0.0748396 −0.0374198 0.999300i \(-0.511914\pi\)
−0.0374198 + 0.999300i \(0.511914\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) 0 0
\(51\) −60.4081 −0.165859
\(52\) 0 0
\(53\) −399.051 −1.03422 −0.517112 0.855918i \(-0.672993\pi\)
−0.517112 + 0.855918i \(0.672993\pi\)
\(54\) 0 0
\(55\) −260.333 −0.638242
\(56\) 0 0
\(57\) 66.1704 0.153763
\(58\) 0 0
\(59\) −353.455 −0.779930 −0.389965 0.920830i \(-0.627513\pi\)
−0.389965 + 0.920830i \(0.627513\pi\)
\(60\) 0 0
\(61\) −586.387 −1.23081 −0.615403 0.788213i \(-0.711007\pi\)
−0.615403 + 0.788213i \(0.711007\pi\)
\(62\) 0 0
\(63\) 179.269 0.358505
\(64\) 0 0
\(65\) 319.137 0.608986
\(66\) 0 0
\(67\) −413.604 −0.754175 −0.377087 0.926178i \(-0.623074\pi\)
−0.377087 + 0.926178i \(0.623074\pi\)
\(68\) 0 0
\(69\) 114.514 0.199795
\(70\) 0 0
\(71\) −36.8541 −0.0616024 −0.0308012 0.999526i \(-0.509806\pi\)
−0.0308012 + 0.999526i \(0.509806\pi\)
\(72\) 0 0
\(73\) −472.474 −0.757520 −0.378760 0.925495i \(-0.623649\pi\)
−0.378760 + 0.925495i \(0.623649\pi\)
\(74\) 0 0
\(75\) −29.4758 −0.0453810
\(76\) 0 0
\(77\) 364.466 0.539413
\(78\) 0 0
\(79\) 1101.84 1.56919 0.784597 0.620005i \(-0.212870\pi\)
0.784597 + 0.620005i \(0.212870\pi\)
\(80\) 0 0
\(81\) 618.333 0.848193
\(82\) 0 0
\(83\) −267.578 −0.353861 −0.176931 0.984223i \(-0.556617\pi\)
−0.176931 + 0.984223i \(0.556617\pi\)
\(84\) 0 0
\(85\) 256.176 0.326897
\(86\) 0 0
\(87\) −353.988 −0.436225
\(88\) 0 0
\(89\) −336.727 −0.401044 −0.200522 0.979689i \(-0.564264\pi\)
−0.200522 + 0.979689i \(0.564264\pi\)
\(90\) 0 0
\(91\) −446.792 −0.514687
\(92\) 0 0
\(93\) −213.562 −0.238122
\(94\) 0 0
\(95\) −280.613 −0.303056
\(96\) 0 0
\(97\) 375.268 0.392812 0.196406 0.980523i \(-0.437073\pi\)
0.196406 + 0.980523i \(0.437073\pi\)
\(98\) 0 0
\(99\) 1333.42 1.35367
\(100\) 0 0
\(101\) 138.134 0.136088 0.0680438 0.997682i \(-0.478324\pi\)
0.0680438 + 0.997682i \(0.478324\pi\)
\(102\) 0 0
\(103\) −1341.72 −1.28353 −0.641766 0.766900i \(-0.721798\pi\)
−0.641766 + 0.766900i \(0.721798\pi\)
\(104\) 0 0
\(105\) 41.2662 0.0383540
\(106\) 0 0
\(107\) −1696.25 −1.53254 −0.766272 0.642516i \(-0.777890\pi\)
−0.766272 + 0.642516i \(0.777890\pi\)
\(108\) 0 0
\(109\) −2204.86 −1.93750 −0.968749 0.248042i \(-0.920213\pi\)
−0.968749 + 0.248042i \(0.920213\pi\)
\(110\) 0 0
\(111\) 112.968 0.0965987
\(112\) 0 0
\(113\) 1100.76 0.916381 0.458190 0.888854i \(-0.348498\pi\)
0.458190 + 0.888854i \(0.348498\pi\)
\(114\) 0 0
\(115\) −485.627 −0.393782
\(116\) 0 0
\(117\) −1634.61 −1.29162
\(118\) 0 0
\(119\) −358.647 −0.276278
\(120\) 0 0
\(121\) 1379.93 1.03676
\(122\) 0 0
\(123\) −291.374 −0.213596
\(124\) 0 0
\(125\) 125.000 0.0894427
\(126\) 0 0
\(127\) −127.572 −0.0891354 −0.0445677 0.999006i \(-0.514191\pi\)
−0.0445677 + 0.999006i \(0.514191\pi\)
\(128\) 0 0
\(129\) −489.213 −0.333898
\(130\) 0 0
\(131\) 160.270 0.106892 0.0534459 0.998571i \(-0.482980\pi\)
0.0534459 + 0.998571i \(0.482980\pi\)
\(132\) 0 0
\(133\) 392.858 0.256129
\(134\) 0 0
\(135\) 310.144 0.197726
\(136\) 0 0
\(137\) 980.400 0.611396 0.305698 0.952129i \(-0.401110\pi\)
0.305698 + 0.952129i \(0.401110\pi\)
\(138\) 0 0
\(139\) −1263.68 −0.771105 −0.385552 0.922686i \(-0.625989\pi\)
−0.385552 + 0.922686i \(0.625989\pi\)
\(140\) 0 0
\(141\) 28.4318 0.0169815
\(142\) 0 0
\(143\) −3323.27 −1.94340
\(144\) 0 0
\(145\) 1501.18 0.859767
\(146\) 0 0
\(147\) −57.7726 −0.0324150
\(148\) 0 0
\(149\) 426.329 0.234405 0.117202 0.993108i \(-0.462607\pi\)
0.117202 + 0.993108i \(0.462607\pi\)
\(150\) 0 0
\(151\) −1511.76 −0.814739 −0.407369 0.913263i \(-0.633554\pi\)
−0.407369 + 0.913263i \(0.633554\pi\)
\(152\) 0 0
\(153\) −1312.13 −0.693329
\(154\) 0 0
\(155\) 905.666 0.469321
\(156\) 0 0
\(157\) −3871.11 −1.96782 −0.983910 0.178663i \(-0.942823\pi\)
−0.983910 + 0.178663i \(0.942823\pi\)
\(158\) 0 0
\(159\) 470.495 0.234671
\(160\) 0 0
\(161\) 679.877 0.332806
\(162\) 0 0
\(163\) −1702.44 −0.818070 −0.409035 0.912519i \(-0.634135\pi\)
−0.409035 + 0.912519i \(0.634135\pi\)
\(164\) 0 0
\(165\) 306.941 0.144820
\(166\) 0 0
\(167\) −2853.48 −1.32221 −0.661104 0.750295i \(-0.729912\pi\)
−0.661104 + 0.750295i \(0.729912\pi\)
\(168\) 0 0
\(169\) 1876.93 0.854317
\(170\) 0 0
\(171\) 1437.29 0.642763
\(172\) 0 0
\(173\) −25.2070 −0.0110778 −0.00553889 0.999985i \(-0.501763\pi\)
−0.00553889 + 0.999985i \(0.501763\pi\)
\(174\) 0 0
\(175\) −175.000 −0.0755929
\(176\) 0 0
\(177\) 416.735 0.176970
\(178\) 0 0
\(179\) 3107.71 1.29766 0.648830 0.760933i \(-0.275259\pi\)
0.648830 + 0.760933i \(0.275259\pi\)
\(180\) 0 0
\(181\) 1165.44 0.478598 0.239299 0.970946i \(-0.423082\pi\)
0.239299 + 0.970946i \(0.423082\pi\)
\(182\) 0 0
\(183\) 691.370 0.279276
\(184\) 0 0
\(185\) −479.071 −0.190389
\(186\) 0 0
\(187\) −2667.65 −1.04320
\(188\) 0 0
\(189\) −434.202 −0.167109
\(190\) 0 0
\(191\) −2472.20 −0.936555 −0.468277 0.883581i \(-0.655125\pi\)
−0.468277 + 0.883581i \(0.655125\pi\)
\(192\) 0 0
\(193\) 1179.58 0.439939 0.219970 0.975507i \(-0.429404\pi\)
0.219970 + 0.975507i \(0.429404\pi\)
\(194\) 0 0
\(195\) −376.273 −0.138182
\(196\) 0 0
\(197\) −2437.76 −0.881642 −0.440821 0.897595i \(-0.645313\pi\)
−0.440821 + 0.897595i \(0.645313\pi\)
\(198\) 0 0
\(199\) 3655.05 1.30201 0.651004 0.759075i \(-0.274348\pi\)
0.651004 + 0.759075i \(0.274348\pi\)
\(200\) 0 0
\(201\) 487.652 0.171126
\(202\) 0 0
\(203\) −2101.65 −0.726636
\(204\) 0 0
\(205\) 1235.65 0.420983
\(206\) 0 0
\(207\) 2487.37 0.835189
\(208\) 0 0
\(209\) 2922.11 0.967113
\(210\) 0 0
\(211\) −3001.88 −0.979420 −0.489710 0.871885i \(-0.662897\pi\)
−0.489710 + 0.871885i \(0.662897\pi\)
\(212\) 0 0
\(213\) 43.4522 0.0139779
\(214\) 0 0
\(215\) 2074.63 0.658088
\(216\) 0 0
\(217\) −1267.93 −0.396649
\(218\) 0 0
\(219\) 557.063 0.171885
\(220\) 0 0
\(221\) 3270.21 0.995377
\(222\) 0 0
\(223\) 2898.33 0.870343 0.435171 0.900348i \(-0.356688\pi\)
0.435171 + 0.900348i \(0.356688\pi\)
\(224\) 0 0
\(225\) −640.247 −0.189703
\(226\) 0 0
\(227\) 4222.64 1.23465 0.617326 0.786707i \(-0.288216\pi\)
0.617326 + 0.786707i \(0.288216\pi\)
\(228\) 0 0
\(229\) −902.201 −0.260345 −0.130173 0.991491i \(-0.541553\pi\)
−0.130173 + 0.991491i \(0.541553\pi\)
\(230\) 0 0
\(231\) −429.718 −0.122395
\(232\) 0 0
\(233\) 4943.38 1.38992 0.694961 0.719048i \(-0.255422\pi\)
0.694961 + 0.719048i \(0.255422\pi\)
\(234\) 0 0
\(235\) −120.572 −0.0334693
\(236\) 0 0
\(237\) −1299.10 −0.356058
\(238\) 0 0
\(239\) 2973.64 0.804806 0.402403 0.915463i \(-0.368175\pi\)
0.402403 + 0.915463i \(0.368175\pi\)
\(240\) 0 0
\(241\) 1041.58 0.278399 0.139199 0.990264i \(-0.455547\pi\)
0.139199 + 0.990264i \(0.455547\pi\)
\(242\) 0 0
\(243\) −2403.81 −0.634587
\(244\) 0 0
\(245\) 245.000 0.0638877
\(246\) 0 0
\(247\) −3582.16 −0.922783
\(248\) 0 0
\(249\) 315.483 0.0802929
\(250\) 0 0
\(251\) −444.000 −0.111654 −0.0558268 0.998440i \(-0.517779\pi\)
−0.0558268 + 0.998440i \(0.517779\pi\)
\(252\) 0 0
\(253\) 5056.98 1.25664
\(254\) 0 0
\(255\) −302.040 −0.0741745
\(256\) 0 0
\(257\) −923.976 −0.224265 −0.112132 0.993693i \(-0.535768\pi\)
−0.112132 + 0.993693i \(0.535768\pi\)
\(258\) 0 0
\(259\) 670.699 0.160908
\(260\) 0 0
\(261\) −7689.01 −1.82352
\(262\) 0 0
\(263\) 1911.63 0.448199 0.224099 0.974566i \(-0.428056\pi\)
0.224099 + 0.974566i \(0.428056\pi\)
\(264\) 0 0
\(265\) −1995.26 −0.462519
\(266\) 0 0
\(267\) 397.012 0.0909990
\(268\) 0 0
\(269\) −8315.36 −1.88475 −0.942373 0.334564i \(-0.891411\pi\)
−0.942373 + 0.334564i \(0.891411\pi\)
\(270\) 0 0
\(271\) −6774.68 −1.51857 −0.759285 0.650758i \(-0.774451\pi\)
−0.759285 + 0.650758i \(0.774451\pi\)
\(272\) 0 0
\(273\) 526.782 0.116785
\(274\) 0 0
\(275\) −1301.66 −0.285430
\(276\) 0 0
\(277\) 3301.83 0.716202 0.358101 0.933683i \(-0.383424\pi\)
0.358101 + 0.933683i \(0.383424\pi\)
\(278\) 0 0
\(279\) −4638.80 −0.995403
\(280\) 0 0
\(281\) 2726.25 0.578771 0.289385 0.957213i \(-0.406549\pi\)
0.289385 + 0.957213i \(0.406549\pi\)
\(282\) 0 0
\(283\) −799.847 −0.168007 −0.0840035 0.996465i \(-0.526771\pi\)
−0.0840035 + 0.996465i \(0.526771\pi\)
\(284\) 0 0
\(285\) 330.852 0.0687649
\(286\) 0 0
\(287\) −1729.91 −0.355795
\(288\) 0 0
\(289\) −2287.95 −0.465693
\(290\) 0 0
\(291\) −442.454 −0.0891309
\(292\) 0 0
\(293\) −6817.14 −1.35925 −0.679627 0.733557i \(-0.737859\pi\)
−0.679627 + 0.733557i \(0.737859\pi\)
\(294\) 0 0
\(295\) −1767.27 −0.348795
\(296\) 0 0
\(297\) −3229.63 −0.630983
\(298\) 0 0
\(299\) −6199.26 −1.19904
\(300\) 0 0
\(301\) −2904.49 −0.556186
\(302\) 0 0
\(303\) −162.865 −0.0308790
\(304\) 0 0
\(305\) −2931.93 −0.550433
\(306\) 0 0
\(307\) 85.4466 0.0158850 0.00794250 0.999968i \(-0.497472\pi\)
0.00794250 + 0.999968i \(0.497472\pi\)
\(308\) 0 0
\(309\) 1581.94 0.291240
\(310\) 0 0
\(311\) −5561.82 −1.01409 −0.507045 0.861920i \(-0.669262\pi\)
−0.507045 + 0.861920i \(0.669262\pi\)
\(312\) 0 0
\(313\) −8203.36 −1.48141 −0.740705 0.671830i \(-0.765508\pi\)
−0.740705 + 0.671830i \(0.765508\pi\)
\(314\) 0 0
\(315\) 896.346 0.160328
\(316\) 0 0
\(317\) 7442.96 1.31873 0.659366 0.751822i \(-0.270825\pi\)
0.659366 + 0.751822i \(0.270825\pi\)
\(318\) 0 0
\(319\) −15632.3 −2.74370
\(320\) 0 0
\(321\) 1999.93 0.347742
\(322\) 0 0
\(323\) −2875.46 −0.495340
\(324\) 0 0
\(325\) 1595.68 0.272347
\(326\) 0 0
\(327\) 2599.60 0.439628
\(328\) 0 0
\(329\) 168.801 0.0282867
\(330\) 0 0
\(331\) −7622.62 −1.26579 −0.632896 0.774237i \(-0.718134\pi\)
−0.632896 + 0.774237i \(0.718134\pi\)
\(332\) 0 0
\(333\) 2453.79 0.403804
\(334\) 0 0
\(335\) −2068.02 −0.337277
\(336\) 0 0
\(337\) −2162.74 −0.349591 −0.174795 0.984605i \(-0.555926\pi\)
−0.174795 + 0.984605i \(0.555926\pi\)
\(338\) 0 0
\(339\) −1297.84 −0.207931
\(340\) 0 0
\(341\) −9430.98 −1.49770
\(342\) 0 0
\(343\) −343.000 −0.0539949
\(344\) 0 0
\(345\) 572.570 0.0893511
\(346\) 0 0
\(347\) −8061.11 −1.24710 −0.623549 0.781784i \(-0.714310\pi\)
−0.623549 + 0.781784i \(0.714310\pi\)
\(348\) 0 0
\(349\) 5166.88 0.792483 0.396242 0.918146i \(-0.370314\pi\)
0.396242 + 0.918146i \(0.370314\pi\)
\(350\) 0 0
\(351\) 3959.14 0.602060
\(352\) 0 0
\(353\) 729.077 0.109929 0.0549644 0.998488i \(-0.482495\pi\)
0.0549644 + 0.998488i \(0.482495\pi\)
\(354\) 0 0
\(355\) −184.270 −0.0275494
\(356\) 0 0
\(357\) 422.857 0.0626889
\(358\) 0 0
\(359\) 4185.19 0.615281 0.307641 0.951503i \(-0.400461\pi\)
0.307641 + 0.951503i \(0.400461\pi\)
\(360\) 0 0
\(361\) −3709.25 −0.540786
\(362\) 0 0
\(363\) −1626.98 −0.235246
\(364\) 0 0
\(365\) −2362.37 −0.338773
\(366\) 0 0
\(367\) 2576.21 0.366422 0.183211 0.983074i \(-0.441351\pi\)
0.183211 + 0.983074i \(0.441351\pi\)
\(368\) 0 0
\(369\) −6328.97 −0.892880
\(370\) 0 0
\(371\) 2793.36 0.390900
\(372\) 0 0
\(373\) 10692.8 1.48432 0.742162 0.670220i \(-0.233800\pi\)
0.742162 + 0.670220i \(0.233800\pi\)
\(374\) 0 0
\(375\) −147.379 −0.0202950
\(376\) 0 0
\(377\) 19163.3 2.61793
\(378\) 0 0
\(379\) −11212.9 −1.51971 −0.759853 0.650095i \(-0.774729\pi\)
−0.759853 + 0.650095i \(0.774729\pi\)
\(380\) 0 0
\(381\) 150.412 0.0202253
\(382\) 0 0
\(383\) −9737.40 −1.29911 −0.649553 0.760316i \(-0.725044\pi\)
−0.649553 + 0.760316i \(0.725044\pi\)
\(384\) 0 0
\(385\) 1822.33 0.241233
\(386\) 0 0
\(387\) −10626.2 −1.39577
\(388\) 0 0
\(389\) −594.346 −0.0774667 −0.0387333 0.999250i \(-0.512332\pi\)
−0.0387333 + 0.999250i \(0.512332\pi\)
\(390\) 0 0
\(391\) −4976.24 −0.643630
\(392\) 0 0
\(393\) −188.963 −0.0242543
\(394\) 0 0
\(395\) 5509.19 0.701765
\(396\) 0 0
\(397\) 2273.63 0.287431 0.143716 0.989619i \(-0.454095\pi\)
0.143716 + 0.989619i \(0.454095\pi\)
\(398\) 0 0
\(399\) −463.193 −0.0581169
\(400\) 0 0
\(401\) 695.727 0.0866407 0.0433204 0.999061i \(-0.486206\pi\)
0.0433204 + 0.999061i \(0.486206\pi\)
\(402\) 0 0
\(403\) 11561.3 1.42905
\(404\) 0 0
\(405\) 3091.66 0.379323
\(406\) 0 0
\(407\) 4988.72 0.607571
\(408\) 0 0
\(409\) 9528.76 1.15200 0.575999 0.817450i \(-0.304613\pi\)
0.575999 + 0.817450i \(0.304613\pi\)
\(410\) 0 0
\(411\) −1155.92 −0.138729
\(412\) 0 0
\(413\) 2474.18 0.294786
\(414\) 0 0
\(415\) −1337.89 −0.158251
\(416\) 0 0
\(417\) 1489.92 0.174968
\(418\) 0 0
\(419\) −11894.2 −1.38680 −0.693398 0.720555i \(-0.743887\pi\)
−0.693398 + 0.720555i \(0.743887\pi\)
\(420\) 0 0
\(421\) −14056.1 −1.62720 −0.813599 0.581426i \(-0.802495\pi\)
−0.813599 + 0.581426i \(0.802495\pi\)
\(422\) 0 0
\(423\) 617.569 0.0709864
\(424\) 0 0
\(425\) 1280.88 0.146193
\(426\) 0 0
\(427\) 4104.71 0.465201
\(428\) 0 0
\(429\) 3918.25 0.440967
\(430\) 0 0
\(431\) 3906.42 0.436579 0.218290 0.975884i \(-0.429952\pi\)
0.218290 + 0.975884i \(0.429952\pi\)
\(432\) 0 0
\(433\) −16442.4 −1.82488 −0.912438 0.409216i \(-0.865802\pi\)
−0.912438 + 0.409216i \(0.865802\pi\)
\(434\) 0 0
\(435\) −1769.94 −0.195086
\(436\) 0 0
\(437\) 5450.93 0.596689
\(438\) 0 0
\(439\) −13106.6 −1.42493 −0.712464 0.701709i \(-0.752421\pi\)
−0.712464 + 0.701709i \(0.752421\pi\)
\(440\) 0 0
\(441\) −1254.88 −0.135502
\(442\) 0 0
\(443\) −10627.2 −1.13976 −0.569879 0.821729i \(-0.693010\pi\)
−0.569879 + 0.821729i \(0.693010\pi\)
\(444\) 0 0
\(445\) −1683.63 −0.179352
\(446\) 0 0
\(447\) −502.657 −0.0531876
\(448\) 0 0
\(449\) −17887.5 −1.88010 −0.940051 0.341035i \(-0.889223\pi\)
−0.940051 + 0.341035i \(0.889223\pi\)
\(450\) 0 0
\(451\) −12867.2 −1.34344
\(452\) 0 0
\(453\) 1782.42 0.184868
\(454\) 0 0
\(455\) −2233.96 −0.230175
\(456\) 0 0
\(457\) −4945.24 −0.506190 −0.253095 0.967441i \(-0.581448\pi\)
−0.253095 + 0.967441i \(0.581448\pi\)
\(458\) 0 0
\(459\) 3178.06 0.323179
\(460\) 0 0
\(461\) 15226.3 1.53831 0.769156 0.639061i \(-0.220677\pi\)
0.769156 + 0.639061i \(0.220677\pi\)
\(462\) 0 0
\(463\) −12609.0 −1.26564 −0.632819 0.774300i \(-0.718102\pi\)
−0.632819 + 0.774300i \(0.718102\pi\)
\(464\) 0 0
\(465\) −1067.81 −0.106491
\(466\) 0 0
\(467\) 17980.8 1.78170 0.890850 0.454298i \(-0.150110\pi\)
0.890850 + 0.454298i \(0.150110\pi\)
\(468\) 0 0
\(469\) 2895.22 0.285051
\(470\) 0 0
\(471\) 4564.16 0.446508
\(472\) 0 0
\(473\) −21603.8 −2.10010
\(474\) 0 0
\(475\) −1403.07 −0.135531
\(476\) 0 0
\(477\) 10219.7 0.980976
\(478\) 0 0
\(479\) −7115.27 −0.678716 −0.339358 0.940657i \(-0.610210\pi\)
−0.339358 + 0.940657i \(0.610210\pi\)
\(480\) 0 0
\(481\) −6115.57 −0.579721
\(482\) 0 0
\(483\) −801.598 −0.0755155
\(484\) 0 0
\(485\) 1876.34 0.175671
\(486\) 0 0
\(487\) 5895.10 0.548527 0.274263 0.961655i \(-0.411566\pi\)
0.274263 + 0.961655i \(0.411566\pi\)
\(488\) 0 0
\(489\) 2007.23 0.185624
\(490\) 0 0
\(491\) −6475.05 −0.595143 −0.297571 0.954700i \(-0.596177\pi\)
−0.297571 + 0.954700i \(0.596177\pi\)
\(492\) 0 0
\(493\) 15382.7 1.40528
\(494\) 0 0
\(495\) 6667.09 0.605381
\(496\) 0 0
\(497\) 257.978 0.0232835
\(498\) 0 0
\(499\) 17255.0 1.54798 0.773990 0.633198i \(-0.218258\pi\)
0.773990 + 0.633198i \(0.218258\pi\)
\(500\) 0 0
\(501\) 3364.34 0.300016
\(502\) 0 0
\(503\) −2573.05 −0.228085 −0.114042 0.993476i \(-0.536380\pi\)
−0.114042 + 0.993476i \(0.536380\pi\)
\(504\) 0 0
\(505\) 690.670 0.0608602
\(506\) 0 0
\(507\) −2212.97 −0.193849
\(508\) 0 0
\(509\) 1053.20 0.0917139 0.0458569 0.998948i \(-0.485398\pi\)
0.0458569 + 0.998948i \(0.485398\pi\)
\(510\) 0 0
\(511\) 3307.32 0.286316
\(512\) 0 0
\(513\) −3481.22 −0.299609
\(514\) 0 0
\(515\) −6708.61 −0.574013
\(516\) 0 0
\(517\) 1255.56 0.106807
\(518\) 0 0
\(519\) 29.7199 0.00251360
\(520\) 0 0
\(521\) 8924.40 0.750452 0.375226 0.926933i \(-0.377565\pi\)
0.375226 + 0.926933i \(0.377565\pi\)
\(522\) 0 0
\(523\) 13200.4 1.10366 0.551828 0.833958i \(-0.313930\pi\)
0.551828 + 0.833958i \(0.313930\pi\)
\(524\) 0 0
\(525\) 206.331 0.0171524
\(526\) 0 0
\(527\) 9280.40 0.767098
\(528\) 0 0
\(529\) −2733.67 −0.224679
\(530\) 0 0
\(531\) 9051.93 0.739775
\(532\) 0 0
\(533\) 15773.7 1.28186
\(534\) 0 0
\(535\) −8481.23 −0.685375
\(536\) 0 0
\(537\) −3664.09 −0.294446
\(538\) 0 0
\(539\) −2551.26 −0.203879
\(540\) 0 0
\(541\) −18907.7 −1.50260 −0.751300 0.659961i \(-0.770573\pi\)
−0.751300 + 0.659961i \(0.770573\pi\)
\(542\) 0 0
\(543\) −1374.09 −0.108596
\(544\) 0 0
\(545\) −11024.3 −0.866476
\(546\) 0 0
\(547\) 9216.11 0.720388 0.360194 0.932877i \(-0.382710\pi\)
0.360194 + 0.932877i \(0.382710\pi\)
\(548\) 0 0
\(549\) 15017.3 1.16744
\(550\) 0 0
\(551\) −16850.0 −1.30279
\(552\) 0 0
\(553\) −7712.86 −0.593100
\(554\) 0 0
\(555\) 564.841 0.0432003
\(556\) 0 0
\(557\) −23700.4 −1.80291 −0.901453 0.432876i \(-0.857499\pi\)
−0.901453 + 0.432876i \(0.857499\pi\)
\(558\) 0 0
\(559\) 26483.7 2.00383
\(560\) 0 0
\(561\) 3145.24 0.236706
\(562\) 0 0
\(563\) −12363.7 −0.925522 −0.462761 0.886483i \(-0.653141\pi\)
−0.462761 + 0.886483i \(0.653141\pi\)
\(564\) 0 0
\(565\) 5503.81 0.409818
\(566\) 0 0
\(567\) −4328.33 −0.320587
\(568\) 0 0
\(569\) 7244.03 0.533718 0.266859 0.963736i \(-0.414014\pi\)
0.266859 + 0.963736i \(0.414014\pi\)
\(570\) 0 0
\(571\) −12777.9 −0.936495 −0.468247 0.883597i \(-0.655114\pi\)
−0.468247 + 0.883597i \(0.655114\pi\)
\(572\) 0 0
\(573\) 2914.80 0.212509
\(574\) 0 0
\(575\) −2428.13 −0.176105
\(576\) 0 0
\(577\) 16191.9 1.16825 0.584123 0.811666i \(-0.301439\pi\)
0.584123 + 0.811666i \(0.301439\pi\)
\(578\) 0 0
\(579\) −1390.77 −0.0998244
\(580\) 0 0
\(581\) 1873.04 0.133747
\(582\) 0 0
\(583\) 20777.2 1.47599
\(584\) 0 0
\(585\) −8173.06 −0.577631
\(586\) 0 0
\(587\) 18119.5 1.27406 0.637030 0.770839i \(-0.280163\pi\)
0.637030 + 0.770839i \(0.280163\pi\)
\(588\) 0 0
\(589\) −10165.7 −0.711152
\(590\) 0 0
\(591\) 2874.20 0.200049
\(592\) 0 0
\(593\) −4445.27 −0.307834 −0.153917 0.988084i \(-0.549189\pi\)
−0.153917 + 0.988084i \(0.549189\pi\)
\(594\) 0 0
\(595\) −1793.23 −0.123555
\(596\) 0 0
\(597\) −4309.42 −0.295432
\(598\) 0 0
\(599\) 3944.36 0.269052 0.134526 0.990910i \(-0.457049\pi\)
0.134526 + 0.990910i \(0.457049\pi\)
\(600\) 0 0
\(601\) −26153.8 −1.77510 −0.887550 0.460712i \(-0.847594\pi\)
−0.887550 + 0.460712i \(0.847594\pi\)
\(602\) 0 0
\(603\) 10592.3 0.715345
\(604\) 0 0
\(605\) 6899.65 0.463654
\(606\) 0 0
\(607\) 9392.23 0.628038 0.314019 0.949417i \(-0.398325\pi\)
0.314019 + 0.949417i \(0.398325\pi\)
\(608\) 0 0
\(609\) 2477.92 0.164877
\(610\) 0 0
\(611\) −1539.16 −0.101912
\(612\) 0 0
\(613\) −2559.16 −0.168619 −0.0843097 0.996440i \(-0.526868\pi\)
−0.0843097 + 0.996440i \(0.526868\pi\)
\(614\) 0 0
\(615\) −1456.87 −0.0955231
\(616\) 0 0
\(617\) −4395.13 −0.286777 −0.143388 0.989666i \(-0.545800\pi\)
−0.143388 + 0.989666i \(0.545800\pi\)
\(618\) 0 0
\(619\) 21458.0 1.39333 0.696664 0.717398i \(-0.254667\pi\)
0.696664 + 0.717398i \(0.254667\pi\)
\(620\) 0 0
\(621\) −6024.57 −0.389304
\(622\) 0 0
\(623\) 2357.09 0.151580
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) 0 0
\(627\) −3445.27 −0.219443
\(628\) 0 0
\(629\) −4909.07 −0.311188
\(630\) 0 0
\(631\) −26755.9 −1.68801 −0.844007 0.536333i \(-0.819809\pi\)
−0.844007 + 0.536333i \(0.819809\pi\)
\(632\) 0 0
\(633\) 3539.31 0.222235
\(634\) 0 0
\(635\) −637.861 −0.0398626
\(636\) 0 0
\(637\) 3127.54 0.194533
\(638\) 0 0
\(639\) 943.828 0.0584308
\(640\) 0 0
\(641\) 23583.6 1.45319 0.726596 0.687065i \(-0.241101\pi\)
0.726596 + 0.687065i \(0.241101\pi\)
\(642\) 0 0
\(643\) −8540.49 −0.523801 −0.261900 0.965095i \(-0.584349\pi\)
−0.261900 + 0.965095i \(0.584349\pi\)
\(644\) 0 0
\(645\) −2446.06 −0.149324
\(646\) 0 0
\(647\) −31576.4 −1.91869 −0.959347 0.282231i \(-0.908926\pi\)
−0.959347 + 0.282231i \(0.908926\pi\)
\(648\) 0 0
\(649\) 18403.2 1.11308
\(650\) 0 0
\(651\) 1494.93 0.0900017
\(652\) 0 0
\(653\) 5913.61 0.354391 0.177196 0.984176i \(-0.443297\pi\)
0.177196 + 0.984176i \(0.443297\pi\)
\(654\) 0 0
\(655\) 801.348 0.0478035
\(656\) 0 0
\(657\) 12100.0 0.718518
\(658\) 0 0
\(659\) −28032.9 −1.65707 −0.828534 0.559939i \(-0.810825\pi\)
−0.828534 + 0.559939i \(0.810825\pi\)
\(660\) 0 0
\(661\) 11830.1 0.696121 0.348061 0.937472i \(-0.386840\pi\)
0.348061 + 0.937472i \(0.386840\pi\)
\(662\) 0 0
\(663\) −3855.69 −0.225856
\(664\) 0 0
\(665\) 1964.29 0.114544
\(666\) 0 0
\(667\) −29160.5 −1.69280
\(668\) 0 0
\(669\) −3417.22 −0.197485
\(670\) 0 0
\(671\) 30531.2 1.75655
\(672\) 0 0
\(673\) −6267.23 −0.358966 −0.179483 0.983761i \(-0.557442\pi\)
−0.179483 + 0.983761i \(0.557442\pi\)
\(674\) 0 0
\(675\) 1550.72 0.0884255
\(676\) 0 0
\(677\) −22641.1 −1.28533 −0.642663 0.766149i \(-0.722171\pi\)
−0.642663 + 0.766149i \(0.722171\pi\)
\(678\) 0 0
\(679\) −2626.88 −0.148469
\(680\) 0 0
\(681\) −4978.63 −0.280149
\(682\) 0 0
\(683\) 484.764 0.0271581 0.0135790 0.999908i \(-0.495678\pi\)
0.0135790 + 0.999908i \(0.495678\pi\)
\(684\) 0 0
\(685\) 4902.00 0.273424
\(686\) 0 0
\(687\) 1063.72 0.0590737
\(688\) 0 0
\(689\) −25470.4 −1.40834
\(690\) 0 0
\(691\) 12456.4 0.685764 0.342882 0.939378i \(-0.388597\pi\)
0.342882 + 0.939378i \(0.388597\pi\)
\(692\) 0 0
\(693\) −9333.93 −0.511640
\(694\) 0 0
\(695\) −6318.38 −0.344848
\(696\) 0 0
\(697\) 12661.8 0.688090
\(698\) 0 0
\(699\) −5828.41 −0.315380
\(700\) 0 0
\(701\) −10798.1 −0.581793 −0.290897 0.956755i \(-0.593954\pi\)
−0.290897 + 0.956755i \(0.593954\pi\)
\(702\) 0 0
\(703\) 5377.34 0.288493
\(704\) 0 0
\(705\) 142.159 0.00759435
\(706\) 0 0
\(707\) −966.938 −0.0514363
\(708\) 0 0
\(709\) 22997.2 1.21816 0.609082 0.793107i \(-0.291538\pi\)
0.609082 + 0.793107i \(0.291538\pi\)
\(710\) 0 0
\(711\) −28217.9 −1.48840
\(712\) 0 0
\(713\) −17592.6 −0.924051
\(714\) 0 0
\(715\) −16616.4 −0.869115
\(716\) 0 0
\(717\) −3506.02 −0.182615
\(718\) 0 0
\(719\) 9243.86 0.479469 0.239734 0.970839i \(-0.422940\pi\)
0.239734 + 0.970839i \(0.422940\pi\)
\(720\) 0 0
\(721\) 9392.05 0.485130
\(722\) 0 0
\(723\) −1228.06 −0.0631701
\(724\) 0 0
\(725\) 7505.90 0.384500
\(726\) 0 0
\(727\) 24919.8 1.27128 0.635642 0.771984i \(-0.280735\pi\)
0.635642 + 0.771984i \(0.280735\pi\)
\(728\) 0 0
\(729\) −13860.8 −0.704202
\(730\) 0 0
\(731\) 21258.9 1.07563
\(732\) 0 0
\(733\) 25726.5 1.29636 0.648180 0.761487i \(-0.275531\pi\)
0.648180 + 0.761487i \(0.275531\pi\)
\(734\) 0 0
\(735\) −288.863 −0.0144964
\(736\) 0 0
\(737\) 21534.9 1.07632
\(738\) 0 0
\(739\) 32124.9 1.59910 0.799548 0.600602i \(-0.205072\pi\)
0.799548 + 0.600602i \(0.205072\pi\)
\(740\) 0 0
\(741\) 4223.48 0.209384
\(742\) 0 0
\(743\) 4511.62 0.222766 0.111383 0.993778i \(-0.464472\pi\)
0.111383 + 0.993778i \(0.464472\pi\)
\(744\) 0 0
\(745\) 2131.65 0.104829
\(746\) 0 0
\(747\) 6852.63 0.335642
\(748\) 0 0
\(749\) 11873.7 0.579247
\(750\) 0 0
\(751\) 20080.5 0.975697 0.487849 0.872928i \(-0.337782\pi\)
0.487849 + 0.872928i \(0.337782\pi\)
\(752\) 0 0
\(753\) 523.491 0.0253348
\(754\) 0 0
\(755\) −7558.82 −0.364362
\(756\) 0 0
\(757\) 34752.0 1.66854 0.834268 0.551359i \(-0.185890\pi\)
0.834268 + 0.551359i \(0.185890\pi\)
\(758\) 0 0
\(759\) −5962.35 −0.285138
\(760\) 0 0
\(761\) 32963.4 1.57020 0.785099 0.619370i \(-0.212612\pi\)
0.785099 + 0.619370i \(0.212612\pi\)
\(762\) 0 0
\(763\) 15434.0 0.732306
\(764\) 0 0
\(765\) −6560.65 −0.310066
\(766\) 0 0
\(767\) −22560.1 −1.06206
\(768\) 0 0
\(769\) 24879.6 1.16669 0.583343 0.812226i \(-0.301744\pi\)
0.583343 + 0.812226i \(0.301744\pi\)
\(770\) 0 0
\(771\) 1089.40 0.0508868
\(772\) 0 0
\(773\) 23772.1 1.10611 0.553054 0.833145i \(-0.313462\pi\)
0.553054 + 0.833145i \(0.313462\pi\)
\(774\) 0 0
\(775\) 4528.33 0.209887
\(776\) 0 0
\(777\) −790.777 −0.0365109
\(778\) 0 0
\(779\) −13869.6 −0.637906
\(780\) 0 0
\(781\) 1918.86 0.0879160
\(782\) 0 0
\(783\) 18623.3 0.849990
\(784\) 0 0
\(785\) −19355.5 −0.880036
\(786\) 0 0
\(787\) 22996.4 1.04159 0.520797 0.853681i \(-0.325635\pi\)
0.520797 + 0.853681i \(0.325635\pi\)
\(788\) 0 0
\(789\) −2253.88 −0.101699
\(790\) 0 0
\(791\) −7705.34 −0.346359
\(792\) 0 0
\(793\) −37427.5 −1.67603
\(794\) 0 0
\(795\) 2352.47 0.104948
\(796\) 0 0
\(797\) −25470.0 −1.13199 −0.565994 0.824410i \(-0.691507\pi\)
−0.565994 + 0.824410i \(0.691507\pi\)
\(798\) 0 0
\(799\) −1235.51 −0.0547050
\(800\) 0 0
\(801\) 8623.53 0.380396
\(802\) 0 0
\(803\) 24600.1 1.08110
\(804\) 0 0
\(805\) 3399.39 0.148836
\(806\) 0 0
\(807\) 9804.09 0.427658
\(808\) 0 0
\(809\) 127.081 0.00552278 0.00276139 0.999996i \(-0.499121\pi\)
0.00276139 + 0.999996i \(0.499121\pi\)
\(810\) 0 0
\(811\) −27366.1 −1.18490 −0.592450 0.805607i \(-0.701839\pi\)
−0.592450 + 0.805607i \(0.701839\pi\)
\(812\) 0 0
\(813\) 7987.57 0.344571
\(814\) 0 0
\(815\) −8512.20 −0.365852
\(816\) 0 0
\(817\) −23286.8 −0.997187
\(818\) 0 0
\(819\) 11442.3 0.488188
\(820\) 0 0
\(821\) −37015.9 −1.57352 −0.786762 0.617256i \(-0.788244\pi\)
−0.786762 + 0.617256i \(0.788244\pi\)
\(822\) 0 0
\(823\) 21835.3 0.924824 0.462412 0.886665i \(-0.346984\pi\)
0.462412 + 0.886665i \(0.346984\pi\)
\(824\) 0 0
\(825\) 1534.71 0.0647656
\(826\) 0 0
\(827\) 23311.6 0.980197 0.490099 0.871667i \(-0.336961\pi\)
0.490099 + 0.871667i \(0.336961\pi\)
\(828\) 0 0
\(829\) −29151.7 −1.22133 −0.610663 0.791890i \(-0.709097\pi\)
−0.610663 + 0.791890i \(0.709097\pi\)
\(830\) 0 0
\(831\) −3892.97 −0.162510
\(832\) 0 0
\(833\) 2510.53 0.104423
\(834\) 0 0
\(835\) −14267.4 −0.591309
\(836\) 0 0
\(837\) 11235.5 0.463984
\(838\) 0 0
\(839\) 21059.0 0.866552 0.433276 0.901261i \(-0.357358\pi\)
0.433276 + 0.901261i \(0.357358\pi\)
\(840\) 0 0
\(841\) 65752.7 2.69600
\(842\) 0 0
\(843\) −3214.34 −0.131326
\(844\) 0 0
\(845\) 9384.67 0.382062
\(846\) 0 0
\(847\) −9659.50 −0.391859
\(848\) 0 0
\(849\) 943.046 0.0381216
\(850\) 0 0
\(851\) 9305.99 0.374859
\(852\) 0 0
\(853\) −14309.1 −0.574364 −0.287182 0.957876i \(-0.592719\pi\)
−0.287182 + 0.957876i \(0.592719\pi\)
\(854\) 0 0
\(855\) 7186.47 0.287453
\(856\) 0 0
\(857\) 3887.04 0.154934 0.0774672 0.996995i \(-0.475317\pi\)
0.0774672 + 0.996995i \(0.475317\pi\)
\(858\) 0 0
\(859\) −20261.9 −0.804804 −0.402402 0.915463i \(-0.631825\pi\)
−0.402402 + 0.915463i \(0.631825\pi\)
\(860\) 0 0
\(861\) 2039.62 0.0807318
\(862\) 0 0
\(863\) 32304.6 1.27423 0.637116 0.770768i \(-0.280127\pi\)
0.637116 + 0.770768i \(0.280127\pi\)
\(864\) 0 0
\(865\) −126.035 −0.00495413
\(866\) 0 0
\(867\) 2697.57 0.105668
\(868\) 0 0
\(869\) −57368.9 −2.23948
\(870\) 0 0
\(871\) −26399.2 −1.02698
\(872\) 0 0
\(873\) −9610.57 −0.372587
\(874\) 0 0
\(875\) −875.000 −0.0338062
\(876\) 0 0
\(877\) −7220.02 −0.277996 −0.138998 0.990293i \(-0.544388\pi\)
−0.138998 + 0.990293i \(0.544388\pi\)
\(878\) 0 0
\(879\) 8037.64 0.308422
\(880\) 0 0
\(881\) 38531.6 1.47351 0.736756 0.676159i \(-0.236357\pi\)
0.736756 + 0.676159i \(0.236357\pi\)
\(882\) 0 0
\(883\) −331.921 −0.0126501 −0.00632505 0.999980i \(-0.502013\pi\)
−0.00632505 + 0.999980i \(0.502013\pi\)
\(884\) 0 0
\(885\) 2083.67 0.0791434
\(886\) 0 0
\(887\) 36815.6 1.39363 0.696814 0.717252i \(-0.254600\pi\)
0.696814 + 0.717252i \(0.254600\pi\)
\(888\) 0 0
\(889\) 893.005 0.0336900
\(890\) 0 0
\(891\) −32194.5 −1.21050
\(892\) 0 0
\(893\) 1353.37 0.0507153
\(894\) 0 0
\(895\) 15538.5 0.580331
\(896\) 0 0
\(897\) 7309.13 0.272068
\(898\) 0 0
\(899\) 54382.7 2.01754
\(900\) 0 0
\(901\) −20445.5 −0.755980
\(902\) 0 0
\(903\) 3424.49 0.126201
\(904\) 0 0
\(905\) 5827.18 0.214035
\(906\) 0 0
\(907\) −8709.19 −0.318836 −0.159418 0.987211i \(-0.550962\pi\)
−0.159418 + 0.987211i \(0.550962\pi\)
\(908\) 0 0
\(909\) −3537.60 −0.129081
\(910\) 0 0
\(911\) 30540.1 1.11069 0.555346 0.831620i \(-0.312586\pi\)
0.555346 + 0.831620i \(0.312586\pi\)
\(912\) 0 0
\(913\) 13931.9 0.505013
\(914\) 0 0
\(915\) 3456.85 0.124896
\(916\) 0 0
\(917\) −1121.89 −0.0404013
\(918\) 0 0
\(919\) 18480.0 0.663329 0.331665 0.943397i \(-0.392390\pi\)
0.331665 + 0.943397i \(0.392390\pi\)
\(920\) 0 0
\(921\) −100.744 −0.00360439
\(922\) 0 0
\(923\) −2352.30 −0.0838861
\(924\) 0 0
\(925\) −2395.35 −0.0851446
\(926\) 0 0
\(927\) 34361.3 1.21745
\(928\) 0 0
\(929\) −7677.61 −0.271146 −0.135573 0.990767i \(-0.543287\pi\)
−0.135573 + 0.990767i \(0.543287\pi\)
\(930\) 0 0
\(931\) −2750.01 −0.0968076
\(932\) 0 0
\(933\) 6557.57 0.230102
\(934\) 0 0
\(935\) −13338.2 −0.466531
\(936\) 0 0
\(937\) −25506.0 −0.889270 −0.444635 0.895712i \(-0.646667\pi\)
−0.444635 + 0.895712i \(0.646667\pi\)
\(938\) 0 0
\(939\) 9672.03 0.336139
\(940\) 0 0
\(941\) −40321.6 −1.39686 −0.698431 0.715677i \(-0.746118\pi\)
−0.698431 + 0.715677i \(0.746118\pi\)
\(942\) 0 0
\(943\) −24002.6 −0.828877
\(944\) 0 0
\(945\) −2171.01 −0.0747332
\(946\) 0 0
\(947\) 20348.5 0.698245 0.349122 0.937077i \(-0.386480\pi\)
0.349122 + 0.937077i \(0.386480\pi\)
\(948\) 0 0
\(949\) −30156.8 −1.03154
\(950\) 0 0
\(951\) −8775.49 −0.299227
\(952\) 0 0
\(953\) 8822.60 0.299887 0.149943 0.988695i \(-0.452091\pi\)
0.149943 + 0.988695i \(0.452091\pi\)
\(954\) 0 0
\(955\) −12361.0 −0.418840
\(956\) 0 0
\(957\) 18431.0 0.622559
\(958\) 0 0
\(959\) −6862.80 −0.231086
\(960\) 0 0
\(961\) 3018.21 0.101313
\(962\) 0 0
\(963\) 43440.6 1.45364
\(964\) 0 0
\(965\) 5897.91 0.196747
\(966\) 0 0
\(967\) −699.183 −0.0232515 −0.0116258 0.999932i \(-0.503701\pi\)
−0.0116258 + 0.999932i \(0.503701\pi\)
\(968\) 0 0
\(969\) 3390.26 0.112395
\(970\) 0 0
\(971\) −15428.0 −0.509895 −0.254948 0.966955i \(-0.582058\pi\)
−0.254948 + 0.966955i \(0.582058\pi\)
\(972\) 0 0
\(973\) 8845.73 0.291450
\(974\) 0 0
\(975\) −1881.37 −0.0617968
\(976\) 0 0
\(977\) −17840.7 −0.584210 −0.292105 0.956386i \(-0.594356\pi\)
−0.292105 + 0.956386i \(0.594356\pi\)
\(978\) 0 0
\(979\) 17532.2 0.572351
\(980\) 0 0
\(981\) 56466.2 1.83774
\(982\) 0 0
\(983\) −27934.9 −0.906393 −0.453197 0.891411i \(-0.649716\pi\)
−0.453197 + 0.891411i \(0.649716\pi\)
\(984\) 0 0
\(985\) −12188.8 −0.394282
\(986\) 0 0
\(987\) −199.023 −0.00641840
\(988\) 0 0
\(989\) −40299.9 −1.29572
\(990\) 0 0
\(991\) −8360.69 −0.267998 −0.133999 0.990981i \(-0.542782\pi\)
−0.133999 + 0.990981i \(0.542782\pi\)
\(992\) 0 0
\(993\) 8987.32 0.287215
\(994\) 0 0
\(995\) 18275.2 0.582275
\(996\) 0 0
\(997\) −40993.9 −1.30220 −0.651099 0.758993i \(-0.725692\pi\)
−0.651099 + 0.758993i \(0.725692\pi\)
\(998\) 0 0
\(999\) −5943.24 −0.188224
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2240.4.a.cn.1.3 5
4.3 odd 2 2240.4.a.co.1.3 5
8.3 odd 2 1120.4.a.r.1.3 5
8.5 even 2 1120.4.a.s.1.3 yes 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1120.4.a.r.1.3 5 8.3 odd 2
1120.4.a.s.1.3 yes 5 8.5 even 2
2240.4.a.cn.1.3 5 1.1 even 1 trivial
2240.4.a.co.1.3 5 4.3 odd 2