Properties

Label 225.3.o.b.193.5
Level $225$
Weight $3$
Character 225.193
Analytic conductor $6.131$
Analytic rank $0$
Dimension $40$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [225,3,Mod(7,225)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(225, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([8, 3]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("225.7");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 225 = 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 225.o (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.13080594811\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(10\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 45)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 193.5
Character \(\chi\) \(=\) 225.193
Dual form 225.3.o.b.7.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.183646 + 0.0492077i) q^{2} +(1.82902 + 2.37796i) q^{3} +(-3.43280 - 1.98193i) q^{4} +(0.218877 + 0.526704i) q^{6} +(-8.70492 - 2.33248i) q^{7} +(-1.07064 - 1.07064i) q^{8} +(-2.30940 + 8.69866i) q^{9} +(-7.04110 - 12.1955i) q^{11} +(-1.56570 - 11.7880i) q^{12} +(-12.9444 + 3.46845i) q^{13} +(-1.48385 - 0.856699i) q^{14} +(7.78377 + 13.4819i) q^{16} +(0.740694 - 0.740694i) q^{17} +(-0.852153 + 1.48383i) q^{18} -7.09073i q^{19} +(-10.3749 - 24.9661i) q^{21} +(-0.692953 - 2.58614i) q^{22} +(-19.0499 + 5.10441i) q^{23} +(0.587726 - 4.50418i) q^{24} -2.54786 q^{26} +(-24.9090 + 10.4183i) q^{27} +(25.2594 + 25.2594i) q^{28} +(6.18301 - 3.56976i) q^{29} +(13.0783 - 22.6522i) q^{31} +(2.33357 + 8.70902i) q^{32} +(16.1223 - 39.0493i) q^{33} +(0.172473 - 0.0995774i) q^{34} +(25.1678 - 25.2837i) q^{36} +(23.0151 - 23.0151i) q^{37} +(0.348919 - 1.30218i) q^{38} +(-31.9234 - 24.4375i) q^{39} +(-36.0387 + 62.4209i) q^{41} +(-0.676780 - 5.09544i) q^{42} +(-3.22835 + 12.0484i) q^{43} +55.8198i q^{44} -3.74961 q^{46} +(-51.8935 - 13.9048i) q^{47} +(-17.8228 + 43.1681i) q^{48} +(27.9000 + 16.1081i) q^{49} +(3.11608 + 0.406601i) q^{51} +(51.3098 + 13.7484i) q^{52} +(-17.2907 - 17.2907i) q^{53} +(-5.08709 + 0.687563i) q^{54} +(6.82262 + 11.8171i) q^{56} +(16.8615 - 12.9691i) q^{57} +(1.31114 - 0.351320i) q^{58} +(27.5407 + 15.9006i) q^{59} +(40.7317 + 70.5494i) q^{61} +(3.51643 - 3.51643i) q^{62} +(40.3926 - 70.3345i) q^{63} -60.5560i q^{64} +(4.88231 - 6.37790i) q^{66} +(17.1864 + 64.1404i) q^{67} +(-4.01065 + 1.07465i) q^{68} +(-46.9807 - 35.9639i) q^{69} -36.3928 q^{71} +(11.7857 - 6.84062i) q^{72} +(-2.90991 - 2.90991i) q^{73} +(5.35915 - 3.09411i) q^{74} +(-14.0533 + 24.3410i) q^{76} +(32.8464 + 122.584i) q^{77} +(-4.66008 - 6.05872i) q^{78} +(71.8823 - 41.5012i) q^{79} +(-70.3333 - 40.1774i) q^{81} +(-9.68994 + 9.68994i) q^{82} +(13.7671 - 51.3796i) q^{83} +(-13.8661 + 106.266i) q^{84} +(-1.18574 + 2.05377i) q^{86} +(19.7976 + 8.17381i) q^{87} +(-5.51857 + 20.5956i) q^{88} -22.5436i q^{89} +120.770 q^{91} +(75.5111 + 20.2331i) q^{92} +(77.7864 - 10.3316i) q^{93} +(-8.84580 - 5.10712i) q^{94} +(-16.4416 + 21.4781i) q^{96} +(-33.7192 - 9.03502i) q^{97} +(4.33107 + 4.33107i) q^{98} +(122.346 - 33.0837i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q + 2 q^{2} + 6 q^{3} - 24 q^{6} + 2 q^{7} + 24 q^{8} + 8 q^{11} + 30 q^{12} + 2 q^{13} + 28 q^{16} - 28 q^{17} - 48 q^{18} + 12 q^{21} - 14 q^{22} - 82 q^{23} - 112 q^{26} + 198 q^{27} + 88 q^{28} - 4 q^{31}+ \cdots + 1876 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/225\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.183646 + 0.0492077i 0.0918228 + 0.0246039i 0.304438 0.952532i \(-0.401531\pi\)
−0.212615 + 0.977136i \(0.568198\pi\)
\(3\) 1.82902 + 2.37796i 0.609672 + 0.792654i
\(4\) −3.43280 1.98193i −0.858199 0.495482i
\(5\) 0 0
\(6\) 0.218877 + 0.526704i 0.0364795 + 0.0877840i
\(7\) −8.70492 2.33248i −1.24356 0.333211i −0.423715 0.905796i \(-0.639274\pi\)
−0.819846 + 0.572585i \(0.805941\pi\)
\(8\) −1.07064 1.07064i −0.133831 0.133831i
\(9\) −2.30940 + 8.69866i −0.256600 + 0.966518i
\(10\) 0 0
\(11\) −7.04110 12.1955i −0.640100 1.10869i −0.985410 0.170197i \(-0.945560\pi\)
0.345310 0.938489i \(-0.387774\pi\)
\(12\) −1.56570 11.7880i −0.130475 0.982336i
\(13\) −12.9444 + 3.46845i −0.995725 + 0.266804i −0.719653 0.694333i \(-0.755699\pi\)
−0.276071 + 0.961137i \(0.589033\pi\)
\(14\) −1.48385 0.856699i −0.105989 0.0611928i
\(15\) 0 0
\(16\) 7.78377 + 13.4819i 0.486486 + 0.842618i
\(17\) 0.740694 0.740694i 0.0435702 0.0435702i −0.684986 0.728556i \(-0.740192\pi\)
0.728556 + 0.684986i \(0.240192\pi\)
\(18\) −0.852153 + 1.48383i −0.0473418 + 0.0824350i
\(19\) 7.09073i 0.373196i −0.982436 0.186598i \(-0.940254\pi\)
0.982436 0.186598i \(-0.0597463\pi\)
\(20\) 0 0
\(21\) −10.3749 24.9661i −0.494043 1.18886i
\(22\) −0.692953 2.58614i −0.0314979 0.117552i
\(23\) −19.0499 + 5.10441i −0.828257 + 0.221931i −0.647953 0.761680i \(-0.724375\pi\)
−0.180304 + 0.983611i \(0.557708\pi\)
\(24\) 0.587726 4.50418i 0.0244886 0.187674i
\(25\) 0 0
\(26\) −2.54786 −0.0979947
\(27\) −24.9090 + 10.4183i −0.922556 + 0.385863i
\(28\) 25.2594 + 25.2594i 0.902123 + 0.902123i
\(29\) 6.18301 3.56976i 0.213207 0.123095i −0.389594 0.920987i \(-0.627385\pi\)
0.602801 + 0.797892i \(0.294051\pi\)
\(30\) 0 0
\(31\) 13.0783 22.6522i 0.421879 0.730716i −0.574244 0.818684i \(-0.694704\pi\)
0.996123 + 0.0879678i \(0.0280373\pi\)
\(32\) 2.33357 + 8.70902i 0.0729242 + 0.272157i
\(33\) 16.1223 39.0493i 0.488553 1.18331i
\(34\) 0.172473 0.0995774i 0.00507274 0.00292875i
\(35\) 0 0
\(36\) 25.1678 25.2837i 0.699106 0.702324i
\(37\) 23.0151 23.0151i 0.622031 0.622031i −0.324020 0.946050i \(-0.605034\pi\)
0.946050 + 0.324020i \(0.105034\pi\)
\(38\) 0.348919 1.30218i 0.00918207 0.0342680i
\(39\) −31.9234 24.4375i −0.818548 0.626602i
\(40\) 0 0
\(41\) −36.0387 + 62.4209i −0.878993 + 1.52246i −0.0265459 + 0.999648i \(0.508451\pi\)
−0.852447 + 0.522813i \(0.824883\pi\)
\(42\) −0.676780 5.09544i −0.0161138 0.121320i
\(43\) −3.22835 + 12.0484i −0.0750779 + 0.280195i −0.993251 0.115985i \(-0.962998\pi\)
0.918173 + 0.396180i \(0.129664\pi\)
\(44\) 55.8198i 1.26863i
\(45\) 0 0
\(46\) −3.74961 −0.0815133
\(47\) −51.8935 13.9048i −1.10412 0.295847i −0.339677 0.940542i \(-0.610318\pi\)
−0.764440 + 0.644695i \(0.776985\pi\)
\(48\) −17.8228 + 43.1681i −0.371308 + 0.899335i
\(49\) 27.9000 + 16.1081i 0.569388 + 0.328736i
\(50\) 0 0
\(51\) 3.11608 + 0.406601i 0.0610997 + 0.00797257i
\(52\) 51.3098 + 13.7484i 0.986727 + 0.264393i
\(53\) −17.2907 17.2907i −0.326240 0.326240i 0.524915 0.851155i \(-0.324097\pi\)
−0.851155 + 0.524915i \(0.824097\pi\)
\(54\) −5.08709 + 0.687563i −0.0942054 + 0.0127326i
\(55\) 0 0
\(56\) 6.82262 + 11.8171i 0.121833 + 0.211020i
\(57\) 16.8615 12.9691i 0.295816 0.227527i
\(58\) 1.31114 0.351320i 0.0226059 0.00605724i
\(59\) 27.5407 + 15.9006i 0.466792 + 0.269502i 0.714896 0.699231i \(-0.246474\pi\)
−0.248104 + 0.968733i \(0.579807\pi\)
\(60\) 0 0
\(61\) 40.7317 + 70.5494i 0.667733 + 1.15655i 0.978537 + 0.206073i \(0.0660684\pi\)
−0.310804 + 0.950474i \(0.600598\pi\)
\(62\) 3.51643 3.51643i 0.0567166 0.0567166i
\(63\) 40.3926 70.3345i 0.641152 1.11642i
\(64\) 60.5560i 0.946187i
\(65\) 0 0
\(66\) 4.88231 6.37790i 0.0739744 0.0966348i
\(67\) 17.1864 + 64.1404i 0.256513 + 0.957319i 0.967243 + 0.253854i \(0.0816983\pi\)
−0.710730 + 0.703465i \(0.751635\pi\)
\(68\) −4.01065 + 1.07465i −0.0589802 + 0.0158037i
\(69\) −46.9807 35.9639i −0.680880 0.521216i
\(70\) 0 0
\(71\) −36.3928 −0.512574 −0.256287 0.966601i \(-0.582499\pi\)
−0.256287 + 0.966601i \(0.582499\pi\)
\(72\) 11.7857 6.84062i 0.163691 0.0950086i
\(73\) −2.90991 2.90991i −0.0398617 0.0398617i 0.686895 0.726757i \(-0.258973\pi\)
−0.726757 + 0.686895i \(0.758973\pi\)
\(74\) 5.35915 3.09411i 0.0724210 0.0418123i
\(75\) 0 0
\(76\) −14.0533 + 24.3410i −0.184912 + 0.320277i
\(77\) 32.8464 + 122.584i 0.426577 + 1.59201i
\(78\) −4.66008 6.05872i −0.0597446 0.0776759i
\(79\) 71.8823 41.5012i 0.909902 0.525332i 0.0295025 0.999565i \(-0.490608\pi\)
0.880400 + 0.474232i \(0.157274\pi\)
\(80\) 0 0
\(81\) −70.3333 40.1774i −0.868313 0.496017i
\(82\) −9.68994 + 9.68994i −0.118170 + 0.118170i
\(83\) 13.7671 51.3796i 0.165869 0.619031i −0.832059 0.554687i \(-0.812838\pi\)
0.997928 0.0643438i \(-0.0204954\pi\)
\(84\) −13.8661 + 106.266i −0.165072 + 1.26507i
\(85\) 0 0
\(86\) −1.18574 + 2.05377i −0.0137877 + 0.0238811i
\(87\) 19.7976 + 8.17381i 0.227558 + 0.0939518i
\(88\) −5.51857 + 20.5956i −0.0627111 + 0.234041i
\(89\) 22.5436i 0.253299i −0.991948 0.126650i \(-0.959578\pi\)
0.991948 0.126650i \(-0.0404224\pi\)
\(90\) 0 0
\(91\) 120.770 1.32715
\(92\) 75.5111 + 20.2331i 0.820773 + 0.219925i
\(93\) 77.7864 10.3316i 0.836413 0.111093i
\(94\) −8.84580 5.10712i −0.0941042 0.0543311i
\(95\) 0 0
\(96\) −16.4416 + 21.4781i −0.171266 + 0.223730i
\(97\) −33.7192 9.03502i −0.347620 0.0931446i 0.0807843 0.996732i \(-0.474258\pi\)
−0.428405 + 0.903587i \(0.640924\pi\)
\(98\) 4.33107 + 4.33107i 0.0441946 + 0.0441946i
\(99\) 122.346 33.0837i 1.23581 0.334179i
\(100\) 0 0
\(101\) −29.7283 51.4909i −0.294340 0.509811i 0.680491 0.732756i \(-0.261766\pi\)
−0.974831 + 0.222945i \(0.928433\pi\)
\(102\) 0.552247 + 0.228006i 0.00541419 + 0.00223535i
\(103\) 76.0184 20.3691i 0.738043 0.197758i 0.129835 0.991536i \(-0.458555\pi\)
0.608208 + 0.793778i \(0.291889\pi\)
\(104\) 17.5723 + 10.1454i 0.168965 + 0.0975519i
\(105\) 0 0
\(106\) −2.32453 4.02620i −0.0219295 0.0379830i
\(107\) 50.6865 50.6865i 0.473706 0.473706i −0.429406 0.903112i \(-0.641277\pi\)
0.903112 + 0.429406i \(0.141277\pi\)
\(108\) 106.156 + 13.6039i 0.982925 + 0.125962i
\(109\) 47.8364i 0.438866i 0.975628 + 0.219433i \(0.0704208\pi\)
−0.975628 + 0.219433i \(0.929579\pi\)
\(110\) 0 0
\(111\) 96.8241 + 12.6341i 0.872289 + 0.113820i
\(112\) −36.3109 135.514i −0.324205 1.20995i
\(113\) −168.318 + 45.1005i −1.48954 + 0.399120i −0.909580 0.415529i \(-0.863597\pi\)
−0.579955 + 0.814648i \(0.696930\pi\)
\(114\) 3.73472 1.55200i 0.0327607 0.0136140i
\(115\) 0 0
\(116\) −28.3000 −0.243966
\(117\) −0.276954 120.609i −0.00236713 1.03085i
\(118\) 4.27530 + 4.27530i 0.0362313 + 0.0362313i
\(119\) −8.17534 + 4.72003i −0.0687003 + 0.0396641i
\(120\) 0 0
\(121\) −38.6542 + 66.9510i −0.319456 + 0.553314i
\(122\) 4.00863 + 14.9604i 0.0328576 + 0.122626i
\(123\) −214.350 + 28.4701i −1.74268 + 0.231464i
\(124\) −89.7900 + 51.8403i −0.724113 + 0.418067i
\(125\) 0 0
\(126\) 10.8789 10.9290i 0.0863407 0.0867381i
\(127\) −16.3333 + 16.3333i −0.128608 + 0.128608i −0.768481 0.639873i \(-0.778987\pi\)
0.639873 + 0.768481i \(0.278987\pi\)
\(128\) 12.3141 45.9569i 0.0962041 0.359038i
\(129\) −34.5553 + 14.3598i −0.267870 + 0.111316i
\(130\) 0 0
\(131\) −27.6049 + 47.8130i −0.210724 + 0.364985i −0.951941 0.306280i \(-0.900916\pi\)
0.741217 + 0.671265i \(0.234249\pi\)
\(132\) −132.737 + 102.095i −1.00559 + 0.773449i
\(133\) −16.5390 + 61.7243i −0.124353 + 0.464092i
\(134\) 12.6248i 0.0942150i
\(135\) 0 0
\(136\) −1.58604 −0.0116621
\(137\) −189.371 50.7417i −1.38227 0.370377i −0.510323 0.859983i \(-0.670474\pi\)
−0.871944 + 0.489606i \(0.837141\pi\)
\(138\) −6.85810 8.91643i −0.0496964 0.0646118i
\(139\) −82.5364 47.6524i −0.593787 0.342823i 0.172806 0.984956i \(-0.444717\pi\)
−0.766594 + 0.642133i \(0.778050\pi\)
\(140\) 0 0
\(141\) −61.8489 148.833i −0.438645 1.05555i
\(142\) −6.68338 1.79081i −0.0470660 0.0126113i
\(143\) 133.443 + 133.443i 0.933165 + 0.933165i
\(144\) −135.250 + 36.5733i −0.939237 + 0.253981i
\(145\) 0 0
\(146\) −0.391202 0.677581i −0.00267946 0.00464097i
\(147\) 12.7252 + 95.8070i 0.0865657 + 0.651748i
\(148\) −124.621 + 33.3920i −0.842031 + 0.225622i
\(149\) −225.341 130.101i −1.51235 0.873158i −0.999896 0.0144460i \(-0.995402\pi\)
−0.512458 0.858712i \(-0.671265\pi\)
\(150\) 0 0
\(151\) −128.914 223.285i −0.853735 1.47871i −0.877814 0.479002i \(-0.840999\pi\)
0.0240792 0.999710i \(-0.492335\pi\)
\(152\) −7.59165 + 7.59165i −0.0499451 + 0.0499451i
\(153\) 4.73248 + 8.15361i 0.0309313 + 0.0532915i
\(154\) 24.1284i 0.156678i
\(155\) 0 0
\(156\) 61.1532 + 147.159i 0.392008 + 0.943325i
\(157\) 12.0301 + 44.8971i 0.0766251 + 0.285969i 0.993597 0.112983i \(-0.0360407\pi\)
−0.916972 + 0.398952i \(0.869374\pi\)
\(158\) 15.2431 4.08436i 0.0964750 0.0258504i
\(159\) 9.49166 72.7416i 0.0596960 0.457494i
\(160\) 0 0
\(161\) 177.734 1.10394
\(162\) −10.9394 10.8393i −0.0675270 0.0669096i
\(163\) −76.8331 76.8331i −0.471369 0.471369i 0.430989 0.902357i \(-0.358165\pi\)
−0.902357 + 0.430989i \(0.858165\pi\)
\(164\) 247.427 142.852i 1.50870 0.871050i
\(165\) 0 0
\(166\) 5.05654 8.75819i 0.0304611 0.0527602i
\(167\) −80.7212 301.256i −0.483360 1.80393i −0.587333 0.809346i \(-0.699822\pi\)
0.103972 0.994580i \(-0.466845\pi\)
\(168\) −15.6220 + 37.8376i −0.0929881 + 0.225224i
\(169\) 9.16964 5.29409i 0.0542582 0.0313260i
\(170\) 0 0
\(171\) 61.6799 + 16.3754i 0.360701 + 0.0957623i
\(172\) 34.9612 34.9612i 0.203263 0.203263i
\(173\) 51.6158 192.633i 0.298357 1.11348i −0.640157 0.768244i \(-0.721131\pi\)
0.938514 0.345240i \(-0.112203\pi\)
\(174\) 3.23353 + 2.47528i 0.0185835 + 0.0142257i
\(175\) 0 0
\(176\) 109.613 189.855i 0.622799 1.07872i
\(177\) 12.5613 + 94.5733i 0.0709677 + 0.534312i
\(178\) 1.10932 4.14004i 0.00623214 0.0232587i
\(179\) 254.120i 1.41967i 0.704370 + 0.709833i \(0.251230\pi\)
−0.704370 + 0.709833i \(0.748770\pi\)
\(180\) 0 0
\(181\) −236.998 −1.30938 −0.654691 0.755896i \(-0.727201\pi\)
−0.654691 + 0.755896i \(0.727201\pi\)
\(182\) 22.1789 + 5.94283i 0.121862 + 0.0326529i
\(183\) −93.2648 + 225.894i −0.509644 + 1.23440i
\(184\) 25.8607 + 14.9307i 0.140547 + 0.0811450i
\(185\) 0 0
\(186\) 14.7935 + 1.93033i 0.0795351 + 0.0103781i
\(187\) −14.2485 3.81787i −0.0761950 0.0204164i
\(188\) 150.582 + 150.582i 0.800966 + 0.800966i
\(189\) 241.131 32.5909i 1.27583 0.172439i
\(190\) 0 0
\(191\) 27.2962 + 47.2784i 0.142912 + 0.247531i 0.928592 0.371102i \(-0.121020\pi\)
−0.785680 + 0.618633i \(0.787687\pi\)
\(192\) 144.000 110.758i 0.749999 0.576864i
\(193\) 193.408 51.8234i 1.00211 0.268515i 0.279782 0.960063i \(-0.409738\pi\)
0.722330 + 0.691548i \(0.243071\pi\)
\(194\) −5.74779 3.31849i −0.0296278 0.0171056i
\(195\) 0 0
\(196\) −63.8500 110.591i −0.325765 0.564242i
\(197\) −18.5367 + 18.5367i −0.0940948 + 0.0940948i −0.752587 0.658492i \(-0.771194\pi\)
0.658492 + 0.752587i \(0.271194\pi\)
\(198\) 24.0962 0.0553320i 0.121698 0.000279454i
\(199\) 206.081i 1.03558i 0.855507 + 0.517792i \(0.173246\pi\)
−0.855507 + 0.517792i \(0.826754\pi\)
\(200\) 0 0
\(201\) −121.089 + 158.182i −0.602434 + 0.786977i
\(202\) −2.92572 10.9190i −0.0144838 0.0540542i
\(203\) −62.1490 + 16.6528i −0.306153 + 0.0820334i
\(204\) −9.89103 7.57163i −0.0484854 0.0371158i
\(205\) 0 0
\(206\) 14.9628 0.0726348
\(207\) −0.407585 177.497i −0.00196901 0.857473i
\(208\) −147.518 147.518i −0.709219 0.709219i
\(209\) −86.4753 + 49.9266i −0.413758 + 0.238883i
\(210\) 0 0
\(211\) 121.373 210.225i 0.575230 0.996327i −0.420787 0.907159i \(-0.638246\pi\)
0.996017 0.0891675i \(-0.0284206\pi\)
\(212\) 25.0866 + 93.6244i 0.118333 + 0.441625i
\(213\) −66.5630 86.5406i −0.312502 0.406294i
\(214\) 11.8025 6.81419i 0.0551520 0.0318420i
\(215\) 0 0
\(216\) 37.8230 + 15.5144i 0.175106 + 0.0718258i
\(217\) −166.681 + 166.681i −0.768115 + 0.768115i
\(218\) −2.35392 + 8.78496i −0.0107978 + 0.0402980i
\(219\) 1.59738 12.2419i 0.00729397 0.0558991i
\(220\) 0 0
\(221\) −7.01880 + 12.1569i −0.0317593 + 0.0550087i
\(222\) 17.1596 + 7.08468i 0.0772957 + 0.0319130i
\(223\) 53.2572 198.758i 0.238821 0.891293i −0.737568 0.675273i \(-0.764026\pi\)
0.976389 0.216020i \(-0.0693077\pi\)
\(224\) 81.2544i 0.362743i
\(225\) 0 0
\(226\) −33.1301 −0.146593
\(227\) 179.821 + 48.1829i 0.792163 + 0.212259i 0.632140 0.774854i \(-0.282177\pi\)
0.160022 + 0.987113i \(0.448843\pi\)
\(228\) −83.5858 + 11.1019i −0.366604 + 0.0486927i
\(229\) 156.704 + 90.4733i 0.684298 + 0.395080i 0.801473 0.598031i \(-0.204050\pi\)
−0.117174 + 0.993111i \(0.537384\pi\)
\(230\) 0 0
\(231\) −231.425 + 302.316i −1.00184 + 1.30873i
\(232\) −10.4417 2.79786i −0.0450075 0.0120597i
\(233\) 120.230 + 120.230i 0.516010 + 0.516010i 0.916362 0.400351i \(-0.131112\pi\)
−0.400351 + 0.916362i \(0.631112\pi\)
\(234\) 5.88404 22.1630i 0.0251455 0.0947136i
\(235\) 0 0
\(236\) −63.0278 109.167i −0.267067 0.462573i
\(237\) 230.162 + 95.0268i 0.971148 + 0.400957i
\(238\) −1.73363 + 0.464524i −0.00728415 + 0.00195178i
\(239\) −332.123 191.751i −1.38963 0.802306i −0.396360 0.918095i \(-0.629727\pi\)
−0.993274 + 0.115790i \(0.963060\pi\)
\(240\) 0 0
\(241\) 162.944 + 282.226i 0.676114 + 1.17106i 0.976142 + 0.217134i \(0.0696708\pi\)
−0.300028 + 0.953931i \(0.596996\pi\)
\(242\) −10.3932 + 10.3932i −0.0429470 + 0.0429470i
\(243\) −33.1004 240.735i −0.136216 0.990679i
\(244\) 322.909i 1.32340i
\(245\) 0 0
\(246\) −40.7654 5.31925i −0.165713 0.0216230i
\(247\) 24.5938 + 91.7854i 0.0995702 + 0.371601i
\(248\) −38.2546 + 10.2503i −0.154252 + 0.0413318i
\(249\) 147.359 61.2364i 0.591803 0.245929i
\(250\) 0 0
\(251\) 428.941 1.70893 0.854465 0.519509i \(-0.173885\pi\)
0.854465 + 0.519509i \(0.173885\pi\)
\(252\) −278.057 + 161.389i −1.10340 + 0.640433i
\(253\) 196.383 + 196.383i 0.776219 + 0.776219i
\(254\) −3.80325 + 2.19581i −0.0149734 + 0.00864492i
\(255\) 0 0
\(256\) −116.589 + 201.938i −0.455426 + 0.788821i
\(257\) 95.3527 + 355.861i 0.371022 + 1.38467i 0.859070 + 0.511857i \(0.171042\pi\)
−0.488048 + 0.872817i \(0.662291\pi\)
\(258\) −7.05253 + 0.936723i −0.0273354 + 0.00363071i
\(259\) −254.027 + 146.663i −0.980800 + 0.566265i
\(260\) 0 0
\(261\) 16.7731 + 62.0279i 0.0642647 + 0.237655i
\(262\) −7.42228 + 7.42228i −0.0283293 + 0.0283293i
\(263\) −17.0763 + 63.7296i −0.0649289 + 0.242318i −0.990761 0.135616i \(-0.956699\pi\)
0.925833 + 0.377934i \(0.123365\pi\)
\(264\) −59.0691 + 24.5467i −0.223747 + 0.0929800i
\(265\) 0 0
\(266\) −6.07462 + 10.5216i −0.0228369 + 0.0395547i
\(267\) 53.6079 41.2327i 0.200779 0.154429i
\(268\) 68.1242 254.243i 0.254195 0.948668i
\(269\) 146.927i 0.546197i −0.961986 0.273099i \(-0.911951\pi\)
0.961986 0.273099i \(-0.0880485\pi\)
\(270\) 0 0
\(271\) −45.0155 −0.166109 −0.0830544 0.996545i \(-0.526468\pi\)
−0.0830544 + 0.996545i \(0.526468\pi\)
\(272\) 15.7513 + 4.22056i 0.0579094 + 0.0155168i
\(273\) 220.891 + 287.187i 0.809124 + 1.05197i
\(274\) −32.2802 18.6370i −0.117811 0.0680182i
\(275\) 0 0
\(276\) 89.9973 + 216.569i 0.326077 + 0.784671i
\(277\) −153.339 41.0870i −0.553570 0.148329i −0.0288193 0.999585i \(-0.509175\pi\)
−0.524751 + 0.851256i \(0.675841\pi\)
\(278\) −12.8126 12.8126i −0.0460885 0.0460885i
\(279\) 166.841 + 166.076i 0.597996 + 0.595256i
\(280\) 0 0
\(281\) −33.0937 57.3199i −0.117771 0.203986i 0.801113 0.598513i \(-0.204242\pi\)
−0.918884 + 0.394528i \(0.870908\pi\)
\(282\) −4.03456 30.3760i −0.0143069 0.107716i
\(283\) −388.793 + 104.177i −1.37383 + 0.368116i −0.868875 0.495032i \(-0.835156\pi\)
−0.504952 + 0.863148i \(0.668490\pi\)
\(284\) 124.929 + 72.1278i 0.439891 + 0.253971i
\(285\) 0 0
\(286\) 17.9397 + 31.0726i 0.0627264 + 0.108645i
\(287\) 459.310 459.310i 1.60038 1.60038i
\(288\) −81.1460 + 0.186335i −0.281757 + 0.000646996i
\(289\) 287.903i 0.996203i
\(290\) 0 0
\(291\) −40.1880 96.7081i −0.138103 0.332330i
\(292\) 4.22190 + 15.7563i 0.0144586 + 0.0539600i
\(293\) 209.736 56.1985i 0.715821 0.191804i 0.117515 0.993071i \(-0.462507\pi\)
0.598306 + 0.801267i \(0.295841\pi\)
\(294\) −2.37752 + 18.2207i −0.00808682 + 0.0619752i
\(295\) 0 0
\(296\) −49.2820 −0.166493
\(297\) 302.444 + 230.423i 1.01833 + 0.775833i
\(298\) −34.9809 34.9809i −0.117386 0.117386i
\(299\) 228.886 132.147i 0.765504 0.441964i
\(300\) 0 0
\(301\) 56.2051 97.3500i 0.186728 0.323422i
\(302\) −12.6871 47.3490i −0.0420103 0.156785i
\(303\) 68.0699 164.871i 0.224653 0.544127i
\(304\) 95.5965 55.1926i 0.314462 0.181555i
\(305\) 0 0
\(306\) 0.467880 + 1.73025i 0.00152902 + 0.00565441i
\(307\) 219.096 219.096i 0.713666 0.713666i −0.253634 0.967300i \(-0.581626\pi\)
0.967300 + 0.253634i \(0.0816258\pi\)
\(308\) 130.198 485.907i 0.422722 1.57762i
\(309\) 187.476 + 143.513i 0.606717 + 0.464445i
\(310\) 0 0
\(311\) −68.8478 + 119.248i −0.221376 + 0.383434i −0.955226 0.295877i \(-0.904388\pi\)
0.733850 + 0.679311i \(0.237721\pi\)
\(312\) 8.01473 + 60.3424i 0.0256882 + 0.193405i
\(313\) −1.70804 + 6.37451i −0.00545701 + 0.0203658i −0.968601 0.248622i \(-0.920022\pi\)
0.963144 + 0.268988i \(0.0866891\pi\)
\(314\) 8.83713i 0.0281437i
\(315\) 0 0
\(316\) −329.010 −1.04117
\(317\) −427.280 114.489i −1.34789 0.361165i −0.488532 0.872546i \(-0.662467\pi\)
−0.859354 + 0.511381i \(0.829134\pi\)
\(318\) 5.32255 12.8916i 0.0167376 0.0405397i
\(319\) −87.0704 50.2701i −0.272948 0.157587i
\(320\) 0 0
\(321\) 213.237 + 27.8241i 0.664290 + 0.0866796i
\(322\) 32.6401 + 8.74588i 0.101367 + 0.0271611i
\(323\) −5.25206 5.25206i −0.0162603 0.0162603i
\(324\) 161.811 + 277.316i 0.499418 + 0.855915i
\(325\) 0 0
\(326\) −10.3293 17.8909i −0.0316849 0.0548799i
\(327\) −113.753 + 87.4936i −0.347869 + 0.267565i
\(328\) 105.415 28.2459i 0.321388 0.0861156i
\(329\) 419.296 + 242.081i 1.27446 + 0.735808i
\(330\) 0 0
\(331\) −130.851 226.641i −0.395321 0.684716i 0.597821 0.801630i \(-0.296033\pi\)
−0.993142 + 0.116913i \(0.962700\pi\)
\(332\) −149.090 + 149.090i −0.449067 + 0.449067i
\(333\) 147.050 + 253.352i 0.441590 + 0.760817i
\(334\) 59.2964i 0.177534i
\(335\) 0 0
\(336\) 255.834 334.204i 0.761412 0.994654i
\(337\) 37.7355 + 140.831i 0.111975 + 0.417895i 0.999043 0.0437433i \(-0.0139284\pi\)
−0.887068 + 0.461639i \(0.847262\pi\)
\(338\) 1.94447 0.521020i 0.00575288 0.00154148i
\(339\) −415.103 317.763i −1.22449 0.937354i
\(340\) 0 0
\(341\) −368.341 −1.08018
\(342\) 10.5214 + 6.04239i 0.0307645 + 0.0176678i
\(343\) 106.954 + 106.954i 0.311820 + 0.311820i
\(344\) 16.3559 9.44310i 0.0475463 0.0274509i
\(345\) 0 0
\(346\) 18.9580 32.8363i 0.0547920 0.0949025i
\(347\) 2.62052 + 9.77990i 0.00755192 + 0.0281842i 0.969599 0.244699i \(-0.0786893\pi\)
−0.962047 + 0.272884i \(0.912023\pi\)
\(348\) −51.7612 67.2964i −0.148739 0.193380i
\(349\) 94.1070 54.3327i 0.269648 0.155681i −0.359080 0.933307i \(-0.616909\pi\)
0.628727 + 0.777626i \(0.283576\pi\)
\(350\) 0 0
\(351\) 286.297 221.255i 0.815662 0.630355i
\(352\) 89.7803 89.7803i 0.255058 0.255058i
\(353\) −125.168 + 467.133i −0.354583 + 1.32332i 0.526425 + 0.850221i \(0.323532\pi\)
−0.881008 + 0.473101i \(0.843135\pi\)
\(354\) −2.34691 + 17.9861i −0.00662968 + 0.0508082i
\(355\) 0 0
\(356\) −44.6798 + 77.3877i −0.125505 + 0.217381i
\(357\) −26.1769 10.8076i −0.0733246 0.0302735i
\(358\) −12.5047 + 46.6681i −0.0349293 + 0.130358i
\(359\) 279.063i 0.777333i −0.921378 0.388667i \(-0.872936\pi\)
0.921378 0.388667i \(-0.127064\pi\)
\(360\) 0 0
\(361\) 310.722 0.860724
\(362\) −43.5237 11.6621i −0.120231 0.0322159i
\(363\) −229.906 + 30.5363i −0.633350 + 0.0841220i
\(364\) −414.580 239.358i −1.13896 0.657576i
\(365\) 0 0
\(366\) −28.2434 + 36.8952i −0.0771678 + 0.100806i
\(367\) 172.547 + 46.2339i 0.470156 + 0.125978i 0.486115 0.873895i \(-0.338414\pi\)
−0.0159593 + 0.999873i \(0.505080\pi\)
\(368\) −217.097 217.097i −0.589938 0.589938i
\(369\) −459.750 457.643i −1.24594 1.24023i
\(370\) 0 0
\(371\) 110.184 + 190.844i 0.296992 + 0.514406i
\(372\) −287.502 118.701i −0.772854 0.319087i
\(373\) −84.7938 + 22.7204i −0.227329 + 0.0609127i −0.370685 0.928758i \(-0.620877\pi\)
0.143356 + 0.989671i \(0.454211\pi\)
\(374\) −2.42880 1.40227i −0.00649412 0.00374938i
\(375\) 0 0
\(376\) 40.6724 + 70.4466i 0.108171 + 0.187358i
\(377\) −67.6540 + 67.6540i −0.179453 + 0.179453i
\(378\) 45.8865 + 5.88035i 0.121393 + 0.0155565i
\(379\) 10.3793i 0.0273860i −0.999906 0.0136930i \(-0.995641\pi\)
0.999906 0.0136930i \(-0.00435875\pi\)
\(380\) 0 0
\(381\) −68.7136 8.96607i −0.180351 0.0235330i
\(382\) 2.68637 + 10.0257i 0.00703238 + 0.0262452i
\(383\) −124.435 + 33.3422i −0.324895 + 0.0870554i −0.417580 0.908640i \(-0.637122\pi\)
0.0926850 + 0.995695i \(0.470455\pi\)
\(384\) 131.807 54.7734i 0.343246 0.142639i
\(385\) 0 0
\(386\) 38.0686 0.0986233
\(387\) −97.3490 55.9068i −0.251548 0.144462i
\(388\) 97.8443 + 97.8443i 0.252176 + 0.252176i
\(389\) −635.357 + 366.824i −1.63331 + 0.942991i −0.650245 + 0.759724i \(0.725334\pi\)
−0.983063 + 0.183267i \(0.941333\pi\)
\(390\) 0 0
\(391\) −10.3294 + 17.8910i −0.0264178 + 0.0457570i
\(392\) −12.6250 47.1170i −0.0322065 0.120196i
\(393\) −164.187 + 21.8075i −0.417779 + 0.0554898i
\(394\) −4.31633 + 2.49203i −0.0109552 + 0.00632496i
\(395\) 0 0
\(396\) −485.557 128.910i −1.22615 0.325531i
\(397\) −151.257 + 151.257i −0.381000 + 0.381000i −0.871462 0.490463i \(-0.836828\pi\)
0.490463 + 0.871462i \(0.336828\pi\)
\(398\) −10.1408 + 37.8459i −0.0254794 + 0.0950903i
\(399\) −177.028 + 73.5656i −0.443679 + 0.184375i
\(400\) 0 0
\(401\) −3.27254 + 5.66821i −0.00816096 + 0.0141352i −0.870077 0.492916i \(-0.835931\pi\)
0.861916 + 0.507051i \(0.169264\pi\)
\(402\) −30.0213 + 23.0910i −0.0746799 + 0.0574402i
\(403\) −90.7225 + 338.581i −0.225118 + 0.840151i
\(404\) 235.677i 0.583360i
\(405\) 0 0
\(406\) −12.2328 −0.0301302
\(407\) −442.734 118.630i −1.08780 0.291475i
\(408\) −2.90089 3.77154i −0.00711003 0.00924397i
\(409\) 639.259 + 369.076i 1.56298 + 0.902387i 0.996953 + 0.0779993i \(0.0248532\pi\)
0.566026 + 0.824387i \(0.308480\pi\)
\(410\) 0 0
\(411\) −225.700 543.123i −0.549148 1.32147i
\(412\) −301.326 80.7400i −0.731373 0.195971i
\(413\) −202.652 202.652i −0.490683 0.490683i
\(414\) 8.65937 32.6166i 0.0209163 0.0787840i
\(415\) 0 0
\(416\) −60.4136 104.639i −0.145225 0.251537i
\(417\) −37.6448 283.426i −0.0902753 0.679678i
\(418\) −18.3376 + 4.91354i −0.0438698 + 0.0117549i
\(419\) −235.376 135.894i −0.561756 0.324330i 0.192094 0.981377i \(-0.438472\pi\)
−0.753850 + 0.657047i \(0.771805\pi\)
\(420\) 0 0
\(421\) 102.996 + 178.395i 0.244647 + 0.423741i 0.962032 0.272936i \(-0.0879947\pi\)
−0.717386 + 0.696676i \(0.754661\pi\)
\(422\) 32.6344 32.6344i 0.0773327 0.0773327i
\(423\) 240.796 419.292i 0.569259 0.991235i
\(424\) 37.0244i 0.0873217i
\(425\) 0 0
\(426\) −7.96553 19.1682i −0.0186984 0.0449958i
\(427\) −190.011 709.133i −0.444992 1.66073i
\(428\) −274.453 + 73.5396i −0.641246 + 0.171821i
\(429\) −73.2528 + 561.390i −0.170752 + 1.30860i
\(430\) 0 0
\(431\) −238.470 −0.553294 −0.276647 0.960972i \(-0.589223\pi\)
−0.276647 + 0.960972i \(0.589223\pi\)
\(432\) −334.345 254.727i −0.773946 0.589645i
\(433\) −79.6977 79.6977i −0.184059 0.184059i 0.609063 0.793122i \(-0.291546\pi\)
−0.793122 + 0.609063i \(0.791546\pi\)
\(434\) −38.8122 + 22.4083i −0.0894291 + 0.0516319i
\(435\) 0 0
\(436\) 94.8083 164.213i 0.217450 0.376635i
\(437\) 36.1940 + 135.078i 0.0828238 + 0.309103i
\(438\) 0.895748 2.16957i 0.00204509 0.00495336i
\(439\) 280.123 161.729i 0.638094 0.368404i −0.145786 0.989316i \(-0.546571\pi\)
0.783880 + 0.620912i \(0.213238\pi\)
\(440\) 0 0
\(441\) −204.551 + 205.492i −0.463834 + 0.465969i
\(442\) −1.88719 + 1.88719i −0.00426965 + 0.00426965i
\(443\) −195.518 + 729.682i −0.441349 + 1.64714i 0.284051 + 0.958809i \(0.408322\pi\)
−0.725400 + 0.688328i \(0.758345\pi\)
\(444\) −307.338 235.268i −0.692202 0.529884i
\(445\) 0 0
\(446\) 19.5609 33.8805i 0.0438585 0.0759652i
\(447\) −102.778 773.808i −0.229928 1.73111i
\(448\) −141.245 + 527.135i −0.315280 + 1.17664i
\(449\) 514.733i 1.14640i 0.819416 + 0.573199i \(0.194298\pi\)
−0.819416 + 0.573199i \(0.805702\pi\)
\(450\) 0 0
\(451\) 1015.01 2.25057
\(452\) 667.186 + 178.772i 1.47607 + 0.395513i
\(453\) 295.179 714.945i 0.651609 1.57825i
\(454\) 30.6524 + 17.6972i 0.0675162 + 0.0389805i
\(455\) 0 0
\(456\) −31.9379 4.16741i −0.0700393 0.00913905i
\(457\) 550.455 + 147.494i 1.20450 + 0.322744i 0.804601 0.593816i \(-0.202379\pi\)
0.399897 + 0.916560i \(0.369046\pi\)
\(458\) 24.3261 + 24.3261i 0.0531137 + 0.0531137i
\(459\) −10.7332 + 26.1667i −0.0233838 + 0.0570081i
\(460\) 0 0
\(461\) −119.334 206.693i −0.258860 0.448358i 0.707077 0.707137i \(-0.250013\pi\)
−0.965937 + 0.258778i \(0.916680\pi\)
\(462\) −57.3764 + 44.1312i −0.124191 + 0.0955222i
\(463\) 796.822 213.508i 1.72100 0.461140i 0.742921 0.669380i \(-0.233440\pi\)
0.978078 + 0.208239i \(0.0667733\pi\)
\(464\) 96.2543 + 55.5724i 0.207445 + 0.119768i
\(465\) 0 0
\(466\) 16.1635 + 27.9961i 0.0346857 + 0.0600774i
\(467\) −489.265 + 489.265i −1.04768 + 1.04768i −0.0488707 + 0.998805i \(0.515562\pi\)
−0.998805 + 0.0488707i \(0.984438\pi\)
\(468\) −238.088 + 414.576i −0.508734 + 0.885845i
\(469\) 598.424i 1.27596i
\(470\) 0 0
\(471\) −84.7602 + 110.725i −0.179958 + 0.235084i
\(472\) −12.4624 46.5102i −0.0264033 0.0985386i
\(473\) 169.667 45.4623i 0.358705 0.0961147i
\(474\) 37.5922 + 28.7770i 0.0793085 + 0.0607110i
\(475\) 0 0
\(476\) 37.4190 0.0786114
\(477\) 190.337 110.475i 0.399030 0.231603i
\(478\) −51.5572 51.5572i −0.107860 0.107860i
\(479\) 142.795 82.4426i 0.298110 0.172114i −0.343483 0.939159i \(-0.611607\pi\)
0.641594 + 0.767045i \(0.278274\pi\)
\(480\) 0 0
\(481\) −218.091 + 377.744i −0.453411 + 0.785331i
\(482\) 16.0362 + 59.8478i 0.0332700 + 0.124165i
\(483\) 325.078 + 422.645i 0.673040 + 0.875041i
\(484\) 265.384 153.220i 0.548314 0.316569i
\(485\) 0 0
\(486\) 5.76728 45.8387i 0.0118668 0.0943184i
\(487\) −326.960 + 326.960i −0.671376 + 0.671376i −0.958033 0.286657i \(-0.907456\pi\)
0.286657 + 0.958033i \(0.407456\pi\)
\(488\) 31.9241 119.142i 0.0654183 0.244144i
\(489\) 42.1772 323.235i 0.0862520 0.661013i
\(490\) 0 0
\(491\) −182.011 + 315.253i −0.370695 + 0.642063i −0.989673 0.143346i \(-0.954214\pi\)
0.618977 + 0.785409i \(0.287547\pi\)
\(492\) 792.245 + 327.094i 1.61025 + 0.664824i
\(493\) 1.93562 7.22382i 0.00392620 0.0146528i
\(494\) 18.0662i 0.0365713i
\(495\) 0 0
\(496\) 407.193 0.820953
\(497\) 316.796 + 84.8853i 0.637417 + 0.170795i
\(498\) 30.0751 3.99460i 0.0603918 0.00802129i
\(499\) −353.578 204.138i −0.708573 0.409095i 0.101960 0.994789i \(-0.467489\pi\)
−0.810532 + 0.585694i \(0.800822\pi\)
\(500\) 0 0
\(501\) 568.734 742.953i 1.13520 1.48294i
\(502\) 78.7732 + 21.1072i 0.156919 + 0.0420463i
\(503\) −555.921 555.921i −1.10521 1.10521i −0.993771 0.111440i \(-0.964454\pi\)
−0.111440 0.993771i \(-0.535546\pi\)
\(504\) −118.549 + 32.0571i −0.235217 + 0.0636055i
\(505\) 0 0
\(506\) 26.4014 + 45.7286i 0.0521767 + 0.0903726i
\(507\) 29.3606 + 12.1221i 0.0579104 + 0.0239094i
\(508\) 88.4400 23.6974i 0.174095 0.0466485i
\(509\) 453.968 + 262.098i 0.891882 + 0.514928i 0.874558 0.484922i \(-0.161152\pi\)
0.0173243 + 0.999850i \(0.494485\pi\)
\(510\) 0 0
\(511\) 18.5432 + 32.1178i 0.0362881 + 0.0628528i
\(512\) −165.919 + 165.919i −0.324061 + 0.324061i
\(513\) 73.8735 + 176.623i 0.144003 + 0.344295i
\(514\) 70.0445i 0.136273i
\(515\) 0 0
\(516\) 147.081 + 19.1918i 0.285041 + 0.0371935i
\(517\) 195.811 + 730.775i 0.378744 + 1.41349i
\(518\) −53.8679 + 14.4339i −0.103992 + 0.0278646i
\(519\) 552.479 229.588i 1.06451 0.442366i
\(520\) 0 0
\(521\) −694.042 −1.33213 −0.666067 0.745892i \(-0.732023\pi\)
−0.666067 + 0.745892i \(0.732023\pi\)
\(522\) 0.0280527 + 12.2165i 5.37408e−5 + 0.0234033i
\(523\) −244.233 244.233i −0.466985 0.466985i 0.433951 0.900936i \(-0.357119\pi\)
−0.900936 + 0.433951i \(0.857119\pi\)
\(524\) 189.524 109.422i 0.361687 0.208820i
\(525\) 0 0
\(526\) −6.27198 + 10.8634i −0.0119239 + 0.0206528i
\(527\) −7.09137 26.4653i −0.0134561 0.0502189i
\(528\) 651.950 86.5925i 1.23475 0.164001i
\(529\) −121.283 + 70.0227i −0.229268 + 0.132368i
\(530\) 0 0
\(531\) −201.917 + 202.846i −0.380258 + 0.382008i
\(532\) 179.108 179.108i 0.336669 0.336669i
\(533\) 249.997 933.001i 0.469037 1.75047i
\(534\) 11.8738 4.93428i 0.0222356 0.00924022i
\(535\) 0 0
\(536\) 50.2711 87.0720i 0.0937893 0.162448i
\(537\) −604.288 + 464.790i −1.12530 + 0.865531i
\(538\) 7.22994 26.9825i 0.0134386 0.0501534i
\(539\) 453.674i 0.841696i
\(540\) 0 0
\(541\) −682.588 −1.26172 −0.630858 0.775899i \(-0.717297\pi\)
−0.630858 + 0.775899i \(0.717297\pi\)
\(542\) −8.26689 2.21511i −0.0152526 0.00408691i
\(543\) −433.474 563.573i −0.798294 1.03789i
\(544\) 8.17918 + 4.72225i 0.0150353 + 0.00868061i
\(545\) 0 0
\(546\) 26.4338 + 63.6102i 0.0484136 + 0.116502i
\(547\) −62.4694 16.7386i −0.114204 0.0306008i 0.201265 0.979537i \(-0.435495\pi\)
−0.315468 + 0.948936i \(0.602162\pi\)
\(548\) 549.504 + 549.504i 1.00275 + 1.00275i
\(549\) −707.751 + 191.384i −1.28916 + 0.348605i
\(550\) 0 0
\(551\) −25.3122 43.8421i −0.0459387 0.0795682i
\(552\) 11.7950 + 88.8042i 0.0213678 + 0.160877i
\(553\) −722.530 + 193.601i −1.30656 + 0.350093i
\(554\) −26.1382 15.0909i −0.0471809 0.0272399i
\(555\) 0 0
\(556\) 188.887 + 327.162i 0.339725 + 0.588421i
\(557\) 66.9124 66.9124i 0.120130 0.120130i −0.644486 0.764616i \(-0.722929\pi\)
0.764616 + 0.644486i \(0.222929\pi\)
\(558\) 22.4674 + 38.7091i 0.0402641 + 0.0693711i
\(559\) 167.156i 0.299028i
\(560\) 0 0
\(561\) −16.9819 40.8652i −0.0302708 0.0728436i
\(562\) −3.25693 12.1550i −0.00579525 0.0216282i
\(563\) 137.436 36.8258i 0.244113 0.0654099i −0.134688 0.990888i \(-0.543003\pi\)
0.378801 + 0.925478i \(0.376337\pi\)
\(564\) −82.6612 + 633.493i −0.146562 + 1.12322i
\(565\) 0 0
\(566\) −76.5264 −0.135206
\(567\) 518.533 + 513.792i 0.914521 + 0.906159i
\(568\) 38.9637 + 38.9637i 0.0685981 + 0.0685981i
\(569\) 276.828 159.827i 0.486517 0.280891i −0.236611 0.971604i \(-0.576037\pi\)
0.723128 + 0.690714i \(0.242703\pi\)
\(570\) 0 0
\(571\) −324.309 + 561.720i −0.567967 + 0.983748i 0.428800 + 0.903400i \(0.358937\pi\)
−0.996767 + 0.0803483i \(0.974397\pi\)
\(572\) −193.608 722.555i −0.338475 1.26321i
\(573\) −62.5011 + 151.382i −0.109077 + 0.264193i
\(574\) 106.952 61.7486i 0.186327 0.107576i
\(575\) 0 0
\(576\) 526.756 + 139.848i 0.914506 + 0.242792i
\(577\) 519.616 519.616i 0.900548 0.900548i −0.0949353 0.995483i \(-0.530264\pi\)
0.995483 + 0.0949353i \(0.0302644\pi\)
\(578\) −14.1670 + 52.8721i −0.0245104 + 0.0914742i
\(579\) 476.980 + 365.130i 0.823800 + 0.630622i
\(580\) 0 0
\(581\) −239.683 + 415.144i −0.412536 + 0.714533i
\(582\) −2.62156 19.7376i −0.00450440 0.0339134i
\(583\) −89.1240 + 332.615i −0.152871 + 0.570523i
\(584\) 6.23095i 0.0106694i
\(585\) 0 0
\(586\) 41.2824 0.0704478
\(587\) 797.684 + 213.739i 1.35892 + 0.364120i 0.863418 0.504489i \(-0.168319\pi\)
0.495498 + 0.868609i \(0.334986\pi\)
\(588\) 146.200 354.106i 0.248639 0.602222i
\(589\) −160.621 92.7344i −0.272701 0.157444i
\(590\) 0 0
\(591\) −77.9834 10.1756i −0.131952 0.0172177i
\(592\) 489.432 + 131.143i 0.826743 + 0.221525i
\(593\) −329.014 329.014i −0.554829 0.554829i 0.373002 0.927831i \(-0.378329\pi\)
−0.927831 + 0.373002i \(0.878329\pi\)
\(594\) 44.2039 + 57.1987i 0.0744174 + 0.0962941i
\(595\) 0 0
\(596\) 515.699 + 893.218i 0.865267 + 1.49869i
\(597\) −490.053 + 376.926i −0.820860 + 0.631366i
\(598\) 48.5366 13.0053i 0.0811648 0.0217480i
\(599\) 445.587 + 257.260i 0.743885 + 0.429482i 0.823480 0.567345i \(-0.192029\pi\)
−0.0795952 + 0.996827i \(0.525363\pi\)
\(600\) 0 0
\(601\) −19.7478 34.2041i −0.0328582 0.0569121i 0.849129 0.528186i \(-0.177128\pi\)
−0.881987 + 0.471274i \(0.843794\pi\)
\(602\) 15.1122 15.1122i 0.0251033 0.0251033i
\(603\) −597.626 + 1.37232i −0.991087 + 0.00227583i
\(604\) 1021.99i 1.69204i
\(605\) 0 0
\(606\) 20.6137 26.9282i 0.0340159 0.0444360i
\(607\) −104.659 390.594i −0.172421 0.643483i −0.996977 0.0777026i \(-0.975242\pi\)
0.824556 0.565781i \(-0.191425\pi\)
\(608\) 61.7533 16.5468i 0.101568 0.0272151i
\(609\) −153.271 117.330i −0.251677 0.192660i
\(610\) 0 0
\(611\) 719.960 1.17833
\(612\) −0.0858104 37.3691i −0.000140213 0.0610606i
\(613\) 559.593 + 559.593i 0.912876 + 0.912876i 0.996498 0.0836213i \(-0.0266486\pi\)
−0.0836213 + 0.996498i \(0.526649\pi\)
\(614\) 51.0172 29.4548i 0.0830898 0.0479719i
\(615\) 0 0
\(616\) 96.0775 166.411i 0.155970 0.270148i
\(617\) −90.4285 337.484i −0.146562 0.546976i −0.999681 0.0252596i \(-0.991959\pi\)
0.853119 0.521716i \(-0.174708\pi\)
\(618\) 27.3671 + 35.5809i 0.0442834 + 0.0575742i
\(619\) −384.591 + 222.044i −0.621311 + 0.358714i −0.777379 0.629032i \(-0.783451\pi\)
0.156068 + 0.987746i \(0.450118\pi\)
\(620\) 0 0
\(621\) 421.335 325.614i 0.678479 0.524338i
\(622\) −18.5115 + 18.5115i −0.0297613 + 0.0297613i
\(623\) −52.5825 + 196.241i −0.0844021 + 0.314993i
\(624\) 80.9792 620.603i 0.129774 0.994557i
\(625\) 0 0
\(626\) −0.627350 + 1.08660i −0.00100216 + 0.00173579i
\(627\) −276.888 114.319i −0.441608 0.182326i
\(628\) 47.6857 177.965i 0.0759326 0.283384i
\(629\) 34.0943i 0.0542040i
\(630\) 0 0
\(631\) −181.428 −0.287524 −0.143762 0.989612i \(-0.545920\pi\)
−0.143762 + 0.989612i \(0.545920\pi\)
\(632\) −121.393 32.5273i −0.192078 0.0514672i
\(633\) 721.901 95.8834i 1.14044 0.151475i
\(634\) −72.8343 42.0509i −0.114881 0.0663264i
\(635\) 0 0
\(636\) −176.751 + 230.895i −0.277911 + 0.363043i
\(637\) −417.019 111.740i −0.654661 0.175416i
\(638\) −13.5164 13.5164i −0.0211856 0.0211856i
\(639\) 84.0456 316.568i 0.131527 0.495412i
\(640\) 0 0
\(641\) 44.3645 + 76.8416i 0.0692114 + 0.119878i 0.898554 0.438862i \(-0.144618\pi\)
−0.829343 + 0.558740i \(0.811285\pi\)
\(642\) 37.7909 + 15.6027i 0.0588643 + 0.0243032i
\(643\) 414.879 111.166i 0.645224 0.172887i 0.0786553 0.996902i \(-0.474937\pi\)
0.566568 + 0.824015i \(0.308271\pi\)
\(644\) −610.125 352.256i −0.947399 0.546981i
\(645\) 0 0
\(646\) −0.706077 1.22296i −0.00109300 0.00189313i
\(647\) −237.290 + 237.290i −0.366755 + 0.366755i −0.866292 0.499537i \(-0.833503\pi\)
0.499537 + 0.866292i \(0.333503\pi\)
\(648\) 32.2862 + 118.318i 0.0498244 + 0.182589i
\(649\) 447.832i 0.690034i
\(650\) 0 0
\(651\) −701.223 91.4988i −1.07715 0.140551i
\(652\) 111.475 + 416.030i 0.170974 + 0.638083i
\(653\) 777.291 208.275i 1.19034 0.318950i 0.391319 0.920255i \(-0.372019\pi\)
0.799020 + 0.601305i \(0.205352\pi\)
\(654\) −25.1956 + 10.4703i −0.0385255 + 0.0160096i
\(655\) 0 0
\(656\) −1122.07 −1.71047
\(657\) 32.0324 18.5921i 0.0487556 0.0282985i
\(658\) 65.0897 + 65.0897i 0.0989206 + 0.0989206i
\(659\) −407.245 + 235.123i −0.617974 + 0.356787i −0.776080 0.630635i \(-0.782795\pi\)
0.158106 + 0.987422i \(0.449461\pi\)
\(660\) 0 0
\(661\) 379.580 657.451i 0.574251 0.994631i −0.421872 0.906655i \(-0.638627\pi\)
0.996123 0.0879760i \(-0.0280399\pi\)
\(662\) −12.8778 48.0606i −0.0194528 0.0725990i
\(663\) −41.7462 + 5.54476i −0.0629656 + 0.00836313i
\(664\) −69.7489 + 40.2696i −0.105044 + 0.0606469i
\(665\) 0 0
\(666\) 14.5381 + 53.7630i 0.0218290 + 0.0807252i
\(667\) −99.5643 + 99.5643i −0.149272 + 0.149272i
\(668\) −319.967 + 1194.13i −0.478992 + 1.78762i
\(669\) 570.048 236.889i 0.852090 0.354094i
\(670\) 0 0
\(671\) 573.592 993.490i 0.854832 1.48061i
\(672\) 193.220 148.616i 0.287529 0.221154i
\(673\) 326.337 1217.91i 0.484899 1.80967i −0.0956152 0.995418i \(-0.530482\pi\)
0.580514 0.814250i \(-0.302852\pi\)
\(674\) 27.7198i 0.0411273i
\(675\) 0 0
\(676\) −41.9700 −0.0620858
\(677\) 96.3967 + 25.8294i 0.142388 + 0.0381528i 0.329309 0.944222i \(-0.393184\pi\)
−0.186921 + 0.982375i \(0.559851\pi\)
\(678\) −60.5954 78.7820i −0.0893738 0.116198i
\(679\) 272.449 + 157.298i 0.401250 + 0.231662i
\(680\) 0 0
\(681\) 214.318 + 515.734i 0.314711 + 0.757319i
\(682\) −67.6443 18.1252i −0.0991852 0.0265766i
\(683\) −366.381 366.381i −0.536430 0.536430i 0.386049 0.922478i \(-0.373840\pi\)
−0.922478 + 0.386049i \(0.873840\pi\)
\(684\) −179.280 178.458i −0.262105 0.260904i
\(685\) 0 0
\(686\) 14.3787 + 24.9047i 0.0209602 + 0.0363042i
\(687\) 71.4727 + 538.114i 0.104036 + 0.783281i
\(688\) −187.563 + 50.2575i −0.272621 + 0.0730486i
\(689\) 283.790 + 163.846i 0.411887 + 0.237803i
\(690\) 0 0
\(691\) −298.133 516.381i −0.431451 0.747296i 0.565547 0.824716i \(-0.308665\pi\)
−0.996999 + 0.0774204i \(0.975332\pi\)
\(692\) −558.971 + 558.971i −0.807761 + 0.807761i
\(693\) −1142.18 + 2.62277i −1.64816 + 0.00378466i
\(694\) 1.92499i 0.00277376i
\(695\) 0 0
\(696\) −12.4449 29.9474i −0.0178806 0.0430279i
\(697\) 19.5411 + 72.9284i 0.0280360 + 0.104632i
\(698\) 19.9559 5.34718i 0.0285902 0.00766071i
\(699\) −66.0000 + 505.806i −0.0944206 + 0.723614i
\(700\) 0 0
\(701\) 147.235 0.210036 0.105018 0.994470i \(-0.466510\pi\)
0.105018 + 0.994470i \(0.466510\pi\)
\(702\) 63.4647 26.5444i 0.0904056 0.0378126i
\(703\) −163.194 163.194i −0.232140 0.232140i
\(704\) −738.513 + 426.381i −1.04902 + 0.605654i
\(705\) 0 0
\(706\) −45.9731 + 79.6277i −0.0651177 + 0.112787i
\(707\) 138.681 + 517.565i 0.196154 + 0.732058i
\(708\) 144.317 349.546i 0.203837 0.493710i
\(709\) −123.232 + 71.1480i −0.173811 + 0.100350i −0.584382 0.811479i \(-0.698663\pi\)
0.410571 + 0.911829i \(0.365330\pi\)
\(710\) 0 0
\(711\) 195.000 + 721.122i 0.274262 + 1.01424i
\(712\) −24.1362 + 24.1362i −0.0338992 + 0.0338992i
\(713\) −133.514 + 498.280i −0.187256 + 0.698849i
\(714\) −4.27545 3.27288i −0.00598803 0.00458386i
\(715\) 0 0
\(716\) 503.648 872.343i 0.703418 1.21836i
\(717\) −151.481 1140.49i −0.211270 1.59064i
\(718\) 13.7320 51.2486i 0.0191254 0.0713769i
\(719\) 1075.81i 1.49626i −0.663555 0.748128i \(-0.730953\pi\)
0.663555 0.748128i \(-0.269047\pi\)
\(720\) 0 0
\(721\) −709.245 −0.983696
\(722\) 57.0627 + 15.2899i 0.0790342 + 0.0211771i
\(723\) −373.097 + 903.670i −0.516041 + 1.24989i
\(724\) 813.567 + 469.713i 1.12371 + 0.648775i
\(725\) 0 0
\(726\) −43.7239 5.70530i −0.0602257 0.00785853i
\(727\) −696.238 186.556i −0.957687 0.256611i −0.254066 0.967187i \(-0.581768\pi\)
−0.703621 + 0.710576i \(0.748435\pi\)
\(728\) −129.302 129.302i −0.177613 0.177613i
\(729\) 511.918 519.020i 0.702219 0.711961i
\(730\) 0 0
\(731\) 6.53293 + 11.3154i 0.00893698 + 0.0154793i
\(732\) 767.865 590.605i 1.04900 0.806838i
\(733\) −1179.49 + 316.043i −1.60913 + 0.431164i −0.947782 0.318918i \(-0.896681\pi\)
−0.661345 + 0.750082i \(0.730014\pi\)
\(734\) 29.4125 + 16.9813i 0.0400715 + 0.0231353i
\(735\) 0 0
\(736\) −88.9088 153.995i −0.120800 0.209232i
\(737\) 661.216 661.216i 0.897173 0.897173i
\(738\) −61.9115 106.668i −0.0838910 0.144536i
\(739\) 683.603i 0.925038i −0.886609 0.462519i \(-0.846946\pi\)
0.886609 0.462519i \(-0.153054\pi\)
\(740\) 0 0
\(741\) −173.280 + 226.360i −0.233846 + 0.305479i
\(742\) 10.8438 + 40.4697i 0.0146143 + 0.0545413i
\(743\) 763.713 204.636i 1.02788 0.275419i 0.294797 0.955560i \(-0.404748\pi\)
0.733081 + 0.680141i \(0.238081\pi\)
\(744\) −94.3431 72.2201i −0.126805 0.0970700i
\(745\) 0 0
\(746\) −16.6900 −0.0223727
\(747\) 415.140 + 238.412i 0.555742 + 0.319159i
\(748\) 41.3454 + 41.3454i 0.0552746 + 0.0552746i
\(749\) −559.447 + 322.997i −0.746925 + 0.431238i
\(750\) 0 0
\(751\) 326.862 566.142i 0.435236 0.753851i −0.562079 0.827084i \(-0.689998\pi\)
0.997315 + 0.0732329i \(0.0233317\pi\)
\(752\) −216.464 807.855i −0.287851 1.07427i
\(753\) 784.541 + 1020.01i 1.04189 + 1.35459i
\(754\) −15.7535 + 9.09526i −0.0208932 + 0.0120627i
\(755\) 0 0
\(756\) −892.348 366.027i −1.18035 0.484163i
\(757\) −668.868 + 668.868i −0.883577 + 0.883577i −0.993896 0.110319i \(-0.964813\pi\)
0.110319 + 0.993896i \(0.464813\pi\)
\(758\) 0.510741 1.90611i 0.000673800 0.00251466i
\(759\) −107.804 + 826.181i −0.142034 + 1.08851i
\(760\) 0 0
\(761\) 478.705 829.141i 0.629047 1.08954i −0.358696 0.933454i \(-0.616779\pi\)
0.987743 0.156087i \(-0.0498881\pi\)
\(762\) −12.1778 5.02782i −0.0159813 0.00659819i
\(763\) 111.577 416.413i 0.146235 0.545757i
\(764\) 216.396i 0.283241i
\(765\) 0 0
\(766\) −24.4926 −0.0319747
\(767\) −411.649 110.301i −0.536700 0.143808i
\(768\) −693.444 + 92.1038i −0.902922 + 0.119927i
\(769\) −435.970 251.708i −0.566932 0.327318i 0.188991 0.981979i \(-0.439478\pi\)
−0.755923 + 0.654661i \(0.772812\pi\)
\(770\) 0 0
\(771\) −671.823 + 877.621i −0.871365 + 1.13829i
\(772\) −766.640 205.421i −0.993057 0.266089i
\(773\) 362.267 + 362.267i 0.468651 + 0.468651i 0.901477 0.432827i \(-0.142484\pi\)
−0.432827 + 0.901477i \(0.642484\pi\)
\(774\) −15.1267 15.0574i −0.0195435 0.0194540i
\(775\) 0 0
\(776\) 26.4279 + 45.7745i 0.0340566 + 0.0589878i
\(777\) −813.378 335.819i −1.04682 0.432199i
\(778\) −134.731 + 36.1011i −0.173176 + 0.0464024i
\(779\) 442.610 + 255.541i 0.568177 + 0.328037i
\(780\) 0 0
\(781\) 256.245 + 443.830i 0.328099 + 0.568284i
\(782\) −2.77732 + 2.77732i −0.00355155 + 0.00355155i
\(783\) −116.822 + 153.336i −0.149198 + 0.195831i
\(784\) 501.526i 0.639701i
\(785\) 0 0
\(786\) −31.2254 4.07443i −0.0397270 0.00518376i
\(787\) −134.565 502.205i −0.170985 0.638126i −0.997201 0.0747716i \(-0.976177\pi\)
0.826215 0.563354i \(-0.190489\pi\)
\(788\) 100.371 26.8943i 0.127374 0.0341299i
\(789\) −182.779 + 75.9557i −0.231659 + 0.0962683i
\(790\) 0 0
\(791\) 1570.39 1.98532
\(792\) −166.409 95.5677i −0.210113 0.120666i
\(793\) −771.945 771.945i −0.973449 0.973449i
\(794\) −35.2207 + 20.3347i −0.0443585 + 0.0256104i
\(795\) 0 0
\(796\) 408.438 707.435i 0.513113 0.888737i
\(797\) −72.1737 269.356i −0.0905567 0.337962i 0.905752 0.423809i \(-0.139307\pi\)
−0.996308 + 0.0858466i \(0.972640\pi\)
\(798\) −36.1304 + 4.79887i −0.0452762 + 0.00601362i
\(799\) −48.7365 + 28.1380i −0.0609968 + 0.0352165i
\(800\) 0 0
\(801\) 196.099 + 52.0623i 0.244818 + 0.0649967i
\(802\) −0.879908 + 0.879908i −0.00109714 + 0.00109714i
\(803\) −14.9989 + 55.9768i −0.0186786 + 0.0697096i
\(804\) 729.181 303.018i 0.906941 0.376888i
\(805\) 0 0
\(806\) −33.3216 + 57.7147i −0.0413419 + 0.0716063i
\(807\) 349.387 268.732i 0.432945 0.333001i
\(808\) −23.3000 + 86.9569i −0.0288367 + 0.107620i
\(809\) 423.966i 0.524062i −0.965060 0.262031i \(-0.915608\pi\)
0.965060 0.262031i \(-0.0843922\pi\)
\(810\) 0 0
\(811\) −1163.79 −1.43501 −0.717506 0.696552i \(-0.754716\pi\)
−0.717506 + 0.696552i \(0.754716\pi\)
\(812\) 246.350 + 66.0092i 0.303386 + 0.0812921i
\(813\) −82.3340 107.045i −0.101272 0.131667i
\(814\) −75.4686 43.5718i −0.0927133 0.0535281i
\(815\) 0 0
\(816\) 18.7731 + 45.1756i 0.0230063 + 0.0553622i
\(817\) 85.4317 + 22.8914i 0.104568 + 0.0280188i
\(818\) 99.2357 + 99.2357i 0.121315 + 0.121315i
\(819\) −278.907 + 1050.54i −0.340546 + 1.28271i
\(820\) 0 0
\(821\) −382.915 663.228i −0.466400 0.807829i 0.532863 0.846202i \(-0.321116\pi\)
−0.999264 + 0.0383722i \(0.987783\pi\)
\(822\) −14.7230 110.848i −0.0179112 0.134852i
\(823\) 955.510 256.028i 1.16101 0.311091i 0.373640 0.927574i \(-0.378109\pi\)
0.787369 + 0.616482i \(0.211443\pi\)
\(824\) −103.197 59.5806i −0.125239 0.0723066i
\(825\) 0 0
\(826\) −27.2441 47.1882i −0.0329832 0.0571286i
\(827\) 260.100 260.100i 0.314510 0.314510i −0.532144 0.846654i \(-0.678613\pi\)
0.846654 + 0.532144i \(0.178613\pi\)
\(828\) −350.387 + 610.119i −0.423172 + 0.736858i
\(829\) 325.275i 0.392370i 0.980567 + 0.196185i \(0.0628553\pi\)
−0.980567 + 0.196185i \(0.937145\pi\)
\(830\) 0 0
\(831\) −182.756 439.783i −0.219923 0.529221i
\(832\) 210.035 + 783.862i 0.252446 + 0.942142i
\(833\) 32.5965 8.73421i 0.0391315 0.0104852i
\(834\) 7.03342 53.9023i 0.00843336 0.0646310i
\(835\) 0 0
\(836\) 395.803 0.473449
\(837\) −89.7687 + 700.497i −0.107251 + 0.836914i
\(838\) −36.5387 36.5387i −0.0436022 0.0436022i
\(839\) −81.4767 + 47.0406i −0.0971116 + 0.0560674i −0.547769 0.836629i \(-0.684523\pi\)
0.450658 + 0.892697i \(0.351190\pi\)
\(840\) 0 0
\(841\) −395.014 + 684.184i −0.469695 + 0.813536i
\(842\) 10.1364 + 37.8296i 0.0120385 + 0.0449283i
\(843\) 75.7757 183.535i 0.0898882 0.217716i
\(844\) −833.301 + 481.107i −0.987323 + 0.570031i
\(845\) 0 0
\(846\) 64.8536 65.1522i 0.0766591 0.0770120i
\(847\) 492.644 492.644i 0.581633 0.581633i
\(848\) 98.5244 367.698i 0.116184 0.433606i
\(849\) −958.837 733.994i −1.12937 0.864539i
\(850\) 0 0
\(851\) −320.958 + 555.915i −0.377154 + 0.653249i
\(852\) 56.9800 + 428.999i 0.0668779 + 0.503520i
\(853\) −263.924 + 984.979i −0.309407 + 1.15472i 0.619678 + 0.784856i \(0.287263\pi\)
−0.929085 + 0.369867i \(0.879403\pi\)
\(854\) 139.579i 0.163442i
\(855\) 0 0
\(856\) −108.534 −0.126793
\(857\) −1522.95 408.073i −1.77707 0.476164i −0.787026 0.616920i \(-0.788380\pi\)
−0.990044 + 0.140756i \(0.955047\pi\)
\(858\) −41.0773 + 99.4922i −0.0478756 + 0.115958i
\(859\) −507.067 292.755i −0.590299 0.340809i 0.174917 0.984583i \(-0.444034\pi\)
−0.765216 + 0.643774i \(0.777368\pi\)
\(860\) 0 0
\(861\) 1932.30 + 252.136i 2.24426 + 0.292841i
\(862\) −43.7939 11.7345i −0.0508050 0.0136132i
\(863\) 550.423 + 550.423i 0.637802 + 0.637802i 0.950013 0.312211i \(-0.101070\pi\)
−0.312211 + 0.950013i \(0.601070\pi\)
\(864\) −148.860 192.621i −0.172292 0.222941i
\(865\) 0 0
\(866\) −10.7144 18.5579i −0.0123723 0.0214294i
\(867\) −684.622 + 526.579i −0.789644 + 0.607357i
\(868\) 902.531 241.833i 1.03978 0.278609i
\(869\) −1012.26 584.429i −1.16486 0.672530i
\(870\) 0 0
\(871\) −444.935 770.650i −0.510833 0.884788i
\(872\) 51.2158 51.2158i 0.0587337 0.0587337i
\(873\) 156.464 272.446i 0.179225 0.312080i
\(874\) 26.5875i 0.0304205i
\(875\) 0 0
\(876\) −29.7460 + 38.8581i −0.0339567 + 0.0443585i
\(877\) −236.500 882.630i −0.269669 1.00642i −0.959330 0.282287i \(-0.908907\pi\)
0.689661 0.724133i \(-0.257760\pi\)
\(878\) 59.4017 15.9166i 0.0676557 0.0181283i
\(879\) 517.247 + 395.955i 0.588450 + 0.450461i
\(880\) 0 0
\(881\) −459.689 −0.521781 −0.260891 0.965368i \(-0.584016\pi\)
−0.260891 + 0.965368i \(0.584016\pi\)
\(882\) −47.6767 + 27.6723i −0.0540552 + 0.0313745i
\(883\) −107.163 107.163i −0.121362 0.121362i 0.643817 0.765179i \(-0.277350\pi\)
−0.765179 + 0.643817i \(0.777350\pi\)
\(884\) 48.1882 27.8215i 0.0545116 0.0314723i
\(885\) 0 0
\(886\) −71.8119 + 124.382i −0.0810519 + 0.140386i
\(887\) 172.159 + 642.507i 0.194092 + 0.724360i 0.992500 + 0.122244i \(0.0390090\pi\)
−0.798408 + 0.602116i \(0.794324\pi\)
\(888\) −90.1376 117.191i −0.101506 0.131972i
\(889\) 180.277 104.083i 0.202786 0.117078i
\(890\) 0 0
\(891\) 5.23854 + 1140.65i 0.00587940 + 1.28019i
\(892\) −576.746 + 576.746i −0.646576 + 0.646576i
\(893\) −98.5954 + 367.963i −0.110409 + 0.412053i
\(894\) 19.2026 147.164i 0.0214794 0.164613i
\(895\) 0 0
\(896\) −214.387 + 371.329i −0.239271 + 0.414430i
\(897\) 732.877 + 302.582i 0.817031 + 0.337327i
\(898\) −25.3288 + 94.5284i −0.0282058 + 0.105266i
\(899\) 186.745i 0.207725i
\(900\) 0 0
\(901\) −25.6142 −0.0284287
\(902\) 186.402 + 49.9463i 0.206654 + 0.0553728i
\(903\) 334.295 44.4012i 0.370204 0.0491708i
\(904\) 228.495 + 131.922i 0.252760 + 0.145931i
\(905\) 0 0
\(906\) 89.3891 116.772i 0.0986635 0.128887i
\(907\) 804.640 + 215.603i 0.887144 + 0.237710i 0.673487 0.739199i \(-0.264796\pi\)
0.213657 + 0.976909i \(0.431462\pi\)
\(908\) −521.794 521.794i −0.574663 0.574663i
\(909\) 516.557 139.683i 0.568269 0.153667i
\(910\) 0 0
\(911\) −38.7954 67.1955i −0.0425855 0.0737602i 0.843947 0.536427i \(-0.180226\pi\)
−0.886533 + 0.462666i \(0.846893\pi\)
\(912\) 306.093 + 126.376i 0.335629 + 0.138571i
\(913\) −723.538 + 193.871i −0.792484 + 0.212345i
\(914\) 93.8309 + 54.1733i 0.102660 + 0.0592706i
\(915\) 0 0
\(916\) −358.623 621.153i −0.391510 0.678115i
\(917\) 351.821 351.821i 0.383665 0.383665i
\(918\) −3.25871 + 4.27725i −0.00354979 + 0.00465932i
\(919\) 1478.95i 1.60930i 0.593750 + 0.804650i \(0.297647\pi\)
−0.593750 + 0.804650i \(0.702353\pi\)
\(920\) 0 0
\(921\) 921.730 + 120.272i 1.00079 + 0.130588i
\(922\) −11.7443 43.8305i −0.0127379 0.0475385i
\(923\) 471.083 126.226i 0.510383 0.136757i
\(924\) 1393.60 579.125i 1.50823 0.626758i
\(925\) 0 0
\(926\) 156.839 0.169373
\(927\) 1.62646 + 708.298i 0.00175454 + 0.764076i
\(928\) 45.5177 + 45.5177i 0.0490492 + 0.0490492i
\(929\) 1381.56 797.643i 1.48715 0.858604i 0.487253 0.873261i \(-0.337999\pi\)
0.999893 + 0.0146572i \(0.00466569\pi\)
\(930\) 0 0
\(931\) 114.218 197.831i 0.122683 0.212493i
\(932\) −174.439 651.014i −0.187166 0.698513i
\(933\) −409.491 + 54.3888i −0.438897 + 0.0582946i
\(934\) −113.927 + 65.7757i −0.121977 + 0.0704237i
\(935\) 0 0
\(936\) −128.833 + 129.426i −0.137642 + 0.138276i
\(937\) 921.265 921.265i 0.983207 0.983207i −0.0166542 0.999861i \(-0.505301\pi\)
0.999861 + 0.0166542i \(0.00530143\pi\)
\(938\) 29.4471 109.898i 0.0313935 0.117162i
\(939\) −18.2824 + 7.59741i −0.0194700 + 0.00809096i
\(940\) 0 0
\(941\) −618.185 + 1070.73i −0.656945 + 1.13786i 0.324458 + 0.945900i \(0.394818\pi\)
−0.981402 + 0.191961i \(0.938515\pi\)
\(942\) −21.0144 + 16.1632i −0.0223082 + 0.0171584i
\(943\) 367.913 1373.07i 0.390152 1.45607i
\(944\) 495.068i 0.524436i
\(945\) 0 0
\(946\) 33.3958 0.0353021
\(947\) 1561.01 + 418.272i 1.64838 + 0.441681i 0.959158 0.282872i \(-0.0912871\pi\)
0.689219 + 0.724553i \(0.257954\pi\)
\(948\) −601.764 782.372i −0.634772 0.825287i
\(949\) 47.7599 + 27.5742i 0.0503265 + 0.0290560i
\(950\) 0 0
\(951\) −509.250 1225.46i −0.535489 1.28860i
\(952\) 13.8064 + 3.69940i 0.0145025 + 0.00388593i
\(953\) −1074.57 1074.57i −1.12756 1.12756i −0.990573 0.136988i \(-0.956258\pi\)
−0.136988 0.990573i \(-0.543742\pi\)
\(954\) 40.3908 10.9222i 0.0423384 0.0114488i
\(955\) 0 0
\(956\) 760.073 + 1316.48i 0.795055 + 1.37708i
\(957\) −39.7127 298.995i −0.0414971 0.312429i
\(958\) 30.2804 8.11362i 0.0316080 0.00846933i
\(959\) 1530.10 + 883.405i 1.59552 + 0.921173i
\(960\) 0 0
\(961\) 138.418 + 239.748i 0.144036 + 0.249477i
\(962\) −58.6394 + 58.6394i −0.0609557 + 0.0609557i
\(963\) 323.849 + 557.960i 0.336292 + 0.579398i
\(964\) 1291.77i 1.34001i
\(965\) 0 0
\(966\) 38.9019 + 93.6132i 0.0402711 + 0.0969081i
\(967\) 46.6332 + 174.037i 0.0482246 + 0.179977i 0.985837 0.167705i \(-0.0536357\pi\)
−0.937613 + 0.347682i \(0.886969\pi\)
\(968\) 113.066 30.2958i 0.116803 0.0312974i
\(969\) 2.88310 22.0953i 0.00297533 0.0228022i
\(970\) 0 0
\(971\) −40.8568 −0.0420770 −0.0210385 0.999779i \(-0.506697\pi\)
−0.0210385 + 0.999779i \(0.506697\pi\)
\(972\) −363.492 + 891.997i −0.373963 + 0.917693i
\(973\) 607.325 + 607.325i 0.624178 + 0.624178i
\(974\) −76.1338 + 43.9558i −0.0781661 + 0.0451292i
\(975\) 0 0
\(976\) −634.092 + 1098.28i −0.649685 + 1.12529i
\(977\) 202.074 + 754.152i 0.206832 + 0.771906i 0.988883 + 0.148693i \(0.0475065\pi\)
−0.782052 + 0.623213i \(0.785827\pi\)
\(978\) 23.6513 57.2853i 0.0241834 0.0585739i
\(979\) −274.932 + 158.732i −0.280829 + 0.162137i
\(980\) 0 0
\(981\) −416.113 110.474i −0.424172 0.112613i
\(982\) −48.9385 + 48.9385i −0.0498355 + 0.0498355i
\(983\) −133.041 + 496.515i −0.135341 + 0.505101i 0.864655 + 0.502367i \(0.167537\pi\)
−0.999996 + 0.00273477i \(0.999129\pi\)
\(984\) 259.974 + 199.011i 0.264201 + 0.202247i
\(985\) 0 0
\(986\) 0.710935 1.23138i 0.000721030 0.00124886i
\(987\) 191.241 + 1439.84i 0.193760 + 1.45881i
\(988\) 97.4863 363.824i 0.0986704 0.368243i
\(989\) 245.999i 0.248735i
\(990\) 0 0
\(991\) 941.294 0.949843 0.474922 0.880028i \(-0.342476\pi\)
0.474922 + 0.880028i \(0.342476\pi\)
\(992\) 227.798 + 61.0382i 0.229635 + 0.0615304i
\(993\) 299.615 725.690i 0.301727 0.730805i
\(994\) 54.0013 + 31.1776i 0.0543272 + 0.0313658i
\(995\) 0 0
\(996\) −627.219 81.8425i −0.629738 0.0821712i
\(997\) 1287.52 + 344.990i 1.29140 + 0.346029i 0.838191 0.545377i \(-0.183614\pi\)
0.453206 + 0.891406i \(0.350280\pi\)
\(998\) −54.8879 54.8879i −0.0549979 0.0549979i
\(999\) −333.505 + 813.063i −0.333839 + 0.813877i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 225.3.o.b.193.5 40
5.2 odd 4 inner 225.3.o.b.157.6 40
5.3 odd 4 45.3.k.a.22.5 yes 40
5.4 even 2 45.3.k.a.13.6 yes 40
9.7 even 3 inner 225.3.o.b.43.6 40
15.8 even 4 135.3.l.a.37.6 40
15.14 odd 2 135.3.l.a.118.5 40
45.4 even 6 405.3.g.h.163.5 20
45.7 odd 12 inner 225.3.o.b.7.5 40
45.13 odd 12 405.3.g.h.82.5 20
45.14 odd 6 405.3.g.g.163.6 20
45.23 even 12 405.3.g.g.82.6 20
45.29 odd 6 135.3.l.a.73.6 40
45.34 even 6 45.3.k.a.43.5 yes 40
45.38 even 12 135.3.l.a.127.5 40
45.43 odd 12 45.3.k.a.7.6 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
45.3.k.a.7.6 40 45.43 odd 12
45.3.k.a.13.6 yes 40 5.4 even 2
45.3.k.a.22.5 yes 40 5.3 odd 4
45.3.k.a.43.5 yes 40 45.34 even 6
135.3.l.a.37.6 40 15.8 even 4
135.3.l.a.73.6 40 45.29 odd 6
135.3.l.a.118.5 40 15.14 odd 2
135.3.l.a.127.5 40 45.38 even 12
225.3.o.b.7.5 40 45.7 odd 12 inner
225.3.o.b.43.6 40 9.7 even 3 inner
225.3.o.b.157.6 40 5.2 odd 4 inner
225.3.o.b.193.5 40 1.1 even 1 trivial
405.3.g.g.82.6 20 45.23 even 12
405.3.g.g.163.6 20 45.14 odd 6
405.3.g.h.82.5 20 45.13 odd 12
405.3.g.h.163.5 20 45.4 even 6