Properties

Label 225.2.e.d.151.4
Level $225$
Weight $2$
Character 225.151
Analytic conductor $1.797$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [225,2,Mod(76,225)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(225, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("225.76");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 225 = 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 225.e (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.79663404548\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\zeta_{24})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: no (minimal twist has level 45)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 151.4
Root \(-0.965926 - 0.258819i\) of defining polynomial
Character \(\chi\) \(=\) 225.151
Dual form 225.2.e.d.76.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.965926 - 1.67303i) q^{2} +(0.448288 - 1.67303i) q^{3} +(-0.866025 - 1.50000i) q^{4} +(-2.36603 - 2.36603i) q^{6} +(0.448288 - 0.776457i) q^{7} +0.517638 q^{8} +(-2.59808 - 1.50000i) q^{9} +(-2.36603 + 4.09808i) q^{11} +(-2.89778 + 0.776457i) q^{12} +(1.22474 + 2.12132i) q^{13} +(-0.866025 - 1.50000i) q^{14} +(2.23205 - 3.86603i) q^{16} -0.378937 q^{17} +(-5.01910 + 2.89778i) q^{18} +2.73205 q^{19} +(-1.09808 - 1.09808i) q^{21} +(4.57081 + 7.91688i) q^{22} +(-0.965926 - 1.67303i) q^{23} +(0.232051 - 0.866025i) q^{24} +4.73205 q^{26} +(-3.67423 + 3.67423i) q^{27} -1.55291 q^{28} +(-3.23205 + 5.59808i) q^{29} +(1.36603 + 2.36603i) q^{31} +(-3.79435 - 6.57201i) q^{32} +(5.79555 + 5.79555i) q^{33} +(-0.366025 + 0.633975i) q^{34} +5.19615i q^{36} +4.24264 q^{37} +(2.63896 - 4.57081i) q^{38} +(4.09808 - 1.09808i) q^{39} +(-2.13397 - 3.69615i) q^{41} +(-2.89778 + 0.776457i) q^{42} +(4.57081 - 7.91688i) q^{43} +8.19615 q^{44} -3.73205 q^{46} +(2.19067 - 3.79435i) q^{47} +(-5.46739 - 5.46739i) q^{48} +(3.09808 + 5.36603i) q^{49} +(-0.169873 + 0.633975i) q^{51} +(2.12132 - 3.67423i) q^{52} -3.86370 q^{53} +(2.59808 + 9.69615i) q^{54} +(0.232051 - 0.401924i) q^{56} +(1.22474 - 4.57081i) q^{57} +(6.24384 + 10.8147i) q^{58} +(-1.26795 - 2.19615i) q^{59} +(-5.33013 + 9.23205i) q^{61} +5.27792 q^{62} +(-2.32937 + 1.34486i) q^{63} -5.73205 q^{64} +(15.2942 - 4.09808i) q^{66} +(-2.56961 - 4.45069i) q^{67} +(0.328169 + 0.568406i) q^{68} +(-3.23205 + 0.866025i) q^{69} +3.80385 q^{71} +(-1.34486 - 0.776457i) q^{72} -8.48528 q^{73} +(4.09808 - 7.09808i) q^{74} +(-2.36603 - 4.09808i) q^{76} +(2.12132 + 3.67423i) q^{77} +(2.12132 - 7.91688i) q^{78} +(-0.267949 + 0.464102i) q^{79} +(4.50000 + 7.79423i) q^{81} -8.24504 q^{82} +(-5.20857 + 9.02150i) q^{83} +(-0.696152 + 2.59808i) q^{84} +(-8.83013 - 15.2942i) q^{86} +(7.91688 + 7.91688i) q^{87} +(-1.22474 + 2.12132i) q^{88} -7.39230 q^{89} +2.19615 q^{91} +(-1.67303 + 2.89778i) q^{92} +(4.57081 - 1.22474i) q^{93} +(-4.23205 - 7.33013i) q^{94} +(-12.6962 + 3.40192i) q^{96} +(-5.13922 + 8.90138i) q^{97} +11.9700 q^{98} +(12.2942 - 7.09808i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 12 q^{6} - 12 q^{11} + 4 q^{16} + 8 q^{19} + 12 q^{21} - 12 q^{24} + 24 q^{26} - 12 q^{29} + 4 q^{31} + 4 q^{34} + 12 q^{39} - 24 q^{41} + 24 q^{44} - 16 q^{46} + 4 q^{49} - 36 q^{51} - 12 q^{56}+ \cdots + 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/225\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.965926 1.67303i 0.683013 1.18301i −0.291044 0.956710i \(-0.594003\pi\)
0.974057 0.226303i \(-0.0726640\pi\)
\(3\) 0.448288 1.67303i 0.258819 0.965926i
\(4\) −0.866025 1.50000i −0.433013 0.750000i
\(5\) 0 0
\(6\) −2.36603 2.36603i −0.965926 0.965926i
\(7\) 0.448288 0.776457i 0.169437 0.293473i −0.768785 0.639507i \(-0.779138\pi\)
0.938222 + 0.346034i \(0.112472\pi\)
\(8\) 0.517638 0.183013
\(9\) −2.59808 1.50000i −0.866025 0.500000i
\(10\) 0 0
\(11\) −2.36603 + 4.09808i −0.713384 + 1.23562i 0.250196 + 0.968195i \(0.419505\pi\)
−0.963580 + 0.267421i \(0.913828\pi\)
\(12\) −2.89778 + 0.776457i −0.836516 + 0.224144i
\(13\) 1.22474 + 2.12132i 0.339683 + 0.588348i 0.984373 0.176096i \(-0.0563468\pi\)
−0.644690 + 0.764444i \(0.723014\pi\)
\(14\) −0.866025 1.50000i −0.231455 0.400892i
\(15\) 0 0
\(16\) 2.23205 3.86603i 0.558013 0.966506i
\(17\) −0.378937 −0.0919058 −0.0459529 0.998944i \(-0.514632\pi\)
−0.0459529 + 0.998944i \(0.514632\pi\)
\(18\) −5.01910 + 2.89778i −1.18301 + 0.683013i
\(19\) 2.73205 0.626775 0.313388 0.949625i \(-0.398536\pi\)
0.313388 + 0.949625i \(0.398536\pi\)
\(20\) 0 0
\(21\) −1.09808 1.09808i −0.239620 0.239620i
\(22\) 4.57081 + 7.91688i 0.974500 + 1.68788i
\(23\) −0.965926 1.67303i −0.201409 0.348851i 0.747573 0.664179i \(-0.231219\pi\)
−0.948983 + 0.315328i \(0.897886\pi\)
\(24\) 0.232051 0.866025i 0.0473672 0.176777i
\(25\) 0 0
\(26\) 4.73205 0.928032
\(27\) −3.67423 + 3.67423i −0.707107 + 0.707107i
\(28\) −1.55291 −0.293473
\(29\) −3.23205 + 5.59808i −0.600177 + 1.03954i 0.392617 + 0.919702i \(0.371570\pi\)
−0.992794 + 0.119835i \(0.961764\pi\)
\(30\) 0 0
\(31\) 1.36603 + 2.36603i 0.245345 + 0.424951i 0.962229 0.272243i \(-0.0877653\pi\)
−0.716883 + 0.697193i \(0.754432\pi\)
\(32\) −3.79435 6.57201i −0.670753 1.16178i
\(33\) 5.79555 + 5.79555i 1.00888 + 1.00888i
\(34\) −0.366025 + 0.633975i −0.0627728 + 0.108726i
\(35\) 0 0
\(36\) 5.19615i 0.866025i
\(37\) 4.24264 0.697486 0.348743 0.937218i \(-0.386609\pi\)
0.348743 + 0.937218i \(0.386609\pi\)
\(38\) 2.63896 4.57081i 0.428096 0.741483i
\(39\) 4.09808 1.09808i 0.656217 0.175833i
\(40\) 0 0
\(41\) −2.13397 3.69615i −0.333271 0.577242i 0.649880 0.760037i \(-0.274819\pi\)
−0.983151 + 0.182795i \(0.941486\pi\)
\(42\) −2.89778 + 0.776457i −0.447137 + 0.119810i
\(43\) 4.57081 7.91688i 0.697042 1.20731i −0.272445 0.962171i \(-0.587832\pi\)
0.969487 0.245141i \(-0.0788342\pi\)
\(44\) 8.19615 1.23562
\(45\) 0 0
\(46\) −3.73205 −0.550261
\(47\) 2.19067 3.79435i 0.319542 0.553463i −0.660850 0.750518i \(-0.729804\pi\)
0.980393 + 0.197054i \(0.0631376\pi\)
\(48\) −5.46739 5.46739i −0.789149 0.789149i
\(49\) 3.09808 + 5.36603i 0.442582 + 0.766575i
\(50\) 0 0
\(51\) −0.169873 + 0.633975i −0.0237870 + 0.0887742i
\(52\) 2.12132 3.67423i 0.294174 0.509525i
\(53\) −3.86370 −0.530720 −0.265360 0.964149i \(-0.585491\pi\)
−0.265360 + 0.964149i \(0.585491\pi\)
\(54\) 2.59808 + 9.69615i 0.353553 + 1.31948i
\(55\) 0 0
\(56\) 0.232051 0.401924i 0.0310091 0.0537093i
\(57\) 1.22474 4.57081i 0.162221 0.605419i
\(58\) 6.24384 + 10.8147i 0.819857 + 1.42003i
\(59\) −1.26795 2.19615i −0.165073 0.285915i 0.771608 0.636098i \(-0.219453\pi\)
−0.936681 + 0.350183i \(0.886119\pi\)
\(60\) 0 0
\(61\) −5.33013 + 9.23205i −0.682453 + 1.18204i 0.291777 + 0.956486i \(0.405753\pi\)
−0.974230 + 0.225557i \(0.927580\pi\)
\(62\) 5.27792 0.670296
\(63\) −2.32937 + 1.34486i −0.293473 + 0.169437i
\(64\) −5.73205 −0.716506
\(65\) 0 0
\(66\) 15.2942 4.09808i 1.88259 0.504438i
\(67\) −2.56961 4.45069i −0.313928 0.543739i 0.665281 0.746593i \(-0.268312\pi\)
−0.979209 + 0.202854i \(0.934978\pi\)
\(68\) 0.328169 + 0.568406i 0.0397964 + 0.0689294i
\(69\) −3.23205 + 0.866025i −0.389093 + 0.104257i
\(70\) 0 0
\(71\) 3.80385 0.451434 0.225717 0.974193i \(-0.427528\pi\)
0.225717 + 0.974193i \(0.427528\pi\)
\(72\) −1.34486 0.776457i −0.158494 0.0915064i
\(73\) −8.48528 −0.993127 −0.496564 0.868000i \(-0.665405\pi\)
−0.496564 + 0.868000i \(0.665405\pi\)
\(74\) 4.09808 7.09808i 0.476392 0.825135i
\(75\) 0 0
\(76\) −2.36603 4.09808i −0.271402 0.470082i
\(77\) 2.12132 + 3.67423i 0.241747 + 0.418718i
\(78\) 2.12132 7.91688i 0.240192 0.896410i
\(79\) −0.267949 + 0.464102i −0.0301466 + 0.0522155i −0.880705 0.473665i \(-0.842931\pi\)
0.850558 + 0.525880i \(0.176264\pi\)
\(80\) 0 0
\(81\) 4.50000 + 7.79423i 0.500000 + 0.866025i
\(82\) −8.24504 −0.910513
\(83\) −5.20857 + 9.02150i −0.571714 + 0.990238i 0.424676 + 0.905346i \(0.360388\pi\)
−0.996390 + 0.0848929i \(0.972945\pi\)
\(84\) −0.696152 + 2.59808i −0.0759565 + 0.283473i
\(85\) 0 0
\(86\) −8.83013 15.2942i −0.952177 1.64922i
\(87\) 7.91688 + 7.91688i 0.848778 + 0.848778i
\(88\) −1.22474 + 2.12132i −0.130558 + 0.226134i
\(89\) −7.39230 −0.783583 −0.391791 0.920054i \(-0.628144\pi\)
−0.391791 + 0.920054i \(0.628144\pi\)
\(90\) 0 0
\(91\) 2.19615 0.230219
\(92\) −1.67303 + 2.89778i −0.174426 + 0.302114i
\(93\) 4.57081 1.22474i 0.473971 0.127000i
\(94\) −4.23205 7.33013i −0.436503 0.756045i
\(95\) 0 0
\(96\) −12.6962 + 3.40192i −1.29580 + 0.347207i
\(97\) −5.13922 + 8.90138i −0.521808 + 0.903799i 0.477870 + 0.878431i \(0.341409\pi\)
−0.999678 + 0.0253679i \(0.991924\pi\)
\(98\) 11.9700 1.20916
\(99\) 12.2942 7.09808i 1.23562 0.713384i
\(100\) 0 0
\(101\) −1.26795 + 2.19615i −0.126166 + 0.218525i −0.922188 0.386742i \(-0.873600\pi\)
0.796022 + 0.605267i \(0.206934\pi\)
\(102\) 0.896575 + 0.896575i 0.0887742 + 0.0887742i
\(103\) −4.57081 7.91688i −0.450375 0.780073i 0.548034 0.836456i \(-0.315376\pi\)
−0.998409 + 0.0563832i \(0.982043\pi\)
\(104\) 0.633975 + 1.09808i 0.0621663 + 0.107675i
\(105\) 0 0
\(106\) −3.73205 + 6.46410i −0.362489 + 0.627849i
\(107\) −11.7298 −1.13396 −0.566982 0.823730i \(-0.691889\pi\)
−0.566982 + 0.823730i \(0.691889\pi\)
\(108\) 8.69333 + 2.32937i 0.836516 + 0.224144i
\(109\) −4.66025 −0.446371 −0.223186 0.974776i \(-0.571646\pi\)
−0.223186 + 0.974776i \(0.571646\pi\)
\(110\) 0 0
\(111\) 1.90192 7.09808i 0.180523 0.673720i
\(112\) −2.00120 3.46618i −0.189096 0.327524i
\(113\) 1.27551 + 2.20925i 0.119990 + 0.207829i 0.919764 0.392473i \(-0.128380\pi\)
−0.799773 + 0.600302i \(0.795047\pi\)
\(114\) −6.46410 6.46410i −0.605419 0.605419i
\(115\) 0 0
\(116\) 11.1962 1.03954
\(117\) 7.34847i 0.679366i
\(118\) −4.89898 −0.450988
\(119\) −0.169873 + 0.294229i −0.0155722 + 0.0269719i
\(120\) 0 0
\(121\) −5.69615 9.86603i −0.517832 0.896911i
\(122\) 10.2970 + 17.8350i 0.932248 + 1.61470i
\(123\) −7.14042 + 1.91327i −0.643830 + 0.172514i
\(124\) 2.36603 4.09808i 0.212475 0.368018i
\(125\) 0 0
\(126\) 5.19615i 0.462910i
\(127\) 4.65874 0.413397 0.206698 0.978405i \(-0.433728\pi\)
0.206698 + 0.978405i \(0.433728\pi\)
\(128\) 2.05197 3.55412i 0.181370 0.314142i
\(129\) −11.1962 11.1962i −0.985766 0.985766i
\(130\) 0 0
\(131\) 0.464102 + 0.803848i 0.0405487 + 0.0702325i 0.885588 0.464473i \(-0.153756\pi\)
−0.845039 + 0.534705i \(0.820423\pi\)
\(132\) 3.67423 13.7124i 0.319801 1.19351i
\(133\) 1.22474 2.12132i 0.106199 0.183942i
\(134\) −9.92820 −0.857666
\(135\) 0 0
\(136\) −0.196152 −0.0168199
\(137\) −9.28032 + 16.0740i −0.792871 + 1.37329i 0.131311 + 0.991341i \(0.458081\pi\)
−0.924182 + 0.381952i \(0.875252\pi\)
\(138\) −1.67303 + 6.24384i −0.142418 + 0.531511i
\(139\) 4.00000 + 6.92820i 0.339276 + 0.587643i 0.984297 0.176522i \(-0.0564848\pi\)
−0.645021 + 0.764165i \(0.723151\pi\)
\(140\) 0 0
\(141\) −5.36603 5.36603i −0.451901 0.451901i
\(142\) 3.67423 6.36396i 0.308335 0.534052i
\(143\) −11.5911 −0.969297
\(144\) −11.5981 + 6.69615i −0.966506 + 0.558013i
\(145\) 0 0
\(146\) −8.19615 + 14.1962i −0.678318 + 1.17488i
\(147\) 10.3664 2.77766i 0.855003 0.229097i
\(148\) −3.67423 6.36396i −0.302020 0.523114i
\(149\) −3.86603 6.69615i −0.316717 0.548570i 0.663084 0.748545i \(-0.269247\pi\)
−0.979801 + 0.199975i \(0.935914\pi\)
\(150\) 0 0
\(151\) 11.2942 19.5622i 0.919111 1.59195i 0.118343 0.992973i \(-0.462242\pi\)
0.800768 0.598975i \(-0.204425\pi\)
\(152\) 1.41421 0.114708
\(153\) 0.984508 + 0.568406i 0.0795928 + 0.0459529i
\(154\) 8.19615 0.660465
\(155\) 0 0
\(156\) −5.19615 5.19615i −0.416025 0.416025i
\(157\) −10.6945 18.5235i −0.853517 1.47833i −0.878014 0.478635i \(-0.841132\pi\)
0.0244975 0.999700i \(-0.492201\pi\)
\(158\) 0.517638 + 0.896575i 0.0411811 + 0.0713277i
\(159\) −1.73205 + 6.46410i −0.137361 + 0.512637i
\(160\) 0 0
\(161\) −1.73205 −0.136505
\(162\) 17.3867 1.36603
\(163\) 18.9396 1.48346 0.741731 0.670697i \(-0.234005\pi\)
0.741731 + 0.670697i \(0.234005\pi\)
\(164\) −3.69615 + 6.40192i −0.288621 + 0.499906i
\(165\) 0 0
\(166\) 10.0622 + 17.4282i 0.780976 + 1.35269i
\(167\) −8.50386 14.7291i −0.658049 1.13977i −0.981120 0.193399i \(-0.938049\pi\)
0.323071 0.946375i \(-0.395285\pi\)
\(168\) −0.568406 0.568406i −0.0438535 0.0438535i
\(169\) 3.50000 6.06218i 0.269231 0.466321i
\(170\) 0 0
\(171\) −7.09808 4.09808i −0.542803 0.313388i
\(172\) −15.8338 −1.20731
\(173\) 0.378937 0.656339i 0.0288101 0.0499005i −0.851261 0.524743i \(-0.824162\pi\)
0.880071 + 0.474842i \(0.157495\pi\)
\(174\) 20.8923 5.59808i 1.58384 0.424389i
\(175\) 0 0
\(176\) 10.5622 + 18.2942i 0.796154 + 1.37898i
\(177\) −4.24264 + 1.13681i −0.318896 + 0.0854480i
\(178\) −7.14042 + 12.3676i −0.535197 + 0.926988i
\(179\) 24.5885 1.83783 0.918914 0.394458i \(-0.129068\pi\)
0.918914 + 0.394458i \(0.129068\pi\)
\(180\) 0 0
\(181\) 8.46410 0.629132 0.314566 0.949236i \(-0.398141\pi\)
0.314566 + 0.949236i \(0.398141\pi\)
\(182\) 2.12132 3.67423i 0.157243 0.272352i
\(183\) 13.0561 + 13.0561i 0.965134 + 0.965134i
\(184\) −0.500000 0.866025i −0.0368605 0.0638442i
\(185\) 0 0
\(186\) 2.36603 8.83013i 0.173485 0.647456i
\(187\) 0.896575 1.55291i 0.0655641 0.113560i
\(188\) −7.58871 −0.553463
\(189\) 1.20577 + 4.50000i 0.0877070 + 0.327327i
\(190\) 0 0
\(191\) −0.169873 + 0.294229i −0.0122916 + 0.0212896i −0.872106 0.489317i \(-0.837246\pi\)
0.859814 + 0.510607i \(0.170579\pi\)
\(192\) −2.56961 + 9.58991i −0.185445 + 0.692092i
\(193\) −10.3664 17.9551i −0.746187 1.29243i −0.949638 0.313349i \(-0.898549\pi\)
0.203451 0.979085i \(-0.434784\pi\)
\(194\) 9.92820 + 17.1962i 0.712803 + 1.23461i
\(195\) 0 0
\(196\) 5.36603 9.29423i 0.383288 0.663873i
\(197\) 20.8343 1.48438 0.742190 0.670190i \(-0.233787\pi\)
0.742190 + 0.670190i \(0.233787\pi\)
\(198\) 27.4249i 1.94900i
\(199\) 4.58846 0.325267 0.162634 0.986687i \(-0.448001\pi\)
0.162634 + 0.986687i \(0.448001\pi\)
\(200\) 0 0
\(201\) −8.59808 + 2.30385i −0.606462 + 0.162501i
\(202\) 2.44949 + 4.24264i 0.172345 + 0.298511i
\(203\) 2.89778 + 5.01910i 0.203384 + 0.352272i
\(204\) 1.09808 0.294229i 0.0768807 0.0206001i
\(205\) 0 0
\(206\) −17.6603 −1.23045
\(207\) 5.79555i 0.402819i
\(208\) 10.9348 0.758190
\(209\) −6.46410 + 11.1962i −0.447131 + 0.774454i
\(210\) 0 0
\(211\) 6.56218 + 11.3660i 0.451759 + 0.782469i 0.998495 0.0548353i \(-0.0174634\pi\)
−0.546736 + 0.837305i \(0.684130\pi\)
\(212\) 3.34607 + 5.79555i 0.229809 + 0.398040i
\(213\) 1.70522 6.36396i 0.116840 0.436051i
\(214\) −11.3301 + 19.6244i −0.774512 + 1.34149i
\(215\) 0 0
\(216\) −1.90192 + 1.90192i −0.129410 + 0.129410i
\(217\) 2.44949 0.166282
\(218\) −4.50146 + 7.79676i −0.304877 + 0.528063i
\(219\) −3.80385 + 14.1962i −0.257040 + 0.959287i
\(220\) 0 0
\(221\) −0.464102 0.803848i −0.0312189 0.0540726i
\(222\) −10.0382 10.0382i −0.673720 0.673720i
\(223\) −8.36516 + 14.4889i −0.560173 + 0.970248i 0.437308 + 0.899312i \(0.355932\pi\)
−0.997481 + 0.0709359i \(0.977401\pi\)
\(224\) −6.80385 −0.454601
\(225\) 0 0
\(226\) 4.92820 0.327819
\(227\) −0.947343 + 1.64085i −0.0628774 + 0.108907i −0.895750 0.444557i \(-0.853361\pi\)
0.832873 + 0.553464i \(0.186694\pi\)
\(228\) −7.91688 + 2.12132i −0.524308 + 0.140488i
\(229\) −9.96410 17.2583i −0.658446 1.14046i −0.981018 0.193917i \(-0.937881\pi\)
0.322571 0.946545i \(-0.395453\pi\)
\(230\) 0 0
\(231\) 7.09808 1.90192i 0.467019 0.125137i
\(232\) −1.67303 + 2.89778i −0.109840 + 0.190248i
\(233\) 7.07107 0.463241 0.231621 0.972806i \(-0.425597\pi\)
0.231621 + 0.972806i \(0.425597\pi\)
\(234\) −12.2942 7.09808i −0.803699 0.464016i
\(235\) 0 0
\(236\) −2.19615 + 3.80385i −0.142957 + 0.247609i
\(237\) 0.656339 + 0.656339i 0.0426338 + 0.0426338i
\(238\) 0.328169 + 0.568406i 0.0212721 + 0.0368443i
\(239\) −6.46410 11.1962i −0.418128 0.724219i 0.577623 0.816304i \(-0.303980\pi\)
−0.995751 + 0.0920846i \(0.970647\pi\)
\(240\) 0 0
\(241\) −3.13397 + 5.42820i −0.201877 + 0.349661i −0.949133 0.314875i \(-0.898037\pi\)
0.747256 + 0.664536i \(0.231371\pi\)
\(242\) −22.0082 −1.41474
\(243\) 15.0573 4.03459i 0.965926 0.258819i
\(244\) 18.4641 1.18204
\(245\) 0 0
\(246\) −3.69615 + 13.7942i −0.235658 + 0.879488i
\(247\) 3.34607 + 5.79555i 0.212905 + 0.368762i
\(248\) 0.707107 + 1.22474i 0.0449013 + 0.0777714i
\(249\) 12.7583 + 12.7583i 0.808526 + 0.808526i
\(250\) 0 0
\(251\) 18.5885 1.17329 0.586647 0.809843i \(-0.300448\pi\)
0.586647 + 0.809843i \(0.300448\pi\)
\(252\) 4.03459 + 2.32937i 0.254155 + 0.146737i
\(253\) 9.14162 0.574729
\(254\) 4.50000 7.79423i 0.282355 0.489053i
\(255\) 0 0
\(256\) −9.69615 16.7942i −0.606010 1.04964i
\(257\) 11.2122 + 19.4201i 0.699396 + 1.21139i 0.968676 + 0.248328i \(0.0798810\pi\)
−0.269280 + 0.963062i \(0.586786\pi\)
\(258\) −29.5462 + 7.91688i −1.83946 + 0.492883i
\(259\) 1.90192 3.29423i 0.118180 0.204693i
\(260\) 0 0
\(261\) 16.7942 9.69615i 1.03954 0.600177i
\(262\) 1.79315 0.110781
\(263\) 3.81294 6.60420i 0.235116 0.407232i −0.724191 0.689600i \(-0.757786\pi\)
0.959306 + 0.282368i \(0.0911198\pi\)
\(264\) 3.00000 + 3.00000i 0.184637 + 0.184637i
\(265\) 0 0
\(266\) −2.36603 4.09808i −0.145070 0.251269i
\(267\) −3.31388 + 12.3676i −0.202806 + 0.756883i
\(268\) −4.45069 + 7.70882i −0.271869 + 0.470891i
\(269\) 17.1962 1.04847 0.524234 0.851574i \(-0.324352\pi\)
0.524234 + 0.851574i \(0.324352\pi\)
\(270\) 0 0
\(271\) −23.5167 −1.42854 −0.714268 0.699873i \(-0.753240\pi\)
−0.714268 + 0.699873i \(0.753240\pi\)
\(272\) −0.845807 + 1.46498i −0.0512846 + 0.0888276i
\(273\) 0.984508 3.67423i 0.0595851 0.222375i
\(274\) 17.9282 + 31.0526i 1.08308 + 1.87595i
\(275\) 0 0
\(276\) 4.09808 + 4.09808i 0.246675 + 0.246675i
\(277\) −6.12372 + 10.6066i −0.367939 + 0.637289i −0.989243 0.146281i \(-0.953270\pi\)
0.621304 + 0.783569i \(0.286603\pi\)
\(278\) 15.4548 0.926918
\(279\) 8.19615i 0.490691i
\(280\) 0 0
\(281\) 8.13397 14.0885i 0.485232 0.840447i −0.514624 0.857416i \(-0.672068\pi\)
0.999856 + 0.0169692i \(0.00540173\pi\)
\(282\) −14.1607 + 3.79435i −0.843258 + 0.225950i
\(283\) −2.24144 3.88229i −0.133240 0.230778i 0.791684 0.610931i \(-0.209205\pi\)
−0.924924 + 0.380153i \(0.875871\pi\)
\(284\) −3.29423 5.70577i −0.195477 0.338575i
\(285\) 0 0
\(286\) −11.1962 + 19.3923i −0.662042 + 1.14669i
\(287\) −3.82654 −0.225873
\(288\) 22.7661i 1.34151i
\(289\) −16.8564 −0.991553
\(290\) 0 0
\(291\) 12.5885 + 12.5885i 0.737948 + 0.737948i
\(292\) 7.34847 + 12.7279i 0.430037 + 0.744845i
\(293\) −4.43211 7.67664i −0.258927 0.448474i 0.707028 0.707186i \(-0.250035\pi\)
−0.965955 + 0.258711i \(0.916702\pi\)
\(294\) 5.36603 20.0263i 0.312953 1.16796i
\(295\) 0 0
\(296\) 2.19615 0.127649
\(297\) −6.36396 23.7506i −0.369274 1.37815i
\(298\) −14.9372 −0.865287
\(299\) 2.36603 4.09808i 0.136831 0.236998i
\(300\) 0 0
\(301\) −4.09808 7.09808i −0.236209 0.409126i
\(302\) −21.8188 37.7912i −1.25553 2.17464i
\(303\) 3.10583 + 3.10583i 0.178425 + 0.178425i
\(304\) 6.09808 10.5622i 0.349749 0.605782i
\(305\) 0 0
\(306\) 1.90192 1.09808i 0.108726 0.0627728i
\(307\) 25.8719 1.47659 0.738295 0.674478i \(-0.235631\pi\)
0.738295 + 0.674478i \(0.235631\pi\)
\(308\) 3.67423 6.36396i 0.209359 0.362620i
\(309\) −15.2942 + 4.09808i −0.870058 + 0.233131i
\(310\) 0 0
\(311\) −14.0263 24.2942i −0.795357 1.37760i −0.922612 0.385729i \(-0.873950\pi\)
0.127255 0.991870i \(-0.459383\pi\)
\(312\) 2.12132 0.568406i 0.120096 0.0321797i
\(313\) −2.77766 + 4.81105i −0.157003 + 0.271936i −0.933786 0.357831i \(-0.883516\pi\)
0.776784 + 0.629767i \(0.216850\pi\)
\(314\) −41.3205 −2.33185
\(315\) 0 0
\(316\) 0.928203 0.0522155
\(317\) 17.5761 30.4428i 0.987174 1.70984i 0.355328 0.934742i \(-0.384369\pi\)
0.631846 0.775094i \(-0.282297\pi\)
\(318\) 9.14162 + 9.14162i 0.512637 + 0.512637i
\(319\) −15.2942 26.4904i −0.856312 1.48318i
\(320\) 0 0
\(321\) −5.25833 + 19.6244i −0.293491 + 1.09532i
\(322\) −1.67303 + 2.89778i −0.0932345 + 0.161487i
\(323\) −1.03528 −0.0576043
\(324\) 7.79423 13.5000i 0.433013 0.750000i
\(325\) 0 0
\(326\) 18.2942 31.6865i 1.01322 1.75495i
\(327\) −2.08913 + 7.79676i −0.115529 + 0.431162i
\(328\) −1.10463 1.91327i −0.0609928 0.105643i
\(329\) −1.96410 3.40192i −0.108284 0.187554i
\(330\) 0 0
\(331\) −6.19615 + 10.7321i −0.340571 + 0.589887i −0.984539 0.175166i \(-0.943954\pi\)
0.643968 + 0.765053i \(0.277287\pi\)
\(332\) 18.0430 0.990238
\(333\) −11.0227 6.36396i −0.604040 0.348743i
\(334\) −32.8564 −1.79782
\(335\) 0 0
\(336\) −6.69615 + 1.79423i −0.365305 + 0.0978832i
\(337\) 0.896575 + 1.55291i 0.0488396 + 0.0845926i 0.889412 0.457107i \(-0.151114\pi\)
−0.840572 + 0.541700i \(0.817781\pi\)
\(338\) −6.76148 11.7112i −0.367776 0.637007i
\(339\) 4.26795 1.14359i 0.231803 0.0621115i
\(340\) 0 0
\(341\) −12.9282 −0.700101
\(342\) −13.7124 + 7.91688i −0.741483 + 0.428096i
\(343\) 11.8313 0.638833
\(344\) 2.36603 4.09808i 0.127568 0.220953i
\(345\) 0 0
\(346\) −0.732051 1.26795i −0.0393553 0.0681654i
\(347\) −4.94975 8.57321i −0.265716 0.460234i 0.702035 0.712143i \(-0.252275\pi\)
−0.967751 + 0.251909i \(0.918942\pi\)
\(348\) 5.01910 18.7315i 0.269052 1.00412i
\(349\) −10.7679 + 18.6506i −0.576395 + 0.998346i 0.419493 + 0.907758i \(0.362208\pi\)
−0.995889 + 0.0905872i \(0.971126\pi\)
\(350\) 0 0
\(351\) −12.2942 3.29423i −0.656217 0.175833i
\(352\) 35.9101 1.91402
\(353\) −4.52004 + 7.82894i −0.240578 + 0.416693i −0.960879 0.276969i \(-0.910670\pi\)
0.720301 + 0.693661i \(0.244004\pi\)
\(354\) −2.19615 + 8.19615i −0.116724 + 0.435621i
\(355\) 0 0
\(356\) 6.40192 + 11.0885i 0.339301 + 0.587687i
\(357\) 0.416102 + 0.416102i 0.0220225 + 0.0220225i
\(358\) 23.7506 41.1373i 1.25526 2.17417i
\(359\) 9.80385 0.517427 0.258714 0.965954i \(-0.416701\pi\)
0.258714 + 0.965954i \(0.416701\pi\)
\(360\) 0 0
\(361\) −11.5359 −0.607153
\(362\) 8.17569 14.1607i 0.429705 0.744271i
\(363\) −19.0597 + 5.10703i −1.00037 + 0.268050i
\(364\) −1.90192 3.29423i −0.0996879 0.172664i
\(365\) 0 0
\(366\) 34.4545 9.23205i 1.80096 0.482567i
\(367\) 12.3998 21.4770i 0.647262 1.12109i −0.336512 0.941679i \(-0.609247\pi\)
0.983774 0.179411i \(-0.0574193\pi\)
\(368\) −8.62398 −0.449556
\(369\) 12.8038i 0.666542i
\(370\) 0 0
\(371\) −1.73205 + 3.00000i −0.0899236 + 0.155752i
\(372\) −5.79555 5.79555i −0.300486 0.300486i
\(373\) 16.0740 + 27.8410i 0.832280 + 1.44155i 0.896226 + 0.443597i \(0.146298\pi\)
−0.0639468 + 0.997953i \(0.520369\pi\)
\(374\) −1.73205 3.00000i −0.0895622 0.155126i
\(375\) 0 0
\(376\) 1.13397 1.96410i 0.0584803 0.101291i
\(377\) −15.8338 −0.815480
\(378\) 8.69333 + 2.32937i 0.447137 + 0.119810i
\(379\) 12.5359 0.643926 0.321963 0.946752i \(-0.395657\pi\)
0.321963 + 0.946752i \(0.395657\pi\)
\(380\) 0 0
\(381\) 2.08846 7.79423i 0.106995 0.399310i
\(382\) 0.328169 + 0.568406i 0.0167906 + 0.0290822i
\(383\) −10.2277 17.7148i −0.522609 0.905186i −0.999654 0.0263067i \(-0.991625\pi\)
0.477045 0.878879i \(-0.341708\pi\)
\(384\) −5.02628 5.02628i −0.256496 0.256496i
\(385\) 0 0
\(386\) −40.0526 −2.03862
\(387\) −23.7506 + 13.7124i −1.20731 + 0.697042i
\(388\) 17.8028 0.903799
\(389\) 12.0622 20.8923i 0.611577 1.05928i −0.379398 0.925234i \(-0.623869\pi\)
0.990975 0.134048i \(-0.0427978\pi\)
\(390\) 0 0
\(391\) 0.366025 + 0.633975i 0.0185107 + 0.0320615i
\(392\) 1.60368 + 2.77766i 0.0809982 + 0.140293i
\(393\) 1.55291 0.416102i 0.0783342 0.0209896i
\(394\) 20.1244 34.8564i 1.01385 1.75604i
\(395\) 0 0
\(396\) −21.2942 12.2942i −1.07008 0.617808i
\(397\) −29.3939 −1.47524 −0.737618 0.675218i \(-0.764050\pi\)
−0.737618 + 0.675218i \(0.764050\pi\)
\(398\) 4.43211 7.67664i 0.222162 0.384795i
\(399\) −3.00000 3.00000i −0.150188 0.150188i
\(400\) 0 0
\(401\) 15.4641 + 26.7846i 0.772240 + 1.33756i 0.936333 + 0.351115i \(0.114197\pi\)
−0.164092 + 0.986445i \(0.552469\pi\)
\(402\) −4.45069 + 16.6102i −0.221980 + 0.828442i
\(403\) −3.34607 + 5.79555i −0.166679 + 0.288697i
\(404\) 4.39230 0.218525
\(405\) 0 0
\(406\) 11.1962 0.555656
\(407\) −10.0382 + 17.3867i −0.497575 + 0.861825i
\(408\) −0.0879327 + 0.328169i −0.00435332 + 0.0162468i
\(409\) 11.7321 + 20.3205i 0.580113 + 1.00478i 0.995465 + 0.0951241i \(0.0303248\pi\)
−0.415353 + 0.909660i \(0.636342\pi\)
\(410\) 0 0
\(411\) 22.7321 + 22.7321i 1.12129 + 1.12129i
\(412\) −7.91688 + 13.7124i −0.390036 + 0.675563i
\(413\) −2.27362 −0.111878
\(414\) 9.69615 + 5.59808i 0.476540 + 0.275130i
\(415\) 0 0
\(416\) 9.29423 16.0981i 0.455687 0.789273i
\(417\) 13.3843 3.58630i 0.655430 0.175622i
\(418\) 12.4877 + 21.6293i 0.610793 + 1.05792i
\(419\) 8.02628 + 13.9019i 0.392109 + 0.679153i 0.992728 0.120383i \(-0.0384121\pi\)
−0.600618 + 0.799536i \(0.705079\pi\)
\(420\) 0 0
\(421\) 6.26795 10.8564i 0.305481 0.529109i −0.671887 0.740653i \(-0.734516\pi\)
0.977368 + 0.211545i \(0.0678494\pi\)
\(422\) 25.3543 1.23423
\(423\) −11.3831 + 6.57201i −0.553463 + 0.319542i
\(424\) −2.00000 −0.0971286
\(425\) 0 0
\(426\) −9.00000 9.00000i −0.436051 0.436051i
\(427\) 4.77886 + 8.27723i 0.231265 + 0.400563i
\(428\) 10.1583 + 17.5947i 0.491021 + 0.850473i
\(429\) −5.19615 + 19.3923i −0.250873 + 0.936269i
\(430\) 0 0
\(431\) −6.00000 −0.289010 −0.144505 0.989504i \(-0.546159\pi\)
−0.144505 + 0.989504i \(0.546159\pi\)
\(432\) 6.00361 + 22.4058i 0.288849 + 1.07800i
\(433\) −30.5307 −1.46721 −0.733606 0.679575i \(-0.762164\pi\)
−0.733606 + 0.679575i \(0.762164\pi\)
\(434\) 2.36603 4.09808i 0.113573 0.196714i
\(435\) 0 0
\(436\) 4.03590 + 6.99038i 0.193284 + 0.334779i
\(437\) −2.63896 4.57081i −0.126239 0.218651i
\(438\) 20.0764 + 20.0764i 0.959287 + 0.959287i
\(439\) −4.66025 + 8.07180i −0.222422 + 0.385246i −0.955543 0.294852i \(-0.904730\pi\)
0.733121 + 0.680098i \(0.238063\pi\)
\(440\) 0 0
\(441\) 18.5885i 0.885165i
\(442\) −1.79315 −0.0852915
\(443\) 6.95095 12.0394i 0.330250 0.572009i −0.652311 0.757951i \(-0.726200\pi\)
0.982561 + 0.185942i \(0.0595338\pi\)
\(444\) −12.2942 + 3.29423i −0.583458 + 0.156337i
\(445\) 0 0
\(446\) 16.1603 + 27.9904i 0.765210 + 1.32538i
\(447\) −12.9360 + 3.46618i −0.611851 + 0.163945i
\(448\) −2.56961 + 4.45069i −0.121403 + 0.210275i
\(449\) −12.0000 −0.566315 −0.283158 0.959073i \(-0.591382\pi\)
−0.283158 + 0.959073i \(0.591382\pi\)
\(450\) 0 0
\(451\) 20.1962 0.951000
\(452\) 2.20925 3.82654i 0.103915 0.179985i
\(453\) −27.6651 27.6651i −1.29982 1.29982i
\(454\) 1.83013 + 3.16987i 0.0858921 + 0.148770i
\(455\) 0 0
\(456\) 0.633975 2.36603i 0.0296886 0.110799i
\(457\) −17.2987 + 29.9623i −0.809201 + 1.40158i 0.104218 + 0.994554i \(0.466766\pi\)
−0.913418 + 0.407022i \(0.866567\pi\)
\(458\) −38.4983 −1.79891
\(459\) 1.39230 1.39230i 0.0649872 0.0649872i
\(460\) 0 0
\(461\) −9.35641 + 16.2058i −0.435771 + 0.754778i −0.997358 0.0726397i \(-0.976858\pi\)
0.561587 + 0.827418i \(0.310191\pi\)
\(462\) 3.67423 13.7124i 0.170941 0.637960i
\(463\) 0.0879327 + 0.152304i 0.00408658 + 0.00707816i 0.868061 0.496457i \(-0.165366\pi\)
−0.863975 + 0.503535i \(0.832033\pi\)
\(464\) 14.4282 + 24.9904i 0.669813 + 1.16015i
\(465\) 0 0
\(466\) 6.83013 11.8301i 0.316400 0.548020i
\(467\) −5.75839 −0.266467 −0.133233 0.991085i \(-0.542536\pi\)
−0.133233 + 0.991085i \(0.542536\pi\)
\(468\) −11.0227 + 6.36396i −0.509525 + 0.294174i
\(469\) −4.60770 −0.212764
\(470\) 0 0
\(471\) −35.7846 + 9.58846i −1.64887 + 0.441813i
\(472\) −0.656339 1.13681i −0.0302104 0.0523260i
\(473\) 21.6293 + 37.4631i 0.994517 + 1.72255i
\(474\) 1.73205 0.464102i 0.0795557 0.0213169i
\(475\) 0 0
\(476\) 0.588457 0.0269719
\(477\) 10.0382 + 5.79555i 0.459617 + 0.265360i
\(478\) −24.9754 −1.14235
\(479\) −15.9282 + 27.5885i −0.727778 + 1.26055i 0.230042 + 0.973181i \(0.426114\pi\)
−0.957820 + 0.287368i \(0.907220\pi\)
\(480\) 0 0
\(481\) 5.19615 + 9.00000i 0.236924 + 0.410365i
\(482\) 6.05437 + 10.4865i 0.275769 + 0.477646i
\(483\) −0.776457 + 2.89778i −0.0353300 + 0.131853i
\(484\) −9.86603 + 17.0885i −0.448456 + 0.776748i
\(485\) 0 0
\(486\) 7.79423 29.0885i 0.353553 1.31948i
\(487\) −1.13681 −0.0515139 −0.0257569 0.999668i \(-0.508200\pi\)
−0.0257569 + 0.999668i \(0.508200\pi\)
\(488\) −2.75908 + 4.77886i −0.124898 + 0.216329i
\(489\) 8.49038 31.6865i 0.383948 1.43291i
\(490\) 0 0
\(491\) 10.8564 + 18.8038i 0.489943 + 0.848606i 0.999933 0.0115744i \(-0.00368433\pi\)
−0.509990 + 0.860180i \(0.670351\pi\)
\(492\) 9.05369 + 9.05369i 0.408172 + 0.408172i
\(493\) 1.22474 2.12132i 0.0551597 0.0955395i
\(494\) 12.9282 0.581667
\(495\) 0 0
\(496\) 12.1962 0.547623
\(497\) 1.70522 2.95352i 0.0764895 0.132484i
\(498\) 33.6687 9.02150i 1.50873 0.404263i
\(499\) 1.92820 + 3.33975i 0.0863182 + 0.149508i 0.905952 0.423380i \(-0.139156\pi\)
−0.819634 + 0.572888i \(0.805823\pi\)
\(500\) 0 0
\(501\) −28.4545 + 7.62436i −1.27125 + 0.340631i
\(502\) 17.9551 31.0991i 0.801374 1.38802i
\(503\) 29.3567 1.30895 0.654476 0.756083i \(-0.272889\pi\)
0.654476 + 0.756083i \(0.272889\pi\)
\(504\) −1.20577 + 0.696152i −0.0537093 + 0.0310091i
\(505\) 0 0
\(506\) 8.83013 15.2942i 0.392547 0.679911i
\(507\) −8.57321 8.57321i −0.380750 0.380750i
\(508\) −4.03459 6.98811i −0.179006 0.310047i
\(509\) 5.42820 + 9.40192i 0.240601 + 0.416733i 0.960886 0.276946i \(-0.0893222\pi\)
−0.720285 + 0.693679i \(0.755989\pi\)
\(510\) 0 0
\(511\) −3.80385 + 6.58846i −0.168272 + 0.291456i
\(512\) −29.2552 −1.29291
\(513\) −10.0382 + 10.0382i −0.443197 + 0.443197i
\(514\) 43.3205 1.91079
\(515\) 0 0
\(516\) −7.09808 + 26.4904i −0.312475 + 1.16617i
\(517\) 10.3664 + 17.9551i 0.455912 + 0.789663i
\(518\) −3.67423 6.36396i −0.161437 0.279616i
\(519\) −0.928203 0.928203i −0.0407436 0.0407436i
\(520\) 0 0
\(521\) 1.39230 0.0609980 0.0304990 0.999535i \(-0.490290\pi\)
0.0304990 + 0.999535i \(0.490290\pi\)
\(522\) 37.4631i 1.63971i
\(523\) −30.9468 −1.35321 −0.676604 0.736347i \(-0.736549\pi\)
−0.676604 + 0.736347i \(0.736549\pi\)
\(524\) 0.803848 1.39230i 0.0351162 0.0608231i
\(525\) 0 0
\(526\) −7.36603 12.7583i −0.321174 0.556290i
\(527\) −0.517638 0.896575i −0.0225487 0.0390554i
\(528\) 35.3417 9.46979i 1.53805 0.412120i
\(529\) 9.63397 16.6865i 0.418868 0.725501i
\(530\) 0 0
\(531\) 7.60770i 0.330146i
\(532\) −4.24264 −0.183942
\(533\) 5.22715 9.05369i 0.226413 0.392159i
\(534\) 17.4904 + 17.4904i 0.756883 + 0.756883i
\(535\) 0 0
\(536\) −1.33013 2.30385i −0.0574527 0.0995111i
\(537\) 11.0227 41.1373i 0.475665 1.77521i
\(538\) 16.6102 28.7697i 0.716117 1.24035i
\(539\) −29.3205 −1.26292
\(540\) 0 0
\(541\) 21.3923 0.919727 0.459864 0.887990i \(-0.347898\pi\)
0.459864 + 0.887990i \(0.347898\pi\)
\(542\) −22.7153 + 39.3441i −0.975708 + 1.68998i
\(543\) 3.79435 14.1607i 0.162831 0.607695i
\(544\) 1.43782 + 2.49038i 0.0616461 + 0.106774i
\(545\) 0 0
\(546\) −5.19615 5.19615i −0.222375 0.222375i
\(547\) 15.1452 26.2323i 0.647563 1.12161i −0.336140 0.941812i \(-0.609122\pi\)
0.983703 0.179800i \(-0.0575451\pi\)
\(548\) 32.1480 1.37329
\(549\) 27.6962 15.9904i 1.18204 0.682453i
\(550\) 0 0
\(551\) −8.83013 + 15.2942i −0.376176 + 0.651556i
\(552\) −1.67303 + 0.448288i −0.0712090 + 0.0190804i
\(553\) 0.240237 + 0.416102i 0.0102159 + 0.0176945i
\(554\) 11.8301 + 20.4904i 0.502614 + 0.870553i
\(555\) 0 0
\(556\) 6.92820 12.0000i 0.293821 0.508913i
\(557\) 31.1127 1.31829 0.659144 0.752017i \(-0.270919\pi\)
0.659144 + 0.752017i \(0.270919\pi\)
\(558\) −13.7124 7.91688i −0.580493 0.335148i
\(559\) 22.3923 0.947094
\(560\) 0 0
\(561\) −2.19615 2.19615i −0.0927216 0.0927216i
\(562\) −15.7136 27.2168i −0.662840 1.14807i
\(563\) −13.7818 23.8707i −0.580833 1.00603i −0.995381 0.0960045i \(-0.969394\pi\)
0.414548 0.910027i \(-0.363940\pi\)
\(564\) −3.40192 + 12.6962i −0.143247 + 0.534604i
\(565\) 0 0
\(566\) −8.66025 −0.364018
\(567\) 8.06918 0.338874
\(568\) 1.96902 0.0826181
\(569\) 2.66025 4.60770i 0.111524 0.193165i −0.804861 0.593463i \(-0.797760\pi\)
0.916385 + 0.400299i \(0.131094\pi\)
\(570\) 0 0
\(571\) −2.73205 4.73205i −0.114333 0.198030i 0.803180 0.595736i \(-0.203140\pi\)
−0.917513 + 0.397706i \(0.869806\pi\)
\(572\) 10.0382 + 17.3867i 0.419718 + 0.726973i
\(573\) 0.416102 + 0.416102i 0.0173829 + 0.0173829i
\(574\) −3.69615 + 6.40192i −0.154274 + 0.267211i
\(575\) 0 0
\(576\) 14.8923 + 8.59808i 0.620513 + 0.358253i
\(577\) −28.5617 −1.18904 −0.594519 0.804082i \(-0.702657\pi\)
−0.594519 + 0.804082i \(0.702657\pi\)
\(578\) −16.2820 + 28.2013i −0.677244 + 1.17302i
\(579\) −34.6865 + 9.29423i −1.44152 + 0.386255i
\(580\) 0 0
\(581\) 4.66987 + 8.08846i 0.193739 + 0.335566i
\(582\) 33.2204 8.90138i 1.37703 0.368974i
\(583\) 9.14162 15.8338i 0.378607 0.655767i
\(584\) −4.39230 −0.181755
\(585\) 0 0
\(586\) −17.1244 −0.707401
\(587\) 11.0041 19.0597i 0.454189 0.786678i −0.544452 0.838792i \(-0.683263\pi\)
0.998641 + 0.0521138i \(0.0165959\pi\)
\(588\) −13.1440 13.1440i −0.542050 0.542050i
\(589\) 3.73205 + 6.46410i 0.153776 + 0.266349i
\(590\) 0 0
\(591\) 9.33975 34.8564i 0.384186 1.43380i
\(592\) 9.46979 16.4022i 0.389206 0.674124i
\(593\) 28.9406 1.18845 0.594224 0.804299i \(-0.297459\pi\)
0.594224 + 0.804299i \(0.297459\pi\)
\(594\) −45.8827 12.2942i −1.88259 0.504438i
\(595\) 0 0
\(596\) −6.69615 + 11.5981i −0.274285 + 0.475076i
\(597\) 2.05695 7.67664i 0.0841853 0.314184i
\(598\) −4.57081 7.91688i −0.186914 0.323745i
\(599\) −16.8564 29.1962i −0.688734 1.19292i −0.972248 0.233954i \(-0.924833\pi\)
0.283514 0.958968i \(-0.408500\pi\)
\(600\) 0 0
\(601\) 8.46410 14.6603i 0.345258 0.598004i −0.640143 0.768256i \(-0.721125\pi\)
0.985401 + 0.170252i \(0.0544581\pi\)
\(602\) −15.8338 −0.645335
\(603\) 15.4176i 0.627855i
\(604\) −39.1244 −1.59195
\(605\) 0 0
\(606\) 8.19615 2.19615i 0.332946 0.0892126i
\(607\) 4.36276 + 7.55652i 0.177079 + 0.306710i 0.940879 0.338743i \(-0.110002\pi\)
−0.763800 + 0.645453i \(0.776669\pi\)
\(608\) −10.3664 17.9551i −0.420412 0.728174i
\(609\) 9.69615 2.59808i 0.392908 0.105279i
\(610\) 0 0
\(611\) 10.7321 0.434172
\(612\) 1.96902i 0.0795928i
\(613\) 24.3190 0.982236 0.491118 0.871093i \(-0.336588\pi\)
0.491118 + 0.871093i \(0.336588\pi\)
\(614\) 24.9904 43.2846i 1.00853 1.74682i
\(615\) 0 0
\(616\) 1.09808 + 1.90192i 0.0442428 + 0.0766307i
\(617\) 6.55343 + 11.3509i 0.263831 + 0.456969i 0.967257 0.253800i \(-0.0816805\pi\)
−0.703426 + 0.710769i \(0.748347\pi\)
\(618\) −7.91688 + 29.5462i −0.318463 + 1.18852i
\(619\) −9.90192 + 17.1506i −0.397992 + 0.689342i −0.993478 0.114023i \(-0.963626\pi\)
0.595486 + 0.803366i \(0.296959\pi\)
\(620\) 0 0
\(621\) 9.69615 + 2.59808i 0.389093 + 0.104257i
\(622\) −54.1934 −2.17296
\(623\) −3.31388 + 5.73981i −0.132768 + 0.229961i
\(624\) 4.90192 18.2942i 0.196234 0.732355i
\(625\) 0 0
\(626\) 5.36603 + 9.29423i 0.214470 + 0.371472i
\(627\) 15.8338 + 15.8338i 0.632339 + 0.632339i
\(628\) −18.5235 + 32.0836i −0.739167 + 1.28028i
\(629\) −1.60770 −0.0641030
\(630\) 0 0
\(631\) −33.3205 −1.32647 −0.663234 0.748412i \(-0.730817\pi\)
−0.663234 + 0.748412i \(0.730817\pi\)
\(632\) −0.138701 + 0.240237i −0.00551722 + 0.00955610i
\(633\) 21.9575 5.88349i 0.872731 0.233848i
\(634\) −33.9545 58.8109i −1.34850 2.33568i
\(635\) 0 0
\(636\) 11.1962 3.00000i 0.443956 0.118958i
\(637\) −7.58871 + 13.1440i −0.300675 + 0.520785i
\(638\) −59.0924 −2.33949
\(639\) −9.88269 5.70577i −0.390953 0.225717i
\(640\) 0 0
\(641\) 12.5263 21.6962i 0.494758 0.856946i −0.505223 0.862989i \(-0.668590\pi\)
0.999982 + 0.00604207i \(0.00192326\pi\)
\(642\) 27.7530 + 27.7530i 1.09532 + 1.09532i
\(643\) 12.6078 + 21.8374i 0.497203 + 0.861181i 0.999995 0.00322641i \(-0.00102700\pi\)
−0.502792 + 0.864408i \(0.667694\pi\)
\(644\) 1.50000 + 2.59808i 0.0591083 + 0.102379i
\(645\) 0 0
\(646\) −1.00000 + 1.73205i −0.0393445 + 0.0681466i
\(647\) −12.3861 −0.486950 −0.243475 0.969907i \(-0.578287\pi\)
−0.243475 + 0.969907i \(0.578287\pi\)
\(648\) 2.32937 + 4.03459i 0.0915064 + 0.158494i
\(649\) 12.0000 0.471041
\(650\) 0 0
\(651\) 1.09808 4.09808i 0.0430370 0.160616i
\(652\) −16.4022 28.4094i −0.642358 1.11260i
\(653\) 0.226633 + 0.392541i 0.00886885 + 0.0153613i 0.870426 0.492300i \(-0.163844\pi\)
−0.861557 + 0.507661i \(0.830510\pi\)
\(654\) 11.0263 + 11.0263i 0.431162 + 0.431162i
\(655\) 0 0
\(656\) −19.0526 −0.743877
\(657\) 22.0454 + 12.7279i 0.860073 + 0.496564i
\(658\) −7.58871 −0.295839
\(659\) −18.1244 + 31.3923i −0.706025 + 1.22287i 0.260296 + 0.965529i \(0.416180\pi\)
−0.966320 + 0.257342i \(0.917153\pi\)
\(660\) 0 0
\(661\) 15.3923 + 26.6603i 0.598691 + 1.03696i 0.993015 + 0.117992i \(0.0376457\pi\)
−0.394323 + 0.918972i \(0.629021\pi\)
\(662\) 11.9700 + 20.7327i 0.465229 + 0.805800i
\(663\) −1.55291 + 0.416102i −0.0603102 + 0.0161601i
\(664\) −2.69615 + 4.66987i −0.104631 + 0.181226i
\(665\) 0 0
\(666\) −21.2942 + 12.2942i −0.825135 + 0.476392i
\(667\) 12.4877 0.483525
\(668\) −14.7291 + 25.5116i −0.569887 + 0.987073i
\(669\) 20.4904 + 20.4904i 0.792204 + 0.792204i
\(670\) 0 0
\(671\) −25.2224 43.6865i −0.973701 1.68650i
\(672\) −3.05008 + 11.3831i −0.117659 + 0.439111i
\(673\) −0.808643 + 1.40061i −0.0311709 + 0.0539896i −0.881190 0.472762i \(-0.843257\pi\)
0.850019 + 0.526752i \(0.176590\pi\)
\(674\) 3.46410 0.133432
\(675\) 0 0
\(676\) −12.1244 −0.466321
\(677\) −16.5409 + 28.6496i −0.635717 + 1.10109i 0.350646 + 0.936508i \(0.385962\pi\)
−0.986363 + 0.164586i \(0.947371\pi\)
\(678\) 2.20925 8.24504i 0.0848459 0.316649i
\(679\) 4.60770 + 7.98076i 0.176827 + 0.306274i
\(680\) 0 0
\(681\) 2.32051 + 2.32051i 0.0889221 + 0.0889221i
\(682\) −12.4877 + 21.6293i −0.478178 + 0.828229i
\(683\) −19.6975 −0.753702 −0.376851 0.926274i \(-0.622993\pi\)
−0.376851 + 0.926274i \(0.622993\pi\)
\(684\) 14.1962i 0.542803i
\(685\) 0 0
\(686\) 11.4282 19.7942i 0.436331 0.755747i
\(687\) −33.3405 + 8.93357i −1.27202 + 0.340837i
\(688\) −20.4046 35.3417i −0.777917 1.34739i
\(689\) −4.73205 8.19615i −0.180277 0.312249i
\(690\) 0 0
\(691\) −10.1244 + 17.5359i −0.385149 + 0.667097i −0.991790 0.127879i \(-0.959183\pi\)
0.606641 + 0.794976i \(0.292516\pi\)
\(692\) −1.31268 −0.0499005
\(693\) 12.7279i 0.483494i
\(694\) −19.1244 −0.725951
\(695\) 0 0
\(696\) 4.09808 + 4.09808i 0.155337 + 0.155337i
\(697\) 0.808643 + 1.40061i 0.0306295 + 0.0530519i
\(698\) 20.8021 + 36.0303i 0.787370 + 1.36377i
\(699\) 3.16987 11.8301i 0.119896 0.447456i
\(700\) 0 0
\(701\) −23.1962 −0.876107 −0.438053 0.898949i \(-0.644332\pi\)
−0.438053 + 0.898949i \(0.644332\pi\)
\(702\) −17.3867 + 17.3867i −0.656217 + 0.656217i
\(703\) 11.5911 0.437167
\(704\) 13.5622 23.4904i 0.511144 0.885327i
\(705\) 0 0
\(706\) 8.73205 + 15.1244i 0.328635 + 0.569213i
\(707\) 1.13681 + 1.96902i 0.0427542 + 0.0740525i
\(708\) 5.37945 + 5.37945i 0.202172 + 0.202172i
\(709\) 15.8923 27.5263i 0.596848 1.03377i −0.396435 0.918063i \(-0.629753\pi\)
0.993283 0.115708i \(-0.0369138\pi\)
\(710\) 0 0
\(711\) 1.39230 0.803848i 0.0522155 0.0301466i
\(712\) −3.82654 −0.143406
\(713\) 2.63896 4.57081i 0.0988298 0.171178i
\(714\) 1.09808 0.294229i 0.0410945 0.0110112i
\(715\) 0 0
\(716\) −21.2942 36.8827i −0.795803 1.37837i
\(717\) −21.6293 + 5.79555i −0.807761 + 0.216439i
\(718\) 9.46979 16.4022i 0.353409 0.612123i
\(719\) 19.6077 0.731244 0.365622 0.930763i \(-0.380856\pi\)
0.365622 + 0.930763i \(0.380856\pi\)
\(720\) 0 0
\(721\) −8.19615 −0.305241
\(722\) −11.1428 + 19.2999i −0.414693 + 0.718269i
\(723\) 7.67664 + 7.67664i 0.285497 + 0.285497i
\(724\) −7.33013 12.6962i −0.272422 0.471849i
\(725\) 0 0
\(726\) −9.86603 + 36.8205i −0.366163 + 1.36654i
\(727\) 14.1607 24.5271i 0.525192 0.909659i −0.474378 0.880321i \(-0.657327\pi\)
0.999570 0.0293377i \(-0.00933982\pi\)
\(728\) 1.13681 0.0421331
\(729\) 27.0000i 1.00000i
\(730\) 0 0
\(731\) −1.73205 + 3.00000i −0.0640622 + 0.110959i
\(732\) 8.27723 30.8910i 0.305935 1.14177i
\(733\) 20.7327 + 35.9101i 0.765781 + 1.32637i 0.939833 + 0.341635i \(0.110981\pi\)
−0.174052 + 0.984736i \(0.555686\pi\)
\(734\) −23.9545 41.4904i −0.884176 1.53144i
\(735\) 0 0
\(736\) −7.33013 + 12.6962i −0.270192 + 0.467986i
\(737\) 24.3190 0.895803
\(738\) 21.4213 + 12.3676i 0.788527 + 0.455256i
\(739\) −45.8564 −1.68686 −0.843428 0.537243i \(-0.819466\pi\)
−0.843428 + 0.537243i \(0.819466\pi\)
\(740\) 0 0
\(741\) 11.1962 3.00000i 0.411301 0.110208i
\(742\) 3.34607 + 5.79555i 0.122838 + 0.212762i
\(743\) 12.6586 + 21.9253i 0.464398 + 0.804361i 0.999174 0.0406329i \(-0.0129374\pi\)
−0.534776 + 0.844994i \(0.679604\pi\)
\(744\) 2.36603 0.633975i 0.0867427 0.0232426i
\(745\) 0 0
\(746\) 62.1051 2.27383
\(747\) 27.0645 15.6257i 0.990238 0.571714i
\(748\) −3.10583 −0.113560
\(749\) −5.25833 + 9.10770i −0.192135 + 0.332788i
\(750\) 0 0
\(751\) −17.2224 29.8301i −0.628455 1.08852i −0.987862 0.155336i \(-0.950354\pi\)
0.359406 0.933181i \(-0.382979\pi\)
\(752\) −9.77938 16.9384i −0.356617 0.617679i
\(753\) 8.33298 31.0991i 0.303671 1.13331i
\(754\) −15.2942 + 26.4904i −0.556983 + 0.964723i
\(755\) 0 0
\(756\) 5.70577 5.70577i 0.207517 0.207517i
\(757\) −7.34847 −0.267085 −0.133542 0.991043i \(-0.542635\pi\)
−0.133542 + 0.991043i \(0.542635\pi\)
\(758\) 12.1087 20.9730i 0.439810 0.761772i
\(759\) 4.09808 15.2942i 0.148751 0.555145i
\(760\) 0 0
\(761\) −1.03590 1.79423i −0.0375513 0.0650407i 0.846639 0.532168i \(-0.178622\pi\)
−0.884190 + 0.467127i \(0.845289\pi\)
\(762\) −11.0227 11.0227i −0.399310 0.399310i
\(763\) −2.08913 + 3.61849i −0.0756318 + 0.130998i
\(764\) 0.588457 0.0212896
\(765\) 0 0
\(766\) −39.5167 −1.42779
\(767\) 3.10583 5.37945i 0.112145 0.194241i
\(768\) −32.4440 + 8.69333i −1.17072 + 0.313694i
\(769\) 13.8205 + 23.9378i 0.498380 + 0.863220i 0.999998 0.00186930i \(-0.000595016\pi\)
−0.501618 + 0.865089i \(0.667262\pi\)
\(770\) 0 0
\(771\) 37.5167 10.0526i 1.35113 0.362034i
\(772\) −17.9551 + 31.0991i −0.646217 + 1.11928i
\(773\) 7.72741 0.277935 0.138968 0.990297i \(-0.455622\pi\)
0.138968 + 0.990297i \(0.455622\pi\)
\(774\) 52.9808i 1.90435i
\(775\) 0 0
\(776\) −2.66025 + 4.60770i −0.0954976 + 0.165407i
\(777\) −4.65874 4.65874i −0.167131 0.167131i
\(778\) −23.3023 40.3608i −0.835429 1.44701i
\(779\) −5.83013 10.0981i −0.208886 0.361801i
\(780\) 0 0
\(781\) −9.00000 + 15.5885i −0.322045 + 0.557799i
\(782\) 1.41421 0.0505722
\(783\) −8.69333 32.4440i −0.310674 1.15945i
\(784\) 27.6603 0.987866
\(785\) 0 0
\(786\) 0.803848 3.00000i 0.0286723 0.107006i
\(787\) −8.15711 14.1285i −0.290770 0.503628i 0.683222 0.730210i \(-0.260578\pi\)
−0.973992 + 0.226583i \(0.927245\pi\)
\(788\) −18.0430 31.2514i −0.642755 1.11328i
\(789\) −9.33975 9.33975i −0.332504 0.332504i
\(790\) 0 0
\(791\) 2.28719 0.0813230
\(792\) 6.36396 3.67423i 0.226134 0.130558i
\(793\) −26.1122 −0.927271
\(794\) −28.3923 + 49.1769i −1.00761 + 1.74522i
\(795\) 0 0
\(796\) −3.97372 6.88269i −0.140845 0.243950i
\(797\) 7.95404 + 13.7768i 0.281747 + 0.487999i 0.971815 0.235745i \(-0.0757529\pi\)
−0.690068 + 0.723744i \(0.742420\pi\)
\(798\) −7.91688 + 2.12132i −0.280254 + 0.0750939i
\(799\) −0.830127 + 1.43782i −0.0293678 + 0.0508665i
\(800\) 0 0
\(801\) 19.2058 + 11.0885i 0.678603 + 0.391791i
\(802\) 59.7487 2.10980
\(803\) 20.0764 34.7733i 0.708480 1.22712i
\(804\) 10.9019 + 10.9019i 0.384481 + 0.384481i
\(805\) 0 0
\(806\) 6.46410 + 11.1962i 0.227688 + 0.394368i
\(807\) 7.70882 28.7697i 0.271363 1.01274i
\(808\) −0.656339 + 1.13681i −0.0230899 + 0.0399929i
\(809\) 37.1769 1.30707 0.653535 0.756896i \(-0.273285\pi\)
0.653535 + 0.756896i \(0.273285\pi\)
\(810\) 0 0
\(811\) 43.5692 1.52992 0.764961 0.644076i \(-0.222758\pi\)
0.764961 + 0.644076i \(0.222758\pi\)
\(812\) 5.01910 8.69333i 0.176136 0.305076i
\(813\) −10.5422 + 39.3441i −0.369732 + 1.37986i
\(814\) 19.3923 + 33.5885i 0.679700 + 1.17727i
\(815\) 0 0
\(816\) 2.07180 + 2.07180i 0.0725274 + 0.0725274i
\(817\) 12.4877 21.6293i 0.436889 0.756714i
\(818\) 45.3292 1.58490
\(819\) −5.70577 3.29423i −0.199376 0.115110i
\(820\) 0 0
\(821\) 14.7224 25.5000i 0.513816 0.889956i −0.486055 0.873928i \(-0.661565\pi\)
0.999872 0.0160280i \(-0.00510208\pi\)
\(822\) 59.9889 16.0740i 2.09235 0.560645i
\(823\) 1.01669 + 1.76097i 0.0354397 + 0.0613834i 0.883201 0.468994i \(-0.155383\pi\)
−0.847762 + 0.530378i \(0.822050\pi\)
\(824\) −2.36603 4.09808i −0.0824244 0.142763i
\(825\) 0 0
\(826\) −2.19615 + 3.80385i −0.0764139 + 0.132353i
\(827\) −11.5539 −0.401770 −0.200885 0.979615i \(-0.564382\pi\)
−0.200885 + 0.979615i \(0.564382\pi\)
\(828\) 8.69333 5.01910i 0.302114 0.174426i
\(829\) 31.5885 1.09711 0.548556 0.836114i \(-0.315178\pi\)
0.548556 + 0.836114i \(0.315178\pi\)
\(830\) 0 0
\(831\) 15.0000 + 15.0000i 0.520344 + 0.520344i
\(832\) −7.02030 12.1595i −0.243385 0.421555i
\(833\) −1.17398 2.03339i −0.0406759 0.0704527i
\(834\) 6.92820 25.8564i 0.239904 0.895334i
\(835\) 0 0
\(836\) 22.3923 0.774454
\(837\) −13.7124 3.67423i −0.473971 0.127000i
\(838\) 31.0112 1.07126
\(839\) −0.633975 + 1.09808i −0.0218872 + 0.0379098i −0.876762 0.480925i \(-0.840301\pi\)
0.854874 + 0.518835i \(0.173634\pi\)
\(840\) 0 0
\(841\) −6.39230 11.0718i −0.220424 0.381786i
\(842\) −12.1087 20.9730i −0.417295 0.722776i
\(843\) −19.9241 19.9241i −0.686222 0.686222i
\(844\) 11.3660 19.6865i 0.391235 0.677638i
\(845\) 0 0
\(846\) 25.3923i 0.873005i
\(847\) −10.2141 −0.350959
\(848\) −8.62398 + 14.9372i −0.296149 + 0.512945i
\(849\) −7.50000 + 2.00962i −0.257399 + 0.0689699i
\(850\) 0 0
\(851\) −4.09808 7.09808i −0.140480 0.243319i
\(852\) −11.0227 + 2.95352i −0.377632 + 0.101186i
\(853\) −17.4746 + 30.2669i −0.598319 + 1.03632i 0.394750 + 0.918788i \(0.370831\pi\)
−0.993069 + 0.117530i \(0.962502\pi\)
\(854\) 18.4641 0.631829
\(855\) 0 0
\(856\) −6.07180 −0.207530
\(857\) 4.43211 7.67664i 0.151398 0.262229i −0.780344 0.625351i \(-0.784956\pi\)
0.931742 + 0.363122i \(0.118289\pi\)
\(858\) 27.4249 + 27.4249i 0.936269 + 0.936269i
\(859\) 11.2224 + 19.4378i 0.382904 + 0.663210i 0.991476 0.130289i \(-0.0415905\pi\)
−0.608572 + 0.793499i \(0.708257\pi\)
\(860\) 0 0
\(861\) −1.71539 + 6.40192i −0.0584603 + 0.218177i
\(862\) −5.79555 + 10.0382i −0.197397 + 0.341902i
\(863\) −13.0697 −0.444898 −0.222449 0.974944i \(-0.571405\pi\)
−0.222449 + 0.974944i \(0.571405\pi\)
\(864\) 38.0885 + 10.2058i 1.29580 + 0.347207i
\(865\) 0 0
\(866\) −29.4904 + 51.0788i −1.00212 + 1.73573i
\(867\) −7.55652 + 28.2013i −0.256633 + 0.957767i
\(868\) −2.12132 3.67423i −0.0720023 0.124712i
\(869\) −1.26795 2.19615i −0.0430122 0.0744994i
\(870\) 0 0
\(871\) 6.29423 10.9019i 0.213272 0.369398i
\(872\) −2.41233 −0.0816916
\(873\) 26.7042 15.4176i 0.903799 0.521808i
\(874\) −10.1962 −0.344890
\(875\) 0 0
\(876\) 24.5885 6.58846i 0.830767 0.222603i
\(877\) −2.36156 4.09034i −0.0797441 0.138121i 0.823395 0.567468i \(-0.192077\pi\)
−0.903139 + 0.429347i \(0.858744\pi\)
\(878\) 9.00292 + 15.5935i 0.303834 + 0.526256i
\(879\) −14.8301 + 3.97372i −0.500208 + 0.134030i
\(880\) 0 0
\(881\) −8.41154 −0.283392 −0.141696 0.989910i \(-0.545256\pi\)
−0.141696 + 0.989910i \(0.545256\pi\)
\(882\) −31.0991 17.9551i −1.04716 0.604579i
\(883\) −17.6913 −0.595359 −0.297679 0.954666i \(-0.596213\pi\)
−0.297679 + 0.954666i \(0.596213\pi\)
\(884\) −0.803848 + 1.39230i −0.0270363 + 0.0468283i
\(885\) 0 0
\(886\) −13.4282 23.2583i −0.451129 0.781379i
\(887\) −14.0914 24.4070i −0.473142 0.819506i 0.526386 0.850246i \(-0.323547\pi\)
−0.999527 + 0.0307403i \(0.990214\pi\)
\(888\) 0.984508 3.67423i 0.0330379 0.123299i
\(889\) 2.08846 3.61731i 0.0700446 0.121321i
\(890\) 0 0
\(891\) −42.5885 −1.42677
\(892\) 28.9778 0.970248
\(893\) 5.98502 10.3664i 0.200281 0.346897i
\(894\) −6.69615 + 24.9904i −0.223953 + 0.835803i
\(895\) 0 0
\(896\) −1.83975 3.18653i −0.0614616 0.106455i
\(897\) −5.79555 5.79555i −0.193508 0.193508i
\(898\) −11.5911 + 20.0764i −0.386800 + 0.669958i
\(899\) −17.6603 −0.589002
\(900\) 0 0
\(901\) 1.46410 0.0487763
\(902\) 19.5080 33.7888i 0.649545 1.12504i
\(903\) −13.7124 + 3.67423i −0.456321 + 0.122271i
\(904\) 0.660254 + 1.14359i 0.0219597 + 0.0380354i
\(905\) 0 0
\(906\) −73.0070 + 19.5622i −2.42550 + 0.649910i
\(907\) −24.8553 + 43.0506i −0.825305 + 1.42947i 0.0763808 + 0.997079i \(0.475664\pi\)
−0.901686 + 0.432392i \(0.857670\pi\)
\(908\) 3.28169 0.108907
\(909\) 6.58846 3.80385i 0.218525 0.126166i
\(910\) 0 0
\(911\) −11.0718 + 19.1769i −0.366825 + 0.635360i −0.989067 0.147465i \(-0.952889\pi\)
0.622242 + 0.782825i \(0.286222\pi\)
\(912\) −14.9372 14.9372i −0.494619 0.494619i
\(913\) −24.6472 42.6902i −0.815703 1.41284i
\(914\) 33.4186 + 57.8827i 1.10539 + 1.91459i
\(915\) 0 0
\(916\) −17.2583 + 29.8923i −0.570231 + 0.987670i
\(917\) 0.832204 0.0274818
\(918\) −0.984508 3.67423i −0.0324936 0.121268i
\(919\) −15.1769 −0.500640 −0.250320 0.968163i \(-0.580536\pi\)
−0.250320 + 0.968163i \(0.580536\pi\)
\(920\) 0 0
\(921\) 11.5981 43.2846i 0.382170 1.42628i
\(922\) 18.0752 + 31.3071i 0.595275 + 1.03105i
\(923\) 4.65874 + 8.06918i 0.153344 + 0.265600i
\(924\) −9.00000 9.00000i −0.296078 0.296078i
\(925\) 0 0
\(926\) 0.339746 0.0111647
\(927\) 27.4249i 0.900751i
\(928\) 49.0542 1.61028
\(929\) −1.73205 + 3.00000i −0.0568267 + 0.0984268i −0.893039 0.449979i \(-0.851432\pi\)
0.836213 + 0.548405i \(0.184765\pi\)
\(930\) 0 0
\(931\) 8.46410 + 14.6603i 0.277400 + 0.480470i
\(932\) −6.12372 10.6066i −0.200589 0.347431i
\(933\) −46.9328 + 12.5756i −1.53651 + 0.411707i
\(934\) −5.56218 + 9.63397i −0.182000 + 0.315233i
\(935\) 0 0
\(936\) 3.80385i 0.124333i
\(937\) 13.8647 0.452941 0.226471 0.974018i \(-0.427281\pi\)
0.226471 + 0.974018i \(0.427281\pi\)
\(938\) −4.45069 + 7.70882i −0.145320 + 0.251702i
\(939\) 6.80385 + 6.80385i 0.222035 + 0.222035i
\(940\) 0 0
\(941\) 4.16025 + 7.20577i 0.135620 + 0.234901i 0.925834 0.377930i \(-0.123364\pi\)
−0.790214 + 0.612831i \(0.790031\pi\)
\(942\) −18.5235 + 69.1306i −0.603527 + 2.25240i
\(943\) −4.12252 + 7.14042i −0.134248 + 0.232524i
\(944\) −11.3205 −0.368451
\(945\) 0 0
\(946\) 83.5692 2.71707
\(947\) −1.15539 + 2.00120i −0.0375453 + 0.0650303i −0.884187 0.467132i \(-0.845287\pi\)
0.846642 + 0.532163i \(0.178621\pi\)
\(948\) 0.416102 1.55291i 0.0135144 0.0504363i
\(949\) −10.3923 18.0000i −0.337348 0.584305i
\(950\) 0 0
\(951\) −43.0526 43.0526i −1.39607 1.39607i
\(952\) −0.0879327 + 0.152304i −0.00284992 + 0.00493620i
\(953\) −37.0197 −1.19919 −0.599594 0.800305i \(-0.704671\pi\)
−0.599594 + 0.800305i \(0.704671\pi\)
\(954\) 19.3923 11.1962i 0.627849 0.362489i
\(955\) 0 0
\(956\) −11.1962 + 19.3923i −0.362109 + 0.627192i
\(957\) −51.1755 + 13.7124i −1.65427 + 0.443260i
\(958\) 30.7709 + 53.2968i 0.994163 + 1.72194i
\(959\) 8.32051 + 14.4115i 0.268683 + 0.465373i
\(960\) 0 0
\(961\) 11.7679 20.3827i 0.379611 0.657506i
\(962\) 20.0764 0.647289
\(963\) 30.4749 + 17.5947i 0.982041 + 0.566982i
\(964\) 10.8564 0.349661
\(965\) 0 0
\(966\) 4.09808 + 4.09808i 0.131853 + 0.131853i
\(967\) 17.3545 + 30.0588i 0.558082 + 0.966627i 0.997657 + 0.0684208i \(0.0217960\pi\)
−0.439574 + 0.898206i \(0.644871\pi\)
\(968\) −2.94855 5.10703i −0.0947698 0.164146i
\(969\) −0.464102 + 1.73205i −0.0149091 + 0.0556415i
\(970\) 0 0
\(971\) 27.8038 0.892268 0.446134 0.894966i \(-0.352800\pi\)
0.446134 + 0.894966i \(0.352800\pi\)
\(972\) −19.0919 19.0919i −0.612372 0.612372i
\(973\) 7.17260 0.229943
\(974\) −1.09808 + 1.90192i −0.0351846 + 0.0609416i
\(975\) 0 0
\(976\) 23.7942 + 41.2128i 0.761635 + 1.31919i
\(977\) 7.77817 + 13.4722i 0.248846 + 0.431014i 0.963206 0.268765i \(-0.0866154\pi\)
−0.714360 + 0.699778i \(0.753282\pi\)
\(978\) −44.8115 44.8115i −1.43291 1.43291i
\(979\) 17.4904 30.2942i 0.558995 0.968208i
\(980\) 0 0
\(981\) 12.1077 + 6.99038i 0.386569 + 0.223186i
\(982\) 41.9459 1.33855
\(983\) −17.9365 + 31.0669i −0.572085 + 0.990881i 0.424266 + 0.905537i \(0.360532\pi\)
−0.996352 + 0.0853431i \(0.972801\pi\)
\(984\) −3.69615 + 0.990381i −0.117829 + 0.0315722i
\(985\) 0 0
\(986\) −2.36603 4.09808i −0.0753496 0.130509i
\(987\) −6.57201 + 1.76097i −0.209189 + 0.0560521i
\(988\) 5.79555 10.0382i 0.184381 0.319358i
\(989\) −17.6603 −0.561563
\(990\) 0 0
\(991\) 25.0718 0.796432 0.398216 0.917292i \(-0.369629\pi\)
0.398216 + 0.917292i \(0.369629\pi\)
\(992\) 10.3664 17.9551i 0.329132 0.570074i
\(993\) 15.1774 + 15.1774i 0.481641 + 0.481641i
\(994\) −3.29423 5.70577i −0.104487 0.180976i
\(995\) 0 0
\(996\) 8.08846 30.1865i 0.256293 0.956497i
\(997\) 7.58871 13.1440i 0.240337 0.416275i −0.720473 0.693483i \(-0.756075\pi\)
0.960810 + 0.277207i \(0.0894088\pi\)
\(998\) 7.45001 0.235826
\(999\) −15.5885 + 15.5885i −0.493197 + 0.493197i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 225.2.e.d.151.4 8
3.2 odd 2 675.2.e.d.451.1 8
5.2 odd 4 45.2.j.a.34.4 yes 8
5.3 odd 4 45.2.j.a.34.1 yes 8
5.4 even 2 inner 225.2.e.d.151.1 8
9.2 odd 6 2025.2.a.r.1.4 4
9.4 even 3 inner 225.2.e.d.76.4 8
9.5 odd 6 675.2.e.d.226.1 8
9.7 even 3 2025.2.a.t.1.1 4
15.2 even 4 135.2.j.a.19.1 8
15.8 even 4 135.2.j.a.19.4 8
15.14 odd 2 675.2.e.d.451.4 8
20.3 even 4 720.2.by.d.529.1 8
20.7 even 4 720.2.by.d.529.4 8
45.2 even 12 405.2.b.c.244.4 4
45.4 even 6 inner 225.2.e.d.76.1 8
45.7 odd 12 405.2.b.d.244.1 4
45.13 odd 12 45.2.j.a.4.4 yes 8
45.14 odd 6 675.2.e.d.226.4 8
45.22 odd 12 45.2.j.a.4.1 8
45.23 even 12 135.2.j.a.64.1 8
45.29 odd 6 2025.2.a.r.1.1 4
45.32 even 12 135.2.j.a.64.4 8
45.34 even 6 2025.2.a.t.1.4 4
45.38 even 12 405.2.b.c.244.1 4
45.43 odd 12 405.2.b.d.244.4 4
60.23 odd 4 2160.2.by.c.289.2 8
60.47 odd 4 2160.2.by.c.289.4 8
180.23 odd 12 2160.2.by.c.1009.4 8
180.67 even 12 720.2.by.d.49.1 8
180.103 even 12 720.2.by.d.49.4 8
180.167 odd 12 2160.2.by.c.1009.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
45.2.j.a.4.1 8 45.22 odd 12
45.2.j.a.4.4 yes 8 45.13 odd 12
45.2.j.a.34.1 yes 8 5.3 odd 4
45.2.j.a.34.4 yes 8 5.2 odd 4
135.2.j.a.19.1 8 15.2 even 4
135.2.j.a.19.4 8 15.8 even 4
135.2.j.a.64.1 8 45.23 even 12
135.2.j.a.64.4 8 45.32 even 12
225.2.e.d.76.1 8 45.4 even 6 inner
225.2.e.d.76.4 8 9.4 even 3 inner
225.2.e.d.151.1 8 5.4 even 2 inner
225.2.e.d.151.4 8 1.1 even 1 trivial
405.2.b.c.244.1 4 45.38 even 12
405.2.b.c.244.4 4 45.2 even 12
405.2.b.d.244.1 4 45.7 odd 12
405.2.b.d.244.4 4 45.43 odd 12
675.2.e.d.226.1 8 9.5 odd 6
675.2.e.d.226.4 8 45.14 odd 6
675.2.e.d.451.1 8 3.2 odd 2
675.2.e.d.451.4 8 15.14 odd 2
720.2.by.d.49.1 8 180.67 even 12
720.2.by.d.49.4 8 180.103 even 12
720.2.by.d.529.1 8 20.3 even 4
720.2.by.d.529.4 8 20.7 even 4
2025.2.a.r.1.1 4 45.29 odd 6
2025.2.a.r.1.4 4 9.2 odd 6
2025.2.a.t.1.1 4 9.7 even 3
2025.2.a.t.1.4 4 45.34 even 6
2160.2.by.c.289.2 8 60.23 odd 4
2160.2.by.c.289.4 8 60.47 odd 4
2160.2.by.c.1009.2 8 180.167 odd 12
2160.2.by.c.1009.4 8 180.23 odd 12