Properties

Label 225.3.g.g.82.1
Level $225$
Weight $3$
Character 225.82
Analytic conductor $6.131$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [225,3,Mod(82,225)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(225, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("225.82");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 225 = 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 225.g (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.13080594811\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(i, \sqrt{10})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 45)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 82.1
Root \(-1.58114 - 1.58114i\) of defining polynomial
Character \(\chi\) \(=\) 225.82
Dual form 225.3.g.g.118.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.58114 - 1.58114i) q^{2} +1.00000i q^{4} +(5.00000 + 5.00000i) q^{7} +(-4.74342 + 4.74342i) q^{8} -15.8114 q^{11} +(-10.0000 + 10.0000i) q^{13} -15.8114i q^{14} +19.0000 q^{16} +(3.16228 + 3.16228i) q^{17} +18.0000i q^{19} +(25.0000 + 25.0000i) q^{22} +(3.16228 - 3.16228i) q^{23} +31.6228 q^{26} +(-5.00000 + 5.00000i) q^{28} +47.4342i q^{29} +8.00000 q^{31} +(-11.0680 - 11.0680i) q^{32} -10.0000i q^{34} +(-10.0000 - 10.0000i) q^{37} +(28.4605 - 28.4605i) q^{38} +31.6228 q^{41} +(-10.0000 + 10.0000i) q^{43} -15.8114i q^{44} -10.0000 q^{46} +(41.1096 + 41.1096i) q^{47} +1.00000i q^{49} +(-10.0000 - 10.0000i) q^{52} +(-25.2982 + 25.2982i) q^{53} -47.4342 q^{56} +(75.0000 - 75.0000i) q^{58} -47.4342i q^{59} -58.0000 q^{61} +(-12.6491 - 12.6491i) q^{62} -41.0000i q^{64} +(-70.0000 - 70.0000i) q^{67} +(-3.16228 + 3.16228i) q^{68} -63.2456 q^{71} +(-55.0000 + 55.0000i) q^{73} +31.6228i q^{74} -18.0000 q^{76} +(-79.0569 - 79.0569i) q^{77} +12.0000i q^{79} +(-50.0000 - 50.0000i) q^{82} +(-53.7587 + 53.7587i) q^{83} +31.6228 q^{86} +(75.0000 - 75.0000i) q^{88} -100.000 q^{91} +(3.16228 + 3.16228i) q^{92} -130.000i q^{94} +(5.00000 + 5.00000i) q^{97} +(1.58114 - 1.58114i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 20 q^{7} - 40 q^{13} + 76 q^{16} + 100 q^{22} - 20 q^{28} + 32 q^{31} - 40 q^{37} - 40 q^{43} - 40 q^{46} - 40 q^{52} + 300 q^{58} - 232 q^{61} - 280 q^{67} - 220 q^{73} - 72 q^{76} - 200 q^{82} + 300 q^{88}+ \cdots + 20 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/225\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.58114 1.58114i −0.790569 0.790569i 0.191017 0.981587i \(-0.438821\pi\)
−0.981587 + 0.191017i \(0.938821\pi\)
\(3\) 0 0
\(4\) 1.00000i 0.250000i
\(5\) 0 0
\(6\) 0 0
\(7\) 5.00000 + 5.00000i 0.714286 + 0.714286i 0.967429 0.253143i \(-0.0814644\pi\)
−0.253143 + 0.967429i \(0.581464\pi\)
\(8\) −4.74342 + 4.74342i −0.592927 + 0.592927i
\(9\) 0 0
\(10\) 0 0
\(11\) −15.8114 −1.43740 −0.718699 0.695321i \(-0.755262\pi\)
−0.718699 + 0.695321i \(0.755262\pi\)
\(12\) 0 0
\(13\) −10.0000 + 10.0000i −0.769231 + 0.769231i −0.977971 0.208740i \(-0.933064\pi\)
0.208740 + 0.977971i \(0.433064\pi\)
\(14\) 15.8114i 1.12938i
\(15\) 0 0
\(16\) 19.0000 1.18750
\(17\) 3.16228 + 3.16228i 0.186016 + 0.186016i 0.793971 0.607955i \(-0.208010\pi\)
−0.607955 + 0.793971i \(0.708010\pi\)
\(18\) 0 0
\(19\) 18.0000i 0.947368i 0.880695 + 0.473684i \(0.157076\pi\)
−0.880695 + 0.473684i \(0.842924\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 25.0000 + 25.0000i 1.13636 + 1.13636i
\(23\) 3.16228 3.16228i 0.137490 0.137490i −0.635012 0.772502i \(-0.719005\pi\)
0.772502 + 0.635012i \(0.219005\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 31.6228 1.21626
\(27\) 0 0
\(28\) −5.00000 + 5.00000i −0.178571 + 0.178571i
\(29\) 47.4342i 1.63566i 0.575459 + 0.817830i \(0.304823\pi\)
−0.575459 + 0.817830i \(0.695177\pi\)
\(30\) 0 0
\(31\) 8.00000 0.258065 0.129032 0.991640i \(-0.458813\pi\)
0.129032 + 0.991640i \(0.458813\pi\)
\(32\) −11.0680 11.0680i −0.345874 0.345874i
\(33\) 0 0
\(34\) 10.0000i 0.294118i
\(35\) 0 0
\(36\) 0 0
\(37\) −10.0000 10.0000i −0.270270 0.270270i 0.558939 0.829209i \(-0.311209\pi\)
−0.829209 + 0.558939i \(0.811209\pi\)
\(38\) 28.4605 28.4605i 0.748960 0.748960i
\(39\) 0 0
\(40\) 0 0
\(41\) 31.6228 0.771287 0.385644 0.922648i \(-0.373979\pi\)
0.385644 + 0.922648i \(0.373979\pi\)
\(42\) 0 0
\(43\) −10.0000 + 10.0000i −0.232558 + 0.232558i −0.813760 0.581202i \(-0.802583\pi\)
0.581202 + 0.813760i \(0.302583\pi\)
\(44\) 15.8114i 0.359350i
\(45\) 0 0
\(46\) −10.0000 −0.217391
\(47\) 41.1096 + 41.1096i 0.874673 + 0.874673i 0.992977 0.118305i \(-0.0377460\pi\)
−0.118305 + 0.992977i \(0.537746\pi\)
\(48\) 0 0
\(49\) 1.00000i 0.0204082i
\(50\) 0 0
\(51\) 0 0
\(52\) −10.0000 10.0000i −0.192308 0.192308i
\(53\) −25.2982 + 25.2982i −0.477325 + 0.477325i −0.904275 0.426950i \(-0.859588\pi\)
0.426950 + 0.904275i \(0.359588\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −47.4342 −0.847039
\(57\) 0 0
\(58\) 75.0000 75.0000i 1.29310 1.29310i
\(59\) 47.4342i 0.803969i −0.915646 0.401984i \(-0.868321\pi\)
0.915646 0.401984i \(-0.131679\pi\)
\(60\) 0 0
\(61\) −58.0000 −0.950820 −0.475410 0.879764i \(-0.657700\pi\)
−0.475410 + 0.879764i \(0.657700\pi\)
\(62\) −12.6491 12.6491i −0.204018 0.204018i
\(63\) 0 0
\(64\) 41.0000i 0.640625i
\(65\) 0 0
\(66\) 0 0
\(67\) −70.0000 70.0000i −1.04478 1.04478i −0.998949 0.0458267i \(-0.985408\pi\)
−0.0458267 0.998949i \(-0.514592\pi\)
\(68\) −3.16228 + 3.16228i −0.0465041 + 0.0465041i
\(69\) 0 0
\(70\) 0 0
\(71\) −63.2456 −0.890782 −0.445391 0.895336i \(-0.646935\pi\)
−0.445391 + 0.895336i \(0.646935\pi\)
\(72\) 0 0
\(73\) −55.0000 + 55.0000i −0.753425 + 0.753425i −0.975117 0.221692i \(-0.928842\pi\)
0.221692 + 0.975117i \(0.428842\pi\)
\(74\) 31.6228i 0.427335i
\(75\) 0 0
\(76\) −18.0000 −0.236842
\(77\) −79.0569 79.0569i −1.02671 1.02671i
\(78\) 0 0
\(79\) 12.0000i 0.151899i 0.997112 + 0.0759494i \(0.0241987\pi\)
−0.997112 + 0.0759494i \(0.975801\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) −50.0000 50.0000i −0.609756 0.609756i
\(83\) −53.7587 + 53.7587i −0.647695 + 0.647695i −0.952436 0.304740i \(-0.901430\pi\)
0.304740 + 0.952436i \(0.401430\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 31.6228 0.367707
\(87\) 0 0
\(88\) 75.0000 75.0000i 0.852273 0.852273i
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) 0 0
\(91\) −100.000 −1.09890
\(92\) 3.16228 + 3.16228i 0.0343726 + 0.0343726i
\(93\) 0 0
\(94\) 130.000i 1.38298i
\(95\) 0 0
\(96\) 0 0
\(97\) 5.00000 + 5.00000i 0.0515464 + 0.0515464i 0.732410 0.680864i \(-0.238395\pi\)
−0.680864 + 0.732410i \(0.738395\pi\)
\(98\) 1.58114 1.58114i 0.0161341 0.0161341i
\(99\) 0 0
\(100\) 0 0
\(101\) −15.8114 −0.156548 −0.0782742 0.996932i \(-0.524941\pi\)
−0.0782742 + 0.996932i \(0.524941\pi\)
\(102\) 0 0
\(103\) 35.0000 35.0000i 0.339806 0.339806i −0.516488 0.856294i \(-0.672761\pi\)
0.856294 + 0.516488i \(0.172761\pi\)
\(104\) 94.8683i 0.912195i
\(105\) 0 0
\(106\) 80.0000 0.754717
\(107\) 60.0833 + 60.0833i 0.561526 + 0.561526i 0.929741 0.368215i \(-0.120031\pi\)
−0.368215 + 0.929741i \(0.620031\pi\)
\(108\) 0 0
\(109\) 162.000i 1.48624i 0.669159 + 0.743119i \(0.266655\pi\)
−0.669159 + 0.743119i \(0.733345\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 95.0000 + 95.0000i 0.848214 + 0.848214i
\(113\) 117.004 117.004i 1.03544 1.03544i 0.0360874 0.999349i \(-0.488511\pi\)
0.999349 0.0360874i \(-0.0114895\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −47.4342 −0.408915
\(117\) 0 0
\(118\) −75.0000 + 75.0000i −0.635593 + 0.635593i
\(119\) 31.6228i 0.265738i
\(120\) 0 0
\(121\) 129.000 1.06612
\(122\) 91.7061 + 91.7061i 0.751689 + 0.751689i
\(123\) 0 0
\(124\) 8.00000i 0.0645161i
\(125\) 0 0
\(126\) 0 0
\(127\) −55.0000 55.0000i −0.433071 0.433071i 0.456601 0.889672i \(-0.349067\pi\)
−0.889672 + 0.456601i \(0.849067\pi\)
\(128\) −109.099 + 109.099i −0.852333 + 0.852333i
\(129\) 0 0
\(130\) 0 0
\(131\) 173.925 1.32767 0.663837 0.747877i \(-0.268927\pi\)
0.663837 + 0.747877i \(0.268927\pi\)
\(132\) 0 0
\(133\) −90.0000 + 90.0000i −0.676692 + 0.676692i
\(134\) 221.359i 1.65194i
\(135\) 0 0
\(136\) −30.0000 −0.220588
\(137\) −15.8114 15.8114i −0.115412 0.115412i 0.647042 0.762454i \(-0.276006\pi\)
−0.762454 + 0.647042i \(0.776006\pi\)
\(138\) 0 0
\(139\) 102.000i 0.733813i −0.930258 0.366906i \(-0.880417\pi\)
0.930258 0.366906i \(-0.119583\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 100.000 + 100.000i 0.704225 + 0.704225i
\(143\) 158.114 158.114i 1.10569 1.10569i
\(144\) 0 0
\(145\) 0 0
\(146\) 173.925 1.19127
\(147\) 0 0
\(148\) 10.0000 10.0000i 0.0675676 0.0675676i
\(149\) 47.4342i 0.318350i −0.987250 0.159175i \(-0.949117\pi\)
0.987250 0.159175i \(-0.0508834\pi\)
\(150\) 0 0
\(151\) −22.0000 −0.145695 −0.0728477 0.997343i \(-0.523209\pi\)
−0.0728477 + 0.997343i \(0.523209\pi\)
\(152\) −85.3815 85.3815i −0.561720 0.561720i
\(153\) 0 0
\(154\) 250.000i 1.62338i
\(155\) 0 0
\(156\) 0 0
\(157\) 200.000 + 200.000i 1.27389 + 1.27389i 0.944032 + 0.329853i \(0.106999\pi\)
0.329853 + 0.944032i \(0.393001\pi\)
\(158\) 18.9737 18.9737i 0.120086 0.120086i
\(159\) 0 0
\(160\) 0 0
\(161\) 31.6228 0.196415
\(162\) 0 0
\(163\) −100.000 + 100.000i −0.613497 + 0.613497i −0.943856 0.330359i \(-0.892830\pi\)
0.330359 + 0.943856i \(0.392830\pi\)
\(164\) 31.6228i 0.192822i
\(165\) 0 0
\(166\) 170.000 1.02410
\(167\) −148.627 148.627i −0.889982 0.889982i 0.104539 0.994521i \(-0.466663\pi\)
−0.994521 + 0.104539i \(0.966663\pi\)
\(168\) 0 0
\(169\) 31.0000i 0.183432i
\(170\) 0 0
\(171\) 0 0
\(172\) −10.0000 10.0000i −0.0581395 0.0581395i
\(173\) −110.680 + 110.680i −0.639767 + 0.639767i −0.950498 0.310731i \(-0.899426\pi\)
0.310731 + 0.950498i \(0.399426\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −300.416 −1.70691
\(177\) 0 0
\(178\) 0 0
\(179\) 142.302i 0.794986i −0.917605 0.397493i \(-0.869880\pi\)
0.917605 0.397493i \(-0.130120\pi\)
\(180\) 0 0
\(181\) 218.000 1.20442 0.602210 0.798338i \(-0.294287\pi\)
0.602210 + 0.798338i \(0.294287\pi\)
\(182\) 158.114 + 158.114i 0.868758 + 0.868758i
\(183\) 0 0
\(184\) 30.0000i 0.163043i
\(185\) 0 0
\(186\) 0 0
\(187\) −50.0000 50.0000i −0.267380 0.267380i
\(188\) −41.1096 + 41.1096i −0.218668 + 0.218668i
\(189\) 0 0
\(190\) 0 0
\(191\) −158.114 −0.827821 −0.413911 0.910317i \(-0.635837\pi\)
−0.413911 + 0.910317i \(0.635837\pi\)
\(192\) 0 0
\(193\) 125.000 125.000i 0.647668 0.647668i −0.304761 0.952429i \(-0.598576\pi\)
0.952429 + 0.304761i \(0.0985765\pi\)
\(194\) 15.8114i 0.0815020i
\(195\) 0 0
\(196\) −1.00000 −0.00510204
\(197\) 145.465 + 145.465i 0.738400 + 0.738400i 0.972268 0.233868i \(-0.0751385\pi\)
−0.233868 + 0.972268i \(0.575138\pi\)
\(198\) 0 0
\(199\) 18.0000i 0.0904523i −0.998977 0.0452261i \(-0.985599\pi\)
0.998977 0.0452261i \(-0.0144008\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 25.0000 + 25.0000i 0.123762 + 0.123762i
\(203\) −237.171 + 237.171i −1.16833 + 1.16833i
\(204\) 0 0
\(205\) 0 0
\(206\) −110.680 −0.537280
\(207\) 0 0
\(208\) −190.000 + 190.000i −0.913462 + 0.913462i
\(209\) 284.605i 1.36175i
\(210\) 0 0
\(211\) −298.000 −1.41232 −0.706161 0.708051i \(-0.749575\pi\)
−0.706161 + 0.708051i \(0.749575\pi\)
\(212\) −25.2982 25.2982i −0.119331 0.119331i
\(213\) 0 0
\(214\) 190.000i 0.887850i
\(215\) 0 0
\(216\) 0 0
\(217\) 40.0000 + 40.0000i 0.184332 + 0.184332i
\(218\) 256.144 256.144i 1.17497 1.17497i
\(219\) 0 0
\(220\) 0 0
\(221\) −63.2456 −0.286179
\(222\) 0 0
\(223\) 215.000 215.000i 0.964126 0.964126i −0.0352529 0.999378i \(-0.511224\pi\)
0.999378 + 0.0352529i \(0.0112237\pi\)
\(224\) 110.680i 0.494106i
\(225\) 0 0
\(226\) −370.000 −1.63717
\(227\) −271.956 271.956i −1.19804 1.19804i −0.974752 0.223292i \(-0.928320\pi\)
−0.223292 0.974752i \(-0.571680\pi\)
\(228\) 0 0
\(229\) 78.0000i 0.340611i 0.985391 + 0.170306i \(0.0544755\pi\)
−0.985391 + 0.170306i \(0.945524\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −225.000 225.000i −0.969828 0.969828i
\(233\) −110.680 + 110.680i −0.475020 + 0.475020i −0.903535 0.428515i \(-0.859037\pi\)
0.428515 + 0.903535i \(0.359037\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 47.4342 0.200992
\(237\) 0 0
\(238\) 50.0000 50.0000i 0.210084 0.210084i
\(239\) 379.473i 1.58775i 0.608078 + 0.793877i \(0.291941\pi\)
−0.608078 + 0.793877i \(0.708059\pi\)
\(240\) 0 0
\(241\) 212.000 0.879668 0.439834 0.898079i \(-0.355037\pi\)
0.439834 + 0.898079i \(0.355037\pi\)
\(242\) −203.967 203.967i −0.842838 0.842838i
\(243\) 0 0
\(244\) 58.0000i 0.237705i
\(245\) 0 0
\(246\) 0 0
\(247\) −180.000 180.000i −0.728745 0.728745i
\(248\) −37.9473 + 37.9473i −0.153013 + 0.153013i
\(249\) 0 0
\(250\) 0 0
\(251\) 363.662 1.44885 0.724426 0.689352i \(-0.242105\pi\)
0.724426 + 0.689352i \(0.242105\pi\)
\(252\) 0 0
\(253\) −50.0000 + 50.0000i −0.197628 + 0.197628i
\(254\) 173.925i 0.684745i
\(255\) 0 0
\(256\) 181.000 0.707031
\(257\) 306.741 + 306.741i 1.19354 + 1.19354i 0.976065 + 0.217480i \(0.0697836\pi\)
0.217480 + 0.976065i \(0.430216\pi\)
\(258\) 0 0
\(259\) 100.000i 0.386100i
\(260\) 0 0
\(261\) 0 0
\(262\) −275.000 275.000i −1.04962 1.04962i
\(263\) 287.767 287.767i 1.09417 1.09417i 0.0990940 0.995078i \(-0.468406\pi\)
0.995078 0.0990940i \(-0.0315945\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 284.605 1.06994
\(267\) 0 0
\(268\) 70.0000 70.0000i 0.261194 0.261194i
\(269\) 142.302i 0.529006i 0.964385 + 0.264503i \(0.0852078\pi\)
−0.964385 + 0.264503i \(0.914792\pi\)
\(270\) 0 0
\(271\) −178.000 −0.656827 −0.328413 0.944534i \(-0.606514\pi\)
−0.328413 + 0.944534i \(0.606514\pi\)
\(272\) 60.0833 + 60.0833i 0.220894 + 0.220894i
\(273\) 0 0
\(274\) 50.0000i 0.182482i
\(275\) 0 0
\(276\) 0 0
\(277\) 230.000 + 230.000i 0.830325 + 0.830325i 0.987561 0.157236i \(-0.0502584\pi\)
−0.157236 + 0.987561i \(0.550258\pi\)
\(278\) −161.276 + 161.276i −0.580130 + 0.580130i
\(279\) 0 0
\(280\) 0 0
\(281\) −158.114 −0.562683 −0.281341 0.959608i \(-0.590779\pi\)
−0.281341 + 0.959608i \(0.590779\pi\)
\(282\) 0 0
\(283\) 350.000 350.000i 1.23675 1.23675i 0.275427 0.961322i \(-0.411181\pi\)
0.961322 0.275427i \(-0.0888193\pi\)
\(284\) 63.2456i 0.222696i
\(285\) 0 0
\(286\) −500.000 −1.74825
\(287\) 158.114 + 158.114i 0.550919 + 0.550919i
\(288\) 0 0
\(289\) 269.000i 0.930796i
\(290\) 0 0
\(291\) 0 0
\(292\) −55.0000 55.0000i −0.188356 0.188356i
\(293\) 202.386 202.386i 0.690736 0.690736i −0.271658 0.962394i \(-0.587572\pi\)
0.962394 + 0.271658i \(0.0875718\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 94.8683 0.320501
\(297\) 0 0
\(298\) −75.0000 + 75.0000i −0.251678 + 0.251678i
\(299\) 63.2456i 0.211524i
\(300\) 0 0
\(301\) −100.000 −0.332226
\(302\) 34.7851 + 34.7851i 0.115182 + 0.115182i
\(303\) 0 0
\(304\) 342.000i 1.12500i
\(305\) 0 0
\(306\) 0 0
\(307\) −190.000 190.000i −0.618893 0.618893i 0.326355 0.945247i \(-0.394180\pi\)
−0.945247 + 0.326355i \(0.894180\pi\)
\(308\) 79.0569 79.0569i 0.256678 0.256678i
\(309\) 0 0
\(310\) 0 0
\(311\) −252.982 −0.813448 −0.406724 0.913551i \(-0.633329\pi\)
−0.406724 + 0.913551i \(0.633329\pi\)
\(312\) 0 0
\(313\) −145.000 + 145.000i −0.463259 + 0.463259i −0.899722 0.436463i \(-0.856231\pi\)
0.436463 + 0.899722i \(0.356231\pi\)
\(314\) 632.456i 2.01419i
\(315\) 0 0
\(316\) −12.0000 −0.0379747
\(317\) −15.8114 15.8114i −0.0498782 0.0498782i 0.681728 0.731606i \(-0.261229\pi\)
−0.731606 + 0.681728i \(0.761229\pi\)
\(318\) 0 0
\(319\) 750.000i 2.35110i
\(320\) 0 0
\(321\) 0 0
\(322\) −50.0000 50.0000i −0.155280 0.155280i
\(323\) −56.9210 + 56.9210i −0.176226 + 0.176226i
\(324\) 0 0
\(325\) 0 0
\(326\) 316.228 0.970024
\(327\) 0 0
\(328\) −150.000 + 150.000i −0.457317 + 0.457317i
\(329\) 411.096i 1.24953i
\(330\) 0 0
\(331\) 482.000 1.45619 0.728097 0.685474i \(-0.240405\pi\)
0.728097 + 0.685474i \(0.240405\pi\)
\(332\) −53.7587 53.7587i −0.161924 0.161924i
\(333\) 0 0
\(334\) 470.000i 1.40719i
\(335\) 0 0
\(336\) 0 0
\(337\) 155.000 + 155.000i 0.459941 + 0.459941i 0.898636 0.438695i \(-0.144559\pi\)
−0.438695 + 0.898636i \(0.644559\pi\)
\(338\) −49.0153 + 49.0153i −0.145016 + 0.145016i
\(339\) 0 0
\(340\) 0 0
\(341\) −126.491 −0.370942
\(342\) 0 0
\(343\) 240.000 240.000i 0.699708 0.699708i
\(344\) 94.8683i 0.275780i
\(345\) 0 0
\(346\) 350.000 1.01156
\(347\) 164.438 + 164.438i 0.473886 + 0.473886i 0.903170 0.429284i \(-0.141234\pi\)
−0.429284 + 0.903170i \(0.641234\pi\)
\(348\) 0 0
\(349\) 318.000i 0.911175i 0.890191 + 0.455587i \(0.150571\pi\)
−0.890191 + 0.455587i \(0.849429\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 175.000 + 175.000i 0.497159 + 0.497159i
\(353\) −224.522 + 224.522i −0.636039 + 0.636039i −0.949576 0.313537i \(-0.898486\pi\)
0.313537 + 0.949576i \(0.398486\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) −225.000 + 225.000i −0.628492 + 0.628492i
\(359\) 284.605i 0.792772i 0.918084 + 0.396386i \(0.129736\pi\)
−0.918084 + 0.396386i \(0.870264\pi\)
\(360\) 0 0
\(361\) 37.0000 0.102493
\(362\) −344.688 344.688i −0.952178 0.952178i
\(363\) 0 0
\(364\) 100.000i 0.274725i
\(365\) 0 0
\(366\) 0 0
\(367\) 185.000 + 185.000i 0.504087 + 0.504087i 0.912705 0.408618i \(-0.133989\pi\)
−0.408618 + 0.912705i \(0.633989\pi\)
\(368\) 60.0833 60.0833i 0.163270 0.163270i
\(369\) 0 0
\(370\) 0 0
\(371\) −252.982 −0.681893
\(372\) 0 0
\(373\) −100.000 + 100.000i −0.268097 + 0.268097i −0.828333 0.560236i \(-0.810710\pi\)
0.560236 + 0.828333i \(0.310710\pi\)
\(374\) 158.114i 0.422764i
\(375\) 0 0
\(376\) −390.000 −1.03723
\(377\) −474.342 474.342i −1.25820 1.25820i
\(378\) 0 0
\(379\) 558.000i 1.47230i 0.676821 + 0.736148i \(0.263357\pi\)
−0.676821 + 0.736148i \(0.736643\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 250.000 + 250.000i 0.654450 + 0.654450i
\(383\) −281.443 + 281.443i −0.734837 + 0.734837i −0.971574 0.236737i \(-0.923922\pi\)
0.236737 + 0.971574i \(0.423922\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −395.285 −1.02405
\(387\) 0 0
\(388\) −5.00000 + 5.00000i −0.0128866 + 0.0128866i
\(389\) 521.776i 1.34133i −0.741762 0.670663i \(-0.766010\pi\)
0.741762 0.670663i \(-0.233990\pi\)
\(390\) 0 0
\(391\) 20.0000 0.0511509
\(392\) −4.74342 4.74342i −0.0121006 0.0121006i
\(393\) 0 0
\(394\) 460.000i 1.16751i
\(395\) 0 0
\(396\) 0 0
\(397\) 260.000 + 260.000i 0.654912 + 0.654912i 0.954172 0.299260i \(-0.0967397\pi\)
−0.299260 + 0.954172i \(0.596740\pi\)
\(398\) −28.4605 + 28.4605i −0.0715088 + 0.0715088i
\(399\) 0 0
\(400\) 0 0
\(401\) −252.982 −0.630878 −0.315439 0.948946i \(-0.602152\pi\)
−0.315439 + 0.948946i \(0.602152\pi\)
\(402\) 0 0
\(403\) −80.0000 + 80.0000i −0.198511 + 0.198511i
\(404\) 15.8114i 0.0391371i
\(405\) 0 0
\(406\) 750.000 1.84729
\(407\) 158.114 + 158.114i 0.388486 + 0.388486i
\(408\) 0 0
\(409\) 348.000i 0.850856i 0.904992 + 0.425428i \(0.139876\pi\)
−0.904992 + 0.425428i \(0.860124\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 35.0000 + 35.0000i 0.0849515 + 0.0849515i
\(413\) 237.171 237.171i 0.574263 0.574263i
\(414\) 0 0
\(415\) 0 0
\(416\) 221.359 0.532114
\(417\) 0 0
\(418\) −450.000 + 450.000i −1.07656 + 1.07656i
\(419\) 616.644i 1.47170i −0.677142 0.735852i \(-0.736782\pi\)
0.677142 0.735852i \(-0.263218\pi\)
\(420\) 0 0
\(421\) 338.000 0.802850 0.401425 0.915892i \(-0.368515\pi\)
0.401425 + 0.915892i \(0.368515\pi\)
\(422\) 471.179 + 471.179i 1.11654 + 1.11654i
\(423\) 0 0
\(424\) 240.000i 0.566038i
\(425\) 0 0
\(426\) 0 0
\(427\) −290.000 290.000i −0.679157 0.679157i
\(428\) −60.0833 + 60.0833i −0.140381 + 0.140381i
\(429\) 0 0
\(430\) 0 0
\(431\) 221.359 0.513595 0.256797 0.966465i \(-0.417333\pi\)
0.256797 + 0.966465i \(0.417333\pi\)
\(432\) 0 0
\(433\) −145.000 + 145.000i −0.334873 + 0.334873i −0.854434 0.519561i \(-0.826096\pi\)
0.519561 + 0.854434i \(0.326096\pi\)
\(434\) 126.491i 0.291454i
\(435\) 0 0
\(436\) −162.000 −0.371560
\(437\) 56.9210 + 56.9210i 0.130254 + 0.130254i
\(438\) 0 0
\(439\) 78.0000i 0.177677i −0.996046 0.0888383i \(-0.971685\pi\)
0.996046 0.0888383i \(-0.0283154\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 100.000 + 100.000i 0.226244 + 0.226244i
\(443\) −196.061 + 196.061i −0.442576 + 0.442576i −0.892877 0.450301i \(-0.851317\pi\)
0.450301 + 0.892877i \(0.351317\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −679.890 −1.52442
\(447\) 0 0
\(448\) 205.000 205.000i 0.457589 0.457589i
\(449\) 284.605i 0.633864i 0.948448 + 0.316932i \(0.102653\pi\)
−0.948448 + 0.316932i \(0.897347\pi\)
\(450\) 0 0
\(451\) −500.000 −1.10865
\(452\) 117.004 + 117.004i 0.258859 + 0.258859i
\(453\) 0 0
\(454\) 860.000i 1.89427i
\(455\) 0 0
\(456\) 0 0
\(457\) 365.000 + 365.000i 0.798687 + 0.798687i 0.982889 0.184201i \(-0.0589699\pi\)
−0.184201 + 0.982889i \(0.558970\pi\)
\(458\) 123.329 123.329i 0.269277 0.269277i
\(459\) 0 0
\(460\) 0 0
\(461\) 838.004 1.81780 0.908898 0.417019i \(-0.136925\pi\)
0.908898 + 0.417019i \(0.136925\pi\)
\(462\) 0 0
\(463\) 35.0000 35.0000i 0.0755940 0.0755940i −0.668299 0.743893i \(-0.732977\pi\)
0.743893 + 0.668299i \(0.232977\pi\)
\(464\) 901.249i 1.94235i
\(465\) 0 0
\(466\) 350.000 0.751073
\(467\) 117.004 + 117.004i 0.250544 + 0.250544i 0.821194 0.570649i \(-0.193308\pi\)
−0.570649 + 0.821194i \(0.693308\pi\)
\(468\) 0 0
\(469\) 700.000i 1.49254i
\(470\) 0 0
\(471\) 0 0
\(472\) 225.000 + 225.000i 0.476695 + 0.476695i
\(473\) 158.114 158.114i 0.334279 0.334279i
\(474\) 0 0
\(475\) 0 0
\(476\) −31.6228 −0.0664344
\(477\) 0 0
\(478\) 600.000 600.000i 1.25523 1.25523i
\(479\) 379.473i 0.792220i −0.918203 0.396110i \(-0.870360\pi\)
0.918203 0.396110i \(-0.129640\pi\)
\(480\) 0 0
\(481\) 200.000 0.415800
\(482\) −335.201 335.201i −0.695439 0.695439i
\(483\) 0 0
\(484\) 129.000i 0.266529i
\(485\) 0 0
\(486\) 0 0
\(487\) 125.000 + 125.000i 0.256674 + 0.256674i 0.823700 0.567026i \(-0.191906\pi\)
−0.567026 + 0.823700i \(0.691906\pi\)
\(488\) 275.118 275.118i 0.563767 0.563767i
\(489\) 0 0
\(490\) 0 0
\(491\) 458.530 0.933870 0.466935 0.884292i \(-0.345358\pi\)
0.466935 + 0.884292i \(0.345358\pi\)
\(492\) 0 0
\(493\) −150.000 + 150.000i −0.304260 + 0.304260i
\(494\) 569.210i 1.15225i
\(495\) 0 0
\(496\) 152.000 0.306452
\(497\) −316.228 316.228i −0.636273 0.636273i
\(498\) 0 0
\(499\) 222.000i 0.444890i 0.974945 + 0.222445i \(0.0714037\pi\)
−0.974945 + 0.222445i \(0.928596\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −575.000 575.000i −1.14542 1.14542i
\(503\) 458.530 458.530i 0.911591 0.911591i −0.0848065 0.996397i \(-0.527027\pi\)
0.996397 + 0.0848065i \(0.0270272\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 158.114 0.312478
\(507\) 0 0
\(508\) 55.0000 55.0000i 0.108268 0.108268i
\(509\) 237.171i 0.465954i 0.972482 + 0.232977i \(0.0748468\pi\)
−0.972482 + 0.232977i \(0.925153\pi\)
\(510\) 0 0
\(511\) −550.000 −1.07632
\(512\) 150.208 + 150.208i 0.293375 + 0.293375i
\(513\) 0 0
\(514\) 970.000i 1.88716i
\(515\) 0 0
\(516\) 0 0
\(517\) −650.000 650.000i −1.25725 1.25725i
\(518\) −158.114 + 158.114i −0.305239 + 0.305239i
\(519\) 0 0
\(520\) 0 0
\(521\) 790.569 1.51741 0.758704 0.651436i \(-0.225833\pi\)
0.758704 + 0.651436i \(0.225833\pi\)
\(522\) 0 0
\(523\) −370.000 + 370.000i −0.707457 + 0.707457i −0.966000 0.258543i \(-0.916758\pi\)
0.258543 + 0.966000i \(0.416758\pi\)
\(524\) 173.925i 0.331918i
\(525\) 0 0
\(526\) −910.000 −1.73004
\(527\) 25.2982 + 25.2982i 0.0480042 + 0.0480042i
\(528\) 0 0
\(529\) 509.000i 0.962193i
\(530\) 0 0
\(531\) 0 0
\(532\) −90.0000 90.0000i −0.169173 0.169173i
\(533\) −316.228 + 316.228i −0.593298 + 0.593298i
\(534\) 0 0
\(535\) 0 0
\(536\) 664.078 1.23895
\(537\) 0 0
\(538\) 225.000 225.000i 0.418216 0.418216i
\(539\) 15.8114i 0.0293347i
\(540\) 0 0
\(541\) 362.000 0.669131 0.334566 0.942372i \(-0.391410\pi\)
0.334566 + 0.942372i \(0.391410\pi\)
\(542\) 281.443 + 281.443i 0.519267 + 0.519267i
\(543\) 0 0
\(544\) 70.0000i 0.128676i
\(545\) 0 0
\(546\) 0 0
\(547\) −490.000 490.000i −0.895795 0.895795i 0.0992657 0.995061i \(-0.468351\pi\)
−0.995061 + 0.0992657i \(0.968351\pi\)
\(548\) 15.8114 15.8114i 0.0288529 0.0288529i
\(549\) 0 0
\(550\) 0 0
\(551\) −853.815 −1.54957
\(552\) 0 0
\(553\) −60.0000 + 60.0000i −0.108499 + 0.108499i
\(554\) 727.324i 1.31286i
\(555\) 0 0
\(556\) 102.000 0.183453
\(557\) −252.982 252.982i −0.454187 0.454187i 0.442555 0.896742i \(-0.354072\pi\)
−0.896742 + 0.442555i \(0.854072\pi\)
\(558\) 0 0
\(559\) 200.000i 0.357782i
\(560\) 0 0
\(561\) 0 0
\(562\) 250.000 + 250.000i 0.444840 + 0.444840i
\(563\) 202.386 202.386i 0.359477 0.359477i −0.504143 0.863620i \(-0.668192\pi\)
0.863620 + 0.504143i \(0.168192\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −1106.80 −1.95547
\(567\) 0 0
\(568\) 300.000 300.000i 0.528169 0.528169i
\(569\) 189.737i 0.333456i 0.986003 + 0.166728i \(0.0533202\pi\)
−0.986003 + 0.166728i \(0.946680\pi\)
\(570\) 0 0
\(571\) −658.000 −1.15236 −0.576182 0.817321i \(-0.695458\pi\)
−0.576182 + 0.817321i \(0.695458\pi\)
\(572\) 158.114 + 158.114i 0.276423 + 0.276423i
\(573\) 0 0
\(574\) 500.000i 0.871080i
\(575\) 0 0
\(576\) 0 0
\(577\) 35.0000 + 35.0000i 0.0606586 + 0.0606586i 0.736785 0.676127i \(-0.236343\pi\)
−0.676127 + 0.736785i \(0.736343\pi\)
\(578\) −425.326 + 425.326i −0.735859 + 0.735859i
\(579\) 0 0
\(580\) 0 0
\(581\) −537.587 −0.925279
\(582\) 0 0
\(583\) 400.000 400.000i 0.686106 0.686106i
\(584\) 521.776i 0.893452i
\(585\) 0 0
\(586\) −640.000 −1.09215
\(587\) 154.952 + 154.952i 0.263972 + 0.263972i 0.826666 0.562694i \(-0.190235\pi\)
−0.562694 + 0.826666i \(0.690235\pi\)
\(588\) 0 0
\(589\) 144.000i 0.244482i
\(590\) 0 0
\(591\) 0 0
\(592\) −190.000 190.000i −0.320946 0.320946i
\(593\) −167.601 + 167.601i −0.282632 + 0.282632i −0.834158 0.551526i \(-0.814046\pi\)
0.551526 + 0.834158i \(0.314046\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 47.4342 0.0795875
\(597\) 0 0
\(598\) 100.000 100.000i 0.167224 0.167224i
\(599\) 1043.55i 1.74216i −0.491144 0.871078i \(-0.663421\pi\)
0.491144 0.871078i \(-0.336579\pi\)
\(600\) 0 0
\(601\) −382.000 −0.635607 −0.317804 0.948157i \(-0.602945\pi\)
−0.317804 + 0.948157i \(0.602945\pi\)
\(602\) 158.114 + 158.114i 0.262648 + 0.262648i
\(603\) 0 0
\(604\) 22.0000i 0.0364238i
\(605\) 0 0
\(606\) 0 0
\(607\) −655.000 655.000i −1.07908 1.07908i −0.996592 0.0824851i \(-0.973714\pi\)
−0.0824851 0.996592i \(-0.526286\pi\)
\(608\) 199.223 199.223i 0.327670 0.327670i
\(609\) 0 0
\(610\) 0 0
\(611\) −822.192 −1.34565
\(612\) 0 0
\(613\) 620.000 620.000i 1.01142 1.01142i 0.0114852 0.999934i \(-0.496344\pi\)
0.999934 0.0114852i \(-0.00365594\pi\)
\(614\) 600.833i 0.978555i
\(615\) 0 0
\(616\) 750.000 1.21753
\(617\) −34.7851 34.7851i −0.0563777 0.0563777i 0.678356 0.734734i \(-0.262693\pi\)
−0.734734 + 0.678356i \(0.762693\pi\)
\(618\) 0 0
\(619\) 258.000i 0.416801i −0.978044 0.208401i \(-0.933174\pi\)
0.978044 0.208401i \(-0.0668258\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 400.000 + 400.000i 0.643087 + 0.643087i
\(623\) 0 0
\(624\) 0 0
\(625\) 0 0
\(626\) 458.530 0.732476
\(627\) 0 0
\(628\) −200.000 + 200.000i −0.318471 + 0.318471i
\(629\) 63.2456i 0.100549i
\(630\) 0 0
\(631\) 812.000 1.28685 0.643423 0.765511i \(-0.277514\pi\)
0.643423 + 0.765511i \(0.277514\pi\)
\(632\) −56.9210 56.9210i −0.0900649 0.0900649i
\(633\) 0 0
\(634\) 50.0000i 0.0788644i
\(635\) 0 0
\(636\) 0 0
\(637\) −10.0000 10.0000i −0.0156986 0.0156986i
\(638\) −1185.85 + 1185.85i −1.85871 + 1.85871i
\(639\) 0 0
\(640\) 0 0
\(641\) −442.719 −0.690669 −0.345335 0.938480i \(-0.612235\pi\)
−0.345335 + 0.938480i \(0.612235\pi\)
\(642\) 0 0
\(643\) −820.000 + 820.000i −1.27527 + 1.27527i −0.331989 + 0.943283i \(0.607720\pi\)
−0.943283 + 0.331989i \(0.892280\pi\)
\(644\) 31.6228i 0.0491037i
\(645\) 0 0
\(646\) 180.000 0.278638
\(647\) −679.890 679.890i −1.05083 1.05083i −0.998637 0.0521974i \(-0.983378\pi\)
−0.0521974 0.998637i \(-0.516622\pi\)
\(648\) 0 0
\(649\) 750.000i 1.15562i
\(650\) 0 0
\(651\) 0 0
\(652\) −100.000 100.000i −0.153374 0.153374i
\(653\) 515.451 515.451i 0.789359 0.789359i −0.192030 0.981389i \(-0.561507\pi\)
0.981389 + 0.192030i \(0.0615072\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 600.833 0.915904
\(657\) 0 0
\(658\) 650.000 650.000i 0.987842 0.987842i
\(659\) 901.249i 1.36760i 0.729669 + 0.683801i \(0.239674\pi\)
−0.729669 + 0.683801i \(0.760326\pi\)
\(660\) 0 0
\(661\) −802.000 −1.21331 −0.606657 0.794964i \(-0.707490\pi\)
−0.606657 + 0.794964i \(0.707490\pi\)
\(662\) −762.109 762.109i −1.15122 1.15122i
\(663\) 0 0
\(664\) 510.000i 0.768072i
\(665\) 0 0
\(666\) 0 0
\(667\) 150.000 + 150.000i 0.224888 + 0.224888i
\(668\) 148.627 148.627i 0.222496 0.222496i
\(669\) 0 0
\(670\) 0 0
\(671\) 917.061 1.36671
\(672\) 0 0
\(673\) −775.000 + 775.000i −1.15156 + 1.15156i −0.165320 + 0.986240i \(0.552866\pi\)
−0.986240 + 0.165320i \(0.947134\pi\)
\(674\) 490.153i 0.727230i
\(675\) 0 0
\(676\) 31.0000 0.0458580
\(677\) 496.478 + 496.478i 0.733349 + 0.733349i 0.971282 0.237932i \(-0.0764696\pi\)
−0.237932 + 0.971282i \(0.576470\pi\)
\(678\) 0 0
\(679\) 50.0000i 0.0736377i
\(680\) 0 0
\(681\) 0 0
\(682\) 200.000 + 200.000i 0.293255 + 0.293255i
\(683\) 60.0833 60.0833i 0.0879697 0.0879697i −0.661753 0.749722i \(-0.730187\pi\)
0.749722 + 0.661753i \(0.230187\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −758.947 −1.10634
\(687\) 0 0
\(688\) −190.000 + 190.000i −0.276163 + 0.276163i
\(689\) 505.964i 0.734346i
\(690\) 0 0
\(691\) −562.000 −0.813314 −0.406657 0.913581i \(-0.633306\pi\)
−0.406657 + 0.913581i \(0.633306\pi\)
\(692\) −110.680 110.680i −0.159942 0.159942i
\(693\) 0 0
\(694\) 520.000i 0.749280i
\(695\) 0 0
\(696\) 0 0
\(697\) 100.000 + 100.000i 0.143472 + 0.143472i
\(698\) 502.802 502.802i 0.720347 0.720347i
\(699\) 0 0
\(700\) 0 0
\(701\) 363.662 0.518776 0.259388 0.965773i \(-0.416479\pi\)
0.259388 + 0.965773i \(0.416479\pi\)
\(702\) 0 0
\(703\) 180.000 180.000i 0.256046 0.256046i
\(704\) 648.267i 0.920834i
\(705\) 0 0
\(706\) 710.000 1.00567
\(707\) −79.0569 79.0569i −0.111820 0.111820i
\(708\) 0 0
\(709\) 498.000i 0.702398i 0.936301 + 0.351199i \(0.114226\pi\)
−0.936301 + 0.351199i \(0.885774\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 25.2982 25.2982i 0.0354814 0.0354814i
\(714\) 0 0
\(715\) 0 0
\(716\) 142.302 0.198747
\(717\) 0 0
\(718\) 450.000 450.000i 0.626741 0.626741i
\(719\) 569.210i 0.791669i 0.918322 + 0.395834i \(0.129545\pi\)
−0.918322 + 0.395834i \(0.870455\pi\)
\(720\) 0 0
\(721\) 350.000 0.485437
\(722\) −58.5021 58.5021i −0.0810279 0.0810279i
\(723\) 0 0
\(724\) 218.000i 0.301105i
\(725\) 0 0
\(726\) 0 0
\(727\) 905.000 + 905.000i 1.24484 + 1.24484i 0.957969 + 0.286873i \(0.0926159\pi\)
0.286873 + 0.957969i \(0.407384\pi\)
\(728\) 474.342 474.342i 0.651568 0.651568i
\(729\) 0 0
\(730\) 0 0
\(731\) −63.2456 −0.0865192
\(732\) 0 0
\(733\) −550.000 + 550.000i −0.750341 + 0.750341i −0.974543 0.224202i \(-0.928023\pi\)
0.224202 + 0.974543i \(0.428023\pi\)
\(734\) 585.021i 0.797032i
\(735\) 0 0
\(736\) −70.0000 −0.0951087
\(737\) 1106.80 + 1106.80i 1.50176 + 1.50176i
\(738\) 0 0
\(739\) 198.000i 0.267930i 0.990986 + 0.133965i \(0.0427709\pi\)
−0.990986 + 0.133965i \(0.957229\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 400.000 + 400.000i 0.539084 + 0.539084i
\(743\) −964.495 + 964.495i −1.29811 + 1.29811i −0.368468 + 0.929640i \(0.620118\pi\)
−0.929640 + 0.368468i \(0.879882\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 316.228 0.423898
\(747\) 0 0
\(748\) 50.0000 50.0000i 0.0668449 0.0668449i
\(749\) 600.833i 0.802180i
\(750\) 0 0
\(751\) 728.000 0.969374 0.484687 0.874688i \(-0.338933\pi\)
0.484687 + 0.874688i \(0.338933\pi\)
\(752\) 781.083 + 781.083i 1.03867 + 1.03867i
\(753\) 0 0
\(754\) 1500.00i 1.98939i
\(755\) 0 0
\(756\) 0 0
\(757\) 170.000 + 170.000i 0.224571 + 0.224571i 0.810420 0.585849i \(-0.199239\pi\)
−0.585849 + 0.810420i \(0.699239\pi\)
\(758\) 882.275 882.275i 1.16395 1.16395i
\(759\) 0 0
\(760\) 0 0
\(761\) 31.6228 0.0415542 0.0207771 0.999784i \(-0.493386\pi\)
0.0207771 + 0.999784i \(0.493386\pi\)
\(762\) 0 0
\(763\) −810.000 + 810.000i −1.06160 + 1.06160i
\(764\) 158.114i 0.206955i
\(765\) 0 0
\(766\) 890.000 1.16188
\(767\) 474.342 + 474.342i 0.618438 + 0.618438i
\(768\) 0 0
\(769\) 318.000i 0.413524i −0.978391 0.206762i \(-0.933707\pi\)
0.978391 0.206762i \(-0.0662926\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 125.000 + 125.000i 0.161917 + 0.161917i
\(773\) −452.206 + 452.206i −0.585001 + 0.585001i −0.936273 0.351272i \(-0.885749\pi\)
0.351272 + 0.936273i \(0.385749\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −47.4342 −0.0611265
\(777\) 0 0
\(778\) −825.000 + 825.000i −1.06041 + 1.06041i
\(779\) 569.210i 0.730693i
\(780\) 0 0
\(781\) 1000.00 1.28041
\(782\) −31.6228 31.6228i −0.0404383 0.0404383i
\(783\) 0 0
\(784\) 19.0000i 0.0242347i
\(785\) 0 0
\(786\) 0 0
\(787\) −250.000 250.000i −0.317662 0.317662i 0.530207 0.847869i \(-0.322114\pi\)
−0.847869 + 0.530207i \(0.822114\pi\)
\(788\) −145.465 + 145.465i −0.184600 + 0.184600i
\(789\) 0 0
\(790\) 0 0
\(791\) 1170.04 1.47919
\(792\) 0 0
\(793\) 580.000 580.000i 0.731400 0.731400i
\(794\) 822.192i 1.03551i
\(795\) 0 0
\(796\) 18.0000 0.0226131
\(797\) −888.600 888.600i −1.11493 1.11493i −0.992474 0.122457i \(-0.960923\pi\)
−0.122457 0.992474i \(-0.539077\pi\)
\(798\) 0 0
\(799\) 260.000i 0.325407i
\(800\) 0 0
\(801\) 0 0
\(802\) 400.000 + 400.000i 0.498753 + 0.498753i
\(803\) 869.626 869.626i 1.08297 1.08297i
\(804\) 0 0
\(805\) 0 0
\(806\) 252.982 0.313874
\(807\) 0 0
\(808\) 75.0000 75.0000i 0.0928218 0.0928218i
\(809\) 569.210i 0.703597i −0.936076 0.351799i \(-0.885570\pi\)
0.936076 0.351799i \(-0.114430\pi\)
\(810\) 0 0
\(811\) −142.000 −0.175092 −0.0875462 0.996160i \(-0.527903\pi\)
−0.0875462 + 0.996160i \(0.527903\pi\)
\(812\) −237.171 237.171i −0.292082 0.292082i
\(813\) 0 0
\(814\) 500.000i 0.614251i
\(815\) 0 0
\(816\) 0 0
\(817\) −180.000 180.000i −0.220318 0.220318i
\(818\) 550.236 550.236i 0.672661 0.672661i
\(819\) 0 0
\(820\) 0 0
\(821\) −869.626 −1.05923 −0.529614 0.848239i \(-0.677663\pi\)
−0.529614 + 0.848239i \(0.677663\pi\)
\(822\) 0 0
\(823\) 1115.00 1115.00i 1.35480 1.35480i 0.474595 0.880204i \(-0.342594\pi\)
0.880204 0.474595i \(-0.157406\pi\)
\(824\) 332.039i 0.402960i
\(825\) 0 0
\(826\) −750.000 −0.907990
\(827\) −25.2982 25.2982i −0.0305904 0.0305904i 0.691646 0.722237i \(-0.256886\pi\)
−0.722237 + 0.691646i \(0.756886\pi\)
\(828\) 0 0
\(829\) 1062.00i 1.28106i −0.767933 0.640531i \(-0.778714\pi\)
0.767933 0.640531i \(-0.221286\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 410.000 + 410.000i 0.492788 + 0.492788i
\(833\) −3.16228 + 3.16228i −0.00379625 + 0.00379625i
\(834\) 0 0
\(835\) 0 0
\(836\) 284.605 0.340437
\(837\) 0 0
\(838\) −975.000 + 975.000i −1.16348 + 1.16348i
\(839\) 474.342i 0.565365i 0.959213 + 0.282683i \(0.0912244\pi\)
−0.959213 + 0.282683i \(0.908776\pi\)
\(840\) 0 0
\(841\) −1409.00 −1.67539
\(842\) −534.425 534.425i −0.634709 0.634709i
\(843\) 0 0
\(844\) 298.000i 0.353081i
\(845\) 0 0
\(846\) 0 0
\(847\) 645.000 + 645.000i 0.761511 + 0.761511i
\(848\) −480.666 + 480.666i −0.566823 + 0.566823i
\(849\) 0 0
\(850\) 0 0
\(851\) −63.2456 −0.0743191
\(852\) 0 0
\(853\) 80.0000 80.0000i 0.0937866 0.0937866i −0.658657 0.752443i \(-0.728875\pi\)
0.752443 + 0.658657i \(0.228875\pi\)
\(854\) 917.061i 1.07384i
\(855\) 0 0
\(856\) −570.000 −0.665888
\(857\) −243.495 243.495i −0.284125 0.284125i 0.550626 0.834752i \(-0.314389\pi\)
−0.834752 + 0.550626i \(0.814389\pi\)
\(858\) 0 0
\(859\) 1482.00i 1.72526i 0.505834 + 0.862631i \(0.331185\pi\)
−0.505834 + 0.862631i \(0.668815\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −350.000 350.000i −0.406032 0.406032i
\(863\) −964.495 + 964.495i −1.11761 + 1.11761i −0.125515 + 0.992092i \(0.540058\pi\)
−0.992092 + 0.125515i \(0.959942\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 458.530 0.529481
\(867\) 0 0
\(868\) −40.0000 + 40.0000i −0.0460829 + 0.0460829i
\(869\) 189.737i 0.218339i
\(870\) 0 0
\(871\) 1400.00 1.60735
\(872\) −768.433 768.433i −0.881231 0.881231i
\(873\) 0 0
\(874\) 180.000i 0.205950i
\(875\) 0 0
\(876\) 0 0
\(877\) −700.000 700.000i −0.798176 0.798176i 0.184632 0.982808i \(-0.440891\pi\)
−0.982808 + 0.184632i \(0.940891\pi\)
\(878\) −123.329 + 123.329i −0.140466 + 0.140466i
\(879\) 0 0
\(880\) 0 0
\(881\) −1201.67 −1.36398 −0.681990 0.731362i \(-0.738885\pi\)
−0.681990 + 0.731362i \(0.738885\pi\)
\(882\) 0 0
\(883\) −640.000 + 640.000i −0.724802 + 0.724802i −0.969579 0.244777i \(-0.921285\pi\)
0.244777 + 0.969579i \(0.421285\pi\)
\(884\) 63.2456i 0.0715447i
\(885\) 0 0
\(886\) 620.000 0.699774
\(887\) 135.978 + 135.978i 0.153301 + 0.153301i 0.779591 0.626290i \(-0.215427\pi\)
−0.626290 + 0.779591i \(0.715427\pi\)
\(888\) 0 0
\(889\) 550.000i 0.618673i
\(890\) 0 0
\(891\) 0 0
\(892\) 215.000 + 215.000i 0.241031 + 0.241031i
\(893\) −739.973 + 739.973i −0.828637 + 0.828637i
\(894\) 0 0
\(895\) 0 0
\(896\) −1090.99 −1.21762
\(897\) 0 0
\(898\) 450.000 450.000i 0.501114 0.501114i
\(899\) 379.473i 0.422106i
\(900\) 0 0
\(901\) −160.000 −0.177580
\(902\) 790.569 + 790.569i 0.876463 + 0.876463i
\(903\) 0 0
\(904\) 1110.00i 1.22788i
\(905\) 0 0
\(906\) 0 0
\(907\) −40.0000 40.0000i −0.0441014 0.0441014i 0.684712 0.728814i \(-0.259928\pi\)
−0.728814 + 0.684712i \(0.759928\pi\)
\(908\) 271.956 271.956i 0.299511 0.299511i
\(909\) 0 0
\(910\) 0 0
\(911\) 411.096 0.451258 0.225629 0.974213i \(-0.427556\pi\)
0.225629 + 0.974213i \(0.427556\pi\)
\(912\) 0 0
\(913\) 850.000 850.000i 0.930997 0.930997i
\(914\) 1154.23i 1.26284i
\(915\) 0 0
\(916\) −78.0000 −0.0851528
\(917\) 869.626 + 869.626i 0.948338 + 0.948338i
\(918\) 0 0
\(919\) 792.000i 0.861806i −0.902398 0.430903i \(-0.858195\pi\)
0.902398 0.430903i \(-0.141805\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −1325.00 1325.00i −1.43709 1.43709i
\(923\) 632.456 632.456i 0.685217 0.685217i
\(924\) 0 0
\(925\) 0 0
\(926\) −110.680 −0.119525
\(927\) 0 0
\(928\) 525.000 525.000i 0.565733 0.565733i
\(929\) 1233.29i 1.32754i −0.747935 0.663772i \(-0.768955\pi\)
0.747935 0.663772i \(-0.231045\pi\)
\(930\) 0 0
\(931\) −18.0000 −0.0193340
\(932\) −110.680 110.680i −0.118755 0.118755i
\(933\) 0 0
\(934\) 370.000i 0.396146i
\(935\) 0 0
\(936\) 0 0
\(937\) −865.000 865.000i −0.923159 0.923159i 0.0740924 0.997251i \(-0.476394\pi\)
−0.997251 + 0.0740924i \(0.976394\pi\)
\(938\) −1106.80 + 1106.80i −1.17995 + 1.17995i
\(939\) 0 0
\(940\) 0 0
\(941\) −964.495 −1.02497 −0.512484 0.858697i \(-0.671275\pi\)
−0.512484 + 0.858697i \(0.671275\pi\)
\(942\) 0 0
\(943\) 100.000 100.000i 0.106045 0.106045i
\(944\) 901.249i 0.954713i
\(945\) 0 0
\(946\) −500.000 −0.528541
\(947\) −841.166 841.166i −0.888243 0.888243i 0.106112 0.994354i \(-0.466160\pi\)
−0.994354 + 0.106112i \(0.966160\pi\)
\(948\) 0 0
\(949\) 1100.00i 1.15911i
\(950\) 0 0
\(951\) 0 0
\(952\) −150.000 150.000i −0.157563 0.157563i
\(953\) 1141.58 1141.58i 1.19788 1.19788i 0.223083 0.974799i \(-0.428388\pi\)
0.974799 0.223083i \(-0.0716122\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −379.473 −0.396939
\(957\) 0 0
\(958\) −600.000 + 600.000i −0.626305 + 0.626305i
\(959\) 158.114i 0.164874i
\(960\) 0 0
\(961\) −897.000 −0.933403
\(962\) −316.228 316.228i −0.328719 0.328719i
\(963\) 0 0
\(964\) 212.000i 0.219917i
\(965\) 0 0
\(966\) 0 0
\(967\) 1145.00 + 1145.00i 1.18407 + 1.18407i 0.978679 + 0.205395i \(0.0658480\pi\)
0.205395 + 0.978679i \(0.434152\pi\)
\(968\) −611.901 + 611.901i −0.632129 + 0.632129i
\(969\) 0 0
\(970\) 0 0
\(971\) −1628.57 −1.67721 −0.838606 0.544738i \(-0.816629\pi\)
−0.838606 + 0.544738i \(0.816629\pi\)
\(972\) 0 0
\(973\) 510.000 510.000i 0.524152 0.524152i
\(974\) 395.285i 0.405836i
\(975\) 0 0
\(976\) −1102.00 −1.12910
\(977\) 762.109 + 762.109i 0.780050 + 0.780050i 0.979839 0.199789i \(-0.0640256\pi\)
−0.199789 + 0.979839i \(0.564026\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) −725.000 725.000i −0.738289 0.738289i
\(983\) −167.601 + 167.601i −0.170499 + 0.170499i −0.787199 0.616699i \(-0.788469\pi\)
0.616699 + 0.787199i \(0.288469\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 474.342 0.481077
\(987\) 0 0
\(988\) 180.000 180.000i 0.182186 0.182186i
\(989\) 63.2456i 0.0639490i
\(990\) 0 0
\(991\) 2.00000 0.00201816 0.00100908 0.999999i \(-0.499679\pi\)
0.00100908 + 0.999999i \(0.499679\pi\)
\(992\) −88.5438 88.5438i −0.0892578 0.0892578i
\(993\) 0 0
\(994\) 1000.00i 1.00604i
\(995\) 0 0
\(996\) 0 0
\(997\) −310.000 310.000i −0.310933 0.310933i 0.534338 0.845271i \(-0.320561\pi\)
−0.845271 + 0.534338i \(0.820561\pi\)
\(998\) 351.013 351.013i 0.351716 0.351716i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 225.3.g.g.82.1 4
3.2 odd 2 inner 225.3.g.g.82.2 4
5.2 odd 4 45.3.g.a.28.2 yes 4
5.3 odd 4 inner 225.3.g.g.118.1 4
5.4 even 2 45.3.g.a.37.2 yes 4
15.2 even 4 45.3.g.a.28.1 4
15.8 even 4 inner 225.3.g.g.118.2 4
15.14 odd 2 45.3.g.a.37.1 yes 4
20.7 even 4 720.3.bh.j.433.2 4
20.19 odd 2 720.3.bh.j.577.2 4
45.2 even 12 405.3.l.g.28.2 8
45.4 even 6 405.3.l.g.217.1 8
45.7 odd 12 405.3.l.g.28.1 8
45.14 odd 6 405.3.l.g.217.2 8
45.22 odd 12 405.3.l.g.298.2 8
45.29 odd 6 405.3.l.g.352.1 8
45.32 even 12 405.3.l.g.298.1 8
45.34 even 6 405.3.l.g.352.2 8
60.47 odd 4 720.3.bh.j.433.1 4
60.59 even 2 720.3.bh.j.577.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
45.3.g.a.28.1 4 15.2 even 4
45.3.g.a.28.2 yes 4 5.2 odd 4
45.3.g.a.37.1 yes 4 15.14 odd 2
45.3.g.a.37.2 yes 4 5.4 even 2
225.3.g.g.82.1 4 1.1 even 1 trivial
225.3.g.g.82.2 4 3.2 odd 2 inner
225.3.g.g.118.1 4 5.3 odd 4 inner
225.3.g.g.118.2 4 15.8 even 4 inner
405.3.l.g.28.1 8 45.7 odd 12
405.3.l.g.28.2 8 45.2 even 12
405.3.l.g.217.1 8 45.4 even 6
405.3.l.g.217.2 8 45.14 odd 6
405.3.l.g.298.1 8 45.32 even 12
405.3.l.g.298.2 8 45.22 odd 12
405.3.l.g.352.1 8 45.29 odd 6
405.3.l.g.352.2 8 45.34 even 6
720.3.bh.j.433.1 4 60.47 odd 4
720.3.bh.j.433.2 4 20.7 even 4
720.3.bh.j.577.1 4 60.59 even 2
720.3.bh.j.577.2 4 20.19 odd 2