Properties

Label 225.5.g.a.118.1
Level $225$
Weight $5$
Character 225.118
Analytic conductor $23.258$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [225,5,Mod(82,225)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(225, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("225.82");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 225 = 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 225.g (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.2582416939\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 45)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 118.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 225.118
Dual form 225.5.g.a.82.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-5.00000 + 5.00000i) q^{2} -34.0000i q^{4} +(-40.0000 + 40.0000i) q^{7} +(90.0000 + 90.0000i) q^{8} +100.000 q^{11} +(-205.000 - 205.000i) q^{13} -400.000i q^{14} -356.000 q^{16} +(235.000 - 235.000i) q^{17} -72.0000i q^{19} +(-500.000 + 500.000i) q^{22} +(340.000 + 340.000i) q^{23} +2050.00 q^{26} +(1360.00 + 1360.00i) q^{28} +450.000i q^{29} +428.000 q^{31} +(340.000 - 340.000i) q^{32} +2350.00i q^{34} +(755.000 - 755.000i) q^{37} +(360.000 + 360.000i) q^{38} -950.000 q^{41} +(1220.00 + 1220.00i) q^{43} -3400.00i q^{44} -3400.00 q^{46} +(-320.000 + 320.000i) q^{47} -799.000i q^{49} +(-6970.00 + 6970.00i) q^{52} +(505.000 + 505.000i) q^{53} -7200.00 q^{56} +(-2250.00 - 2250.00i) q^{58} +6300.00i q^{59} -3808.00 q^{61} +(-2140.00 + 2140.00i) q^{62} -2296.00i q^{64} +(-340.000 + 340.000i) q^{67} +(-7990.00 - 7990.00i) q^{68} +3400.00 q^{71} +(-415.000 - 415.000i) q^{73} +7550.00i q^{74} -2448.00 q^{76} +(-4000.00 + 4000.00i) q^{77} +6732.00i q^{79} +(4750.00 - 4750.00i) q^{82} +(-680.000 - 680.000i) q^{83} -12200.0 q^{86} +(9000.00 + 9000.00i) q^{88} +2250.00i q^{89} +16400.0 q^{91} +(11560.0 - 11560.0i) q^{92} -3200.00i q^{94} +(-1615.00 + 1615.00i) q^{97} +(3995.00 + 3995.00i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 10 q^{2} - 80 q^{7} + 180 q^{8} + 200 q^{11} - 410 q^{13} - 712 q^{16} + 470 q^{17} - 1000 q^{22} + 680 q^{23} + 4100 q^{26} + 2720 q^{28} + 856 q^{31} + 680 q^{32} + 1510 q^{37} + 720 q^{38} - 1900 q^{41}+ \cdots + 7990 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/225\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −5.00000 + 5.00000i −1.25000 + 1.25000i −0.294281 + 0.955719i \(0.595080\pi\)
−0.955719 + 0.294281i \(0.904920\pi\)
\(3\) 0 0
\(4\) 34.0000i 2.12500i
\(5\) 0 0
\(6\) 0 0
\(7\) −40.0000 + 40.0000i −0.816327 + 0.816327i −0.985574 0.169247i \(-0.945866\pi\)
0.169247 + 0.985574i \(0.445866\pi\)
\(8\) 90.0000 + 90.0000i 1.40625 + 1.40625i
\(9\) 0 0
\(10\) 0 0
\(11\) 100.000 0.826446 0.413223 0.910630i \(-0.364403\pi\)
0.413223 + 0.910630i \(0.364403\pi\)
\(12\) 0 0
\(13\) −205.000 205.000i −1.21302 1.21302i −0.970029 0.242989i \(-0.921872\pi\)
−0.242989 0.970029i \(-0.578128\pi\)
\(14\) 400.000i 2.04082i
\(15\) 0 0
\(16\) −356.000 −1.39062
\(17\) 235.000 235.000i 0.813149 0.813149i −0.171956 0.985105i \(-0.555009\pi\)
0.985105 + 0.171956i \(0.0550086\pi\)
\(18\) 0 0
\(19\) 72.0000i 0.199446i −0.995015 0.0997230i \(-0.968204\pi\)
0.995015 0.0997230i \(-0.0317957\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −500.000 + 500.000i −1.03306 + 1.03306i
\(23\) 340.000 + 340.000i 0.642722 + 0.642722i 0.951224 0.308502i \(-0.0998275\pi\)
−0.308502 + 0.951224i \(0.599828\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 2050.00 3.03254
\(27\) 0 0
\(28\) 1360.00 + 1360.00i 1.73469 + 1.73469i
\(29\) 450.000i 0.535077i 0.963547 + 0.267539i \(0.0862103\pi\)
−0.963547 + 0.267539i \(0.913790\pi\)
\(30\) 0 0
\(31\) 428.000 0.445369 0.222685 0.974891i \(-0.428518\pi\)
0.222685 + 0.974891i \(0.428518\pi\)
\(32\) 340.000 340.000i 0.332031 0.332031i
\(33\) 0 0
\(34\) 2350.00i 2.03287i
\(35\) 0 0
\(36\) 0 0
\(37\) 755.000 755.000i 0.551497 0.551497i −0.375375 0.926873i \(-0.622486\pi\)
0.926873 + 0.375375i \(0.122486\pi\)
\(38\) 360.000 + 360.000i 0.249307 + 0.249307i
\(39\) 0 0
\(40\) 0 0
\(41\) −950.000 −0.565140 −0.282570 0.959247i \(-0.591187\pi\)
−0.282570 + 0.959247i \(0.591187\pi\)
\(42\) 0 0
\(43\) 1220.00 + 1220.00i 0.659816 + 0.659816i 0.955336 0.295520i \(-0.0954930\pi\)
−0.295520 + 0.955336i \(0.595493\pi\)
\(44\) 3400.00i 1.75620i
\(45\) 0 0
\(46\) −3400.00 −1.60681
\(47\) −320.000 + 320.000i −0.144862 + 0.144862i −0.775818 0.630956i \(-0.782663\pi\)
0.630956 + 0.775818i \(0.282663\pi\)
\(48\) 0 0
\(49\) 799.000i 0.332778i
\(50\) 0 0
\(51\) 0 0
\(52\) −6970.00 + 6970.00i −2.57766 + 2.57766i
\(53\) 505.000 + 505.000i 0.179779 + 0.179779i 0.791260 0.611480i \(-0.209426\pi\)
−0.611480 + 0.791260i \(0.709426\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −7200.00 −2.29592
\(57\) 0 0
\(58\) −2250.00 2250.00i −0.668847 0.668847i
\(59\) 6300.00i 1.80982i 0.425598 + 0.904912i \(0.360064\pi\)
−0.425598 + 0.904912i \(0.639936\pi\)
\(60\) 0 0
\(61\) −3808.00 −1.02338 −0.511690 0.859170i \(-0.670981\pi\)
−0.511690 + 0.859170i \(0.670981\pi\)
\(62\) −2140.00 + 2140.00i −0.556712 + 0.556712i
\(63\) 0 0
\(64\) 2296.00i 0.560547i
\(65\) 0 0
\(66\) 0 0
\(67\) −340.000 + 340.000i −0.0757407 + 0.0757407i −0.743962 0.668222i \(-0.767056\pi\)
0.668222 + 0.743962i \(0.267056\pi\)
\(68\) −7990.00 7990.00i −1.72794 1.72794i
\(69\) 0 0
\(70\) 0 0
\(71\) 3400.00 0.674469 0.337235 0.941421i \(-0.390508\pi\)
0.337235 + 0.941421i \(0.390508\pi\)
\(72\) 0 0
\(73\) −415.000 415.000i −0.0778758 0.0778758i 0.667096 0.744972i \(-0.267537\pi\)
−0.744972 + 0.667096i \(0.767537\pi\)
\(74\) 7550.00i 1.37874i
\(75\) 0 0
\(76\) −2448.00 −0.423823
\(77\) −4000.00 + 4000.00i −0.674650 + 0.674650i
\(78\) 0 0
\(79\) 6732.00i 1.07867i 0.842090 + 0.539337i \(0.181325\pi\)
−0.842090 + 0.539337i \(0.818675\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 4750.00 4750.00i 0.706425 0.706425i
\(83\) −680.000 680.000i −0.0987081 0.0987081i 0.656028 0.754736i \(-0.272235\pi\)
−0.754736 + 0.656028i \(0.772235\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −12200.0 −1.64954
\(87\) 0 0
\(88\) 9000.00 + 9000.00i 1.16219 + 1.16219i
\(89\) 2250.00i 0.284055i 0.989863 + 0.142028i \(0.0453622\pi\)
−0.989863 + 0.142028i \(0.954638\pi\)
\(90\) 0 0
\(91\) 16400.0 1.98044
\(92\) 11560.0 11560.0i 1.36578 1.36578i
\(93\) 0 0
\(94\) 3200.00i 0.362155i
\(95\) 0 0
\(96\) 0 0
\(97\) −1615.00 + 1615.00i −0.171644 + 0.171644i −0.787701 0.616057i \(-0.788729\pi\)
0.616057 + 0.787701i \(0.288729\pi\)
\(98\) 3995.00 + 3995.00i 0.415973 + 0.415973i
\(99\) 0 0
\(100\) 0 0
\(101\) 13600.0 1.33320 0.666601 0.745414i \(-0.267748\pi\)
0.666601 + 0.745414i \(0.267748\pi\)
\(102\) 0 0
\(103\) 5780.00 + 5780.00i 0.544820 + 0.544820i 0.924938 0.380118i \(-0.124117\pi\)
−0.380118 + 0.924938i \(0.624117\pi\)
\(104\) 36900.0i 3.41161i
\(105\) 0 0
\(106\) −5050.00 −0.449448
\(107\) −12860.0 + 12860.0i −1.12324 + 1.12324i −0.131991 + 0.991251i \(0.542137\pi\)
−0.991251 + 0.131991i \(0.957863\pi\)
\(108\) 0 0
\(109\) 8262.00i 0.695396i 0.937607 + 0.347698i \(0.113037\pi\)
−0.937607 + 0.347698i \(0.886963\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 14240.0 14240.0i 1.13520 1.13520i
\(113\) 16405.0 + 16405.0i 1.28475 + 1.28475i 0.937931 + 0.346821i \(0.112739\pi\)
0.346821 + 0.937931i \(0.387261\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 15300.0 1.13704
\(117\) 0 0
\(118\) −31500.0 31500.0i −2.26228 2.26228i
\(119\) 18800.0i 1.32759i
\(120\) 0 0
\(121\) −4641.00 −0.316987
\(122\) 19040.0 19040.0i 1.27923 1.27923i
\(123\) 0 0
\(124\) 14552.0i 0.946410i
\(125\) 0 0
\(126\) 0 0
\(127\) 13940.0 13940.0i 0.864282 0.864282i −0.127550 0.991832i \(-0.540711\pi\)
0.991832 + 0.127550i \(0.0407114\pi\)
\(128\) 16920.0 + 16920.0i 1.03271 + 1.03271i
\(129\) 0 0
\(130\) 0 0
\(131\) 22900.0 1.33442 0.667211 0.744869i \(-0.267488\pi\)
0.667211 + 0.744869i \(0.267488\pi\)
\(132\) 0 0
\(133\) 2880.00 + 2880.00i 0.162813 + 0.162813i
\(134\) 3400.00i 0.189352i
\(135\) 0 0
\(136\) 42300.0 2.28698
\(137\) −7925.00 + 7925.00i −0.422239 + 0.422239i −0.885974 0.463735i \(-0.846509\pi\)
0.463735 + 0.885974i \(0.346509\pi\)
\(138\) 0 0
\(139\) 27792.0i 1.43843i −0.694785 0.719217i \(-0.744501\pi\)
0.694785 0.719217i \(-0.255499\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −17000.0 + 17000.0i −0.843087 + 0.843087i
\(143\) −20500.0 20500.0i −1.00249 1.00249i
\(144\) 0 0
\(145\) 0 0
\(146\) 4150.00 0.194689
\(147\) 0 0
\(148\) −25670.0 25670.0i −1.17193 1.17193i
\(149\) 25200.0i 1.13508i −0.823344 0.567542i \(-0.807894\pi\)
0.823344 0.567542i \(-0.192106\pi\)
\(150\) 0 0
\(151\) −22852.0 −1.00224 −0.501118 0.865379i \(-0.667078\pi\)
−0.501118 + 0.865379i \(0.667078\pi\)
\(152\) 6480.00 6480.00i 0.280471 0.280471i
\(153\) 0 0
\(154\) 40000.0i 1.68663i
\(155\) 0 0
\(156\) 0 0
\(157\) 1325.00 1325.00i 0.0537547 0.0537547i −0.679718 0.733473i \(-0.737898\pi\)
0.733473 + 0.679718i \(0.237898\pi\)
\(158\) −33660.0 33660.0i −1.34834 1.34834i
\(159\) 0 0
\(160\) 0 0
\(161\) −27200.0 −1.04934
\(162\) 0 0
\(163\) 22400.0 + 22400.0i 0.843088 + 0.843088i 0.989259 0.146171i \(-0.0466951\pi\)
−0.146171 + 0.989259i \(0.546695\pi\)
\(164\) 32300.0i 1.20092i
\(165\) 0 0
\(166\) 6800.00 0.246770
\(167\) 27880.0 27880.0i 0.999677 0.999677i −0.000322656 1.00000i \(-0.500103\pi\)
1.00000 0.000322656i \(0.000102705\pi\)
\(168\) 0 0
\(169\) 55489.0i 1.94282i
\(170\) 0 0
\(171\) 0 0
\(172\) 41480.0 41480.0i 1.40211 1.40211i
\(173\) 19975.0 + 19975.0i 0.667413 + 0.667413i 0.957116 0.289704i \(-0.0935567\pi\)
−0.289704 + 0.957116i \(0.593557\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −35600.0 −1.14928
\(177\) 0 0
\(178\) −11250.0 11250.0i −0.355069 0.355069i
\(179\) 45900.0i 1.43254i 0.697823 + 0.716270i \(0.254152\pi\)
−0.697823 + 0.716270i \(0.745848\pi\)
\(180\) 0 0
\(181\) 15878.0 0.484662 0.242331 0.970194i \(-0.422088\pi\)
0.242331 + 0.970194i \(0.422088\pi\)
\(182\) −82000.0 + 82000.0i −2.47555 + 2.47555i
\(183\) 0 0
\(184\) 61200.0i 1.80766i
\(185\) 0 0
\(186\) 0 0
\(187\) 23500.0 23500.0i 0.672024 0.672024i
\(188\) 10880.0 + 10880.0i 0.307832 + 0.307832i
\(189\) 0 0
\(190\) 0 0
\(191\) −17000.0 −0.465996 −0.232998 0.972477i \(-0.574854\pi\)
−0.232998 + 0.972477i \(0.574854\pi\)
\(192\) 0 0
\(193\) 31025.0 + 31025.0i 0.832908 + 0.832908i 0.987914 0.155005i \(-0.0495395\pi\)
−0.155005 + 0.987914i \(0.549539\pi\)
\(194\) 16150.0i 0.429110i
\(195\) 0 0
\(196\) −27166.0 −0.707153
\(197\) −665.000 + 665.000i −0.0171352 + 0.0171352i −0.715622 0.698487i \(-0.753857\pi\)
0.698487 + 0.715622i \(0.253857\pi\)
\(198\) 0 0
\(199\) 30852.0i 0.779071i 0.921011 + 0.389536i \(0.127364\pi\)
−0.921011 + 0.389536i \(0.872636\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −68000.0 + 68000.0i −1.66650 + 1.66650i
\(203\) −18000.0 18000.0i −0.436798 0.436798i
\(204\) 0 0
\(205\) 0 0
\(206\) −57800.0 −1.36205
\(207\) 0 0
\(208\) 72980.0 + 72980.0i 1.68685 + 1.68685i
\(209\) 7200.00i 0.164831i
\(210\) 0 0
\(211\) 77792.0 1.74731 0.873655 0.486546i \(-0.161743\pi\)
0.873655 + 0.486546i \(0.161743\pi\)
\(212\) 17170.0 17170.0i 0.382031 0.382031i
\(213\) 0 0
\(214\) 128600.i 2.80811i
\(215\) 0 0
\(216\) 0 0
\(217\) −17120.0 + 17120.0i −0.363567 + 0.363567i
\(218\) −41310.0 41310.0i −0.869245 0.869245i
\(219\) 0 0
\(220\) 0 0
\(221\) −96350.0 −1.97273
\(222\) 0 0
\(223\) −32980.0 32980.0i −0.663195 0.663195i 0.292937 0.956132i \(-0.405367\pi\)
−0.956132 + 0.292937i \(0.905367\pi\)
\(224\) 27200.0i 0.542092i
\(225\) 0 0
\(226\) −164050. −3.21188
\(227\) 20740.0 20740.0i 0.402492 0.402492i −0.476618 0.879110i \(-0.658138\pi\)
0.879110 + 0.476618i \(0.158138\pi\)
\(228\) 0 0
\(229\) 25632.0i 0.488778i −0.969677 0.244389i \(-0.921413\pi\)
0.969677 0.244389i \(-0.0785874\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −40500.0 + 40500.0i −0.752452 + 0.752452i
\(233\) −5525.00 5525.00i −0.101770 0.101770i 0.654388 0.756159i \(-0.272926\pi\)
−0.756159 + 0.654388i \(0.772926\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 214200. 3.84588
\(237\) 0 0
\(238\) −94000.0 94000.0i −1.65949 1.65949i
\(239\) 86400.0i 1.51258i −0.654237 0.756289i \(-0.727010\pi\)
0.654237 0.756289i \(-0.272990\pi\)
\(240\) 0 0
\(241\) 32912.0 0.566657 0.283328 0.959023i \(-0.408561\pi\)
0.283328 + 0.959023i \(0.408561\pi\)
\(242\) 23205.0 23205.0i 0.396233 0.396233i
\(243\) 0 0
\(244\) 129472.i 2.17468i
\(245\) 0 0
\(246\) 0 0
\(247\) −14760.0 + 14760.0i −0.241932 + 0.241932i
\(248\) 38520.0 + 38520.0i 0.626301 + 0.626301i
\(249\) 0 0
\(250\) 0 0
\(251\) 54700.0 0.868240 0.434120 0.900855i \(-0.357059\pi\)
0.434120 + 0.900855i \(0.357059\pi\)
\(252\) 0 0
\(253\) 34000.0 + 34000.0i 0.531175 + 0.531175i
\(254\) 139400.i 2.16070i
\(255\) 0 0
\(256\) −132464. −2.02124
\(257\) 28645.0 28645.0i 0.433693 0.433693i −0.456189 0.889883i \(-0.650786\pi\)
0.889883 + 0.456189i \(0.150786\pi\)
\(258\) 0 0
\(259\) 60400.0i 0.900404i
\(260\) 0 0
\(261\) 0 0
\(262\) −114500. + 114500.i −1.66803 + 1.66803i
\(263\) −5360.00 5360.00i −0.0774914 0.0774914i 0.667299 0.744790i \(-0.267450\pi\)
−0.744790 + 0.667299i \(0.767450\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −28800.0 −0.407033
\(267\) 0 0
\(268\) 11560.0 + 11560.0i 0.160949 + 0.160949i
\(269\) 68400.0i 0.945261i −0.881261 0.472630i \(-0.843305\pi\)
0.881261 0.472630i \(-0.156695\pi\)
\(270\) 0 0
\(271\) −57868.0 −0.787952 −0.393976 0.919121i \(-0.628901\pi\)
−0.393976 + 0.919121i \(0.628901\pi\)
\(272\) −83660.0 + 83660.0i −1.13079 + 1.13079i
\(273\) 0 0
\(274\) 79250.0i 1.05560i
\(275\) 0 0
\(276\) 0 0
\(277\) 67235.0 67235.0i 0.876266 0.876266i −0.116880 0.993146i \(-0.537289\pi\)
0.993146 + 0.116880i \(0.0372894\pi\)
\(278\) 138960. + 138960.i 1.79804 + 1.79804i
\(279\) 0 0
\(280\) 0 0
\(281\) 97750.0 1.23795 0.618976 0.785410i \(-0.287548\pi\)
0.618976 + 0.785410i \(0.287548\pi\)
\(282\) 0 0
\(283\) 47900.0 + 47900.0i 0.598085 + 0.598085i 0.939803 0.341718i \(-0.111009\pi\)
−0.341718 + 0.939803i \(0.611009\pi\)
\(284\) 115600.i 1.43325i
\(285\) 0 0
\(286\) 205000. 2.50624
\(287\) 38000.0 38000.0i 0.461339 0.461339i
\(288\) 0 0
\(289\) 26929.0i 0.322422i
\(290\) 0 0
\(291\) 0 0
\(292\) −14110.0 + 14110.0i −0.165486 + 0.165486i
\(293\) −48215.0 48215.0i −0.561626 0.561626i 0.368143 0.929769i \(-0.379994\pi\)
−0.929769 + 0.368143i \(0.879994\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 135900. 1.55109
\(297\) 0 0
\(298\) 126000. + 126000.i 1.41886 + 1.41886i
\(299\) 139400.i 1.55927i
\(300\) 0 0
\(301\) −97600.0 −1.07725
\(302\) 114260. 114260.i 1.25280 1.25280i
\(303\) 0 0
\(304\) 25632.0i 0.277355i
\(305\) 0 0
\(306\) 0 0
\(307\) 53720.0 53720.0i 0.569980 0.569980i −0.362143 0.932123i \(-0.617955\pi\)
0.932123 + 0.362143i \(0.117955\pi\)
\(308\) 136000. + 136000.i 1.43363 + 1.43363i
\(309\) 0 0
\(310\) 0 0
\(311\) −136400. −1.41024 −0.705121 0.709087i \(-0.749107\pi\)
−0.705121 + 0.709087i \(0.749107\pi\)
\(312\) 0 0
\(313\) 48065.0 + 48065.0i 0.490614 + 0.490614i 0.908500 0.417885i \(-0.137229\pi\)
−0.417885 + 0.908500i \(0.637229\pi\)
\(314\) 13250.0i 0.134387i
\(315\) 0 0
\(316\) 228888. 2.29218
\(317\) −12425.0 + 12425.0i −0.123645 + 0.123645i −0.766222 0.642576i \(-0.777866\pi\)
0.642576 + 0.766222i \(0.277866\pi\)
\(318\) 0 0
\(319\) 45000.0i 0.442213i
\(320\) 0 0
\(321\) 0 0
\(322\) 136000. 136000.i 1.31168 1.31168i
\(323\) −16920.0 16920.0i −0.162179 0.162179i
\(324\) 0 0
\(325\) 0 0
\(326\) −224000. −2.10772
\(327\) 0 0
\(328\) −85500.0 85500.0i −0.794728 0.794728i
\(329\) 25600.0i 0.236509i
\(330\) 0 0
\(331\) −13528.0 −0.123475 −0.0617373 0.998092i \(-0.519664\pi\)
−0.0617373 + 0.998092i \(0.519664\pi\)
\(332\) −23120.0 + 23120.0i −0.209755 + 0.209755i
\(333\) 0 0
\(334\) 278800.i 2.49919i
\(335\) 0 0
\(336\) 0 0
\(337\) −20815.0 + 20815.0i −0.183281 + 0.183281i −0.792784 0.609503i \(-0.791369\pi\)
0.609503 + 0.792784i \(0.291369\pi\)
\(338\) −277445. 277445.i −2.42853 2.42853i
\(339\) 0 0
\(340\) 0 0
\(341\) 42800.0 0.368074
\(342\) 0 0
\(343\) −64080.0 64080.0i −0.544671 0.544671i
\(344\) 219600.i 1.85573i
\(345\) 0 0
\(346\) −199750. −1.66853
\(347\) −158780. + 158780.i −1.31867 + 1.31867i −0.403845 + 0.914828i \(0.632326\pi\)
−0.914828 + 0.403845i \(0.867674\pi\)
\(348\) 0 0
\(349\) 116352.i 0.955263i −0.878560 0.477632i \(-0.841495\pi\)
0.878560 0.477632i \(-0.158505\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 34000.0 34000.0i 0.274406 0.274406i
\(353\) 18085.0 + 18085.0i 0.145134 + 0.145134i 0.775940 0.630806i \(-0.217276\pi\)
−0.630806 + 0.775940i \(0.717276\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 76500.0 0.603617
\(357\) 0 0
\(358\) −229500. 229500.i −1.79067 1.79067i
\(359\) 223200.i 1.73183i 0.500191 + 0.865915i \(0.333263\pi\)
−0.500191 + 0.865915i \(0.666737\pi\)
\(360\) 0 0
\(361\) 125137. 0.960221
\(362\) −79390.0 + 79390.0i −0.605827 + 0.605827i
\(363\) 0 0
\(364\) 557600.i 4.20843i
\(365\) 0 0
\(366\) 0 0
\(367\) −78880.0 + 78880.0i −0.585645 + 0.585645i −0.936449 0.350804i \(-0.885908\pi\)
0.350804 + 0.936449i \(0.385908\pi\)
\(368\) −121040. 121040.i −0.893785 0.893785i
\(369\) 0 0
\(370\) 0 0
\(371\) −40400.0 −0.293517
\(372\) 0 0
\(373\) −83725.0 83725.0i −0.601780 0.601780i 0.339005 0.940785i \(-0.389910\pi\)
−0.940785 + 0.339005i \(0.889910\pi\)
\(374\) 235000.i 1.68006i
\(375\) 0 0
\(376\) −57600.0 −0.407424
\(377\) 92250.0 92250.0i 0.649058 0.649058i
\(378\) 0 0
\(379\) 101232.i 0.704757i −0.935858 0.352378i \(-0.885373\pi\)
0.935858 0.352378i \(-0.114627\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 85000.0 85000.0i 0.582495 0.582495i
\(383\) 142540. + 142540.i 0.971716 + 0.971716i 0.999611 0.0278952i \(-0.00888046\pi\)
−0.0278952 + 0.999611i \(0.508880\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −310250. −2.08227
\(387\) 0 0
\(388\) 54910.0 + 54910.0i 0.364744 + 0.364744i
\(389\) 100800.i 0.666134i 0.942903 + 0.333067i \(0.108083\pi\)
−0.942903 + 0.333067i \(0.891917\pi\)
\(390\) 0 0
\(391\) 159800. 1.04526
\(392\) 71910.0 71910.0i 0.467969 0.467969i
\(393\) 0 0
\(394\) 6650.00i 0.0428380i
\(395\) 0 0
\(396\) 0 0
\(397\) −123805. + 123805.i −0.785520 + 0.785520i −0.980756 0.195236i \(-0.937453\pi\)
0.195236 + 0.980756i \(0.437453\pi\)
\(398\) −154260. 154260.i −0.973839 0.973839i
\(399\) 0 0
\(400\) 0 0
\(401\) 25600.0 0.159203 0.0796015 0.996827i \(-0.474635\pi\)
0.0796015 + 0.996827i \(0.474635\pi\)
\(402\) 0 0
\(403\) −87740.0 87740.0i −0.540241 0.540241i
\(404\) 462400.i 2.83306i
\(405\) 0 0
\(406\) 180000. 1.09199
\(407\) 75500.0 75500.0i 0.455783 0.455783i
\(408\) 0 0
\(409\) 313938.i 1.87671i 0.345672 + 0.938355i \(0.387651\pi\)
−0.345672 + 0.938355i \(0.612349\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 196520. 196520.i 1.15774 1.15774i
\(413\) −252000. 252000.i −1.47741 1.47741i
\(414\) 0 0
\(415\) 0 0
\(416\) −139400. −0.805520
\(417\) 0 0
\(418\) 36000.0 + 36000.0i 0.206039 + 0.206039i
\(419\) 197100.i 1.12269i −0.827583 0.561343i \(-0.810285\pi\)
0.827583 0.561343i \(-0.189715\pi\)
\(420\) 0 0
\(421\) −111232. −0.627575 −0.313787 0.949493i \(-0.601598\pi\)
−0.313787 + 0.949493i \(0.601598\pi\)
\(422\) −388960. + 388960.i −2.18414 + 2.18414i
\(423\) 0 0
\(424\) 90900.0i 0.505629i
\(425\) 0 0
\(426\) 0 0
\(427\) 152320. 152320.i 0.835413 0.835413i
\(428\) 437240. + 437240.i 2.38689 + 2.38689i
\(429\) 0 0
\(430\) 0 0
\(431\) −151400. −0.815026 −0.407513 0.913199i \(-0.633604\pi\)
−0.407513 + 0.913199i \(0.633604\pi\)
\(432\) 0 0
\(433\) 117215. + 117215.i 0.625183 + 0.625183i 0.946852 0.321669i \(-0.104244\pi\)
−0.321669 + 0.946852i \(0.604244\pi\)
\(434\) 171200.i 0.908917i
\(435\) 0 0
\(436\) 280908. 1.47772
\(437\) 24480.0 24480.0i 0.128188 0.128188i
\(438\) 0 0
\(439\) 158508.i 0.822474i −0.911528 0.411237i \(-0.865097\pi\)
0.911528 0.411237i \(-0.134903\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 481750. 481750.i 2.46591 2.46591i
\(443\) 142420. + 142420.i 0.725711 + 0.725711i 0.969762 0.244052i \(-0.0784766\pi\)
−0.244052 + 0.969762i \(0.578477\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 329800. 1.65799
\(447\) 0 0
\(448\) 91840.0 + 91840.0i 0.457589 + 0.457589i
\(449\) 367200.i 1.82142i 0.413047 + 0.910710i \(0.364465\pi\)
−0.413047 + 0.910710i \(0.635535\pi\)
\(450\) 0 0
\(451\) −95000.0 −0.467058
\(452\) 557770. 557770.i 2.73010 2.73010i
\(453\) 0 0
\(454\) 207400.i 1.00623i
\(455\) 0 0
\(456\) 0 0
\(457\) −278545. + 278545.i −1.33371 + 1.33371i −0.431695 + 0.902019i \(0.642084\pi\)
−0.902019 + 0.431695i \(0.857916\pi\)
\(458\) 128160. + 128160.i 0.610972 + 0.610972i
\(459\) 0 0
\(460\) 0 0
\(461\) 197200. 0.927908 0.463954 0.885859i \(-0.346430\pi\)
0.463954 + 0.885859i \(0.346430\pi\)
\(462\) 0 0
\(463\) −101320. 101320.i −0.472643 0.472643i 0.430126 0.902769i \(-0.358469\pi\)
−0.902769 + 0.430126i \(0.858469\pi\)
\(464\) 160200.i 0.744092i
\(465\) 0 0
\(466\) 55250.0 0.254425
\(467\) −122480. + 122480.i −0.561606 + 0.561606i −0.929763 0.368158i \(-0.879989\pi\)
0.368158 + 0.929763i \(0.379989\pi\)
\(468\) 0 0
\(469\) 27200.0i 0.123658i
\(470\) 0 0
\(471\) 0 0
\(472\) −567000. + 567000.i −2.54507 + 2.54507i
\(473\) 122000. + 122000.i 0.545303 + 0.545303i
\(474\) 0 0
\(475\) 0 0
\(476\) 639200. 2.82113
\(477\) 0 0
\(478\) 432000. + 432000.i 1.89072 + 1.89072i
\(479\) 14400.0i 0.0627612i 0.999508 + 0.0313806i \(0.00999040\pi\)
−0.999508 + 0.0313806i \(0.990010\pi\)
\(480\) 0 0
\(481\) −309550. −1.33795
\(482\) −164560. + 164560.i −0.708321 + 0.708321i
\(483\) 0 0
\(484\) 157794.i 0.673596i
\(485\) 0 0
\(486\) 0 0
\(487\) 226700. 226700.i 0.955858 0.955858i −0.0432076 0.999066i \(-0.513758\pi\)
0.999066 + 0.0432076i \(0.0137577\pi\)
\(488\) −342720. 342720.i −1.43913 1.43913i
\(489\) 0 0
\(490\) 0 0
\(491\) 354100. 1.46880 0.734400 0.678716i \(-0.237463\pi\)
0.734400 + 0.678716i \(0.237463\pi\)
\(492\) 0 0
\(493\) 105750. + 105750.i 0.435097 + 0.435097i
\(494\) 147600.i 0.604829i
\(495\) 0 0
\(496\) −152368. −0.619342
\(497\) −136000. + 136000.i −0.550587 + 0.550587i
\(498\) 0 0
\(499\) 227448.i 0.913442i −0.889610 0.456721i \(-0.849024\pi\)
0.889610 0.456721i \(-0.150976\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −273500. + 273500.i −1.08530 + 1.08530i
\(503\) 164800. + 164800.i 0.651360 + 0.651360i 0.953321 0.301960i \(-0.0976410\pi\)
−0.301960 + 0.953321i \(0.597641\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −340000. −1.32794
\(507\) 0 0
\(508\) −473960. 473960.i −1.83660 1.83660i
\(509\) 420750.i 1.62401i 0.583651 + 0.812005i \(0.301624\pi\)
−0.583651 + 0.812005i \(0.698376\pi\)
\(510\) 0 0
\(511\) 33200.0 0.127144
\(512\) 391600. 391600.i 1.49384 1.49384i
\(513\) 0 0
\(514\) 286450.i 1.08423i
\(515\) 0 0
\(516\) 0 0
\(517\) −32000.0 + 32000.0i −0.119721 + 0.119721i
\(518\) −302000. 302000.i −1.12550 1.12550i
\(519\) 0 0
\(520\) 0 0
\(521\) −56000.0 −0.206306 −0.103153 0.994665i \(-0.532893\pi\)
−0.103153 + 0.994665i \(0.532893\pi\)
\(522\) 0 0
\(523\) −262360. 262360.i −0.959167 0.959167i 0.0400314 0.999198i \(-0.487254\pi\)
−0.999198 + 0.0400314i \(0.987254\pi\)
\(524\) 778600.i 2.83564i
\(525\) 0 0
\(526\) 53600.0 0.193728
\(527\) 100580. 100580.i 0.362152 0.362152i
\(528\) 0 0
\(529\) 48641.0i 0.173817i
\(530\) 0 0
\(531\) 0 0
\(532\) 97920.0 97920.0i 0.345978 0.345978i
\(533\) 194750. + 194750.i 0.685525 + 0.685525i
\(534\) 0 0
\(535\) 0 0
\(536\) −61200.0 −0.213021
\(537\) 0 0
\(538\) 342000. + 342000.i 1.18158 + 1.18158i
\(539\) 79900.0i 0.275023i
\(540\) 0 0
\(541\) −298438. −1.01967 −0.509835 0.860272i \(-0.670294\pi\)
−0.509835 + 0.860272i \(0.670294\pi\)
\(542\) 289340. 289340.i 0.984940 0.984940i
\(543\) 0 0
\(544\) 159800.i 0.539982i
\(545\) 0 0
\(546\) 0 0
\(547\) −72580.0 + 72580.0i −0.242573 + 0.242573i −0.817914 0.575341i \(-0.804869\pi\)
0.575341 + 0.817914i \(0.304869\pi\)
\(548\) 269450. + 269450.i 0.897257 + 0.897257i
\(549\) 0 0
\(550\) 0 0
\(551\) 32400.0 0.106719
\(552\) 0 0
\(553\) −269280. 269280.i −0.880550 0.880550i
\(554\) 672350.i 2.19066i
\(555\) 0 0
\(556\) −944928. −3.05667
\(557\) −319175. + 319175.i −1.02877 + 1.02877i −0.0291968 + 0.999574i \(0.509295\pi\)
−0.999574 + 0.0291968i \(0.990705\pi\)
\(558\) 0 0
\(559\) 500200.i 1.60074i
\(560\) 0 0
\(561\) 0 0
\(562\) −488750. + 488750.i −1.54744 + 1.54744i
\(563\) −187940. 187940.i −0.592929 0.592929i 0.345493 0.938421i \(-0.387712\pi\)
−0.938421 + 0.345493i \(0.887712\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −479000. −1.49521
\(567\) 0 0
\(568\) 306000. + 306000.i 0.948473 + 0.948473i
\(569\) 223200.i 0.689397i −0.938713 0.344699i \(-0.887981\pi\)
0.938713 0.344699i \(-0.112019\pi\)
\(570\) 0 0
\(571\) 468032. 1.43550 0.717750 0.696301i \(-0.245172\pi\)
0.717750 + 0.696301i \(0.245172\pi\)
\(572\) −697000. + 697000.i −2.13030 + 2.13030i
\(573\) 0 0
\(574\) 380000.i 1.15335i
\(575\) 0 0
\(576\) 0 0
\(577\) −325855. + 325855.i −0.978752 + 0.978752i −0.999779 0.0210267i \(-0.993307\pi\)
0.0210267 + 0.999779i \(0.493307\pi\)
\(578\) 134645. + 134645.i 0.403027 + 0.403027i
\(579\) 0 0
\(580\) 0 0
\(581\) 54400.0 0.161156
\(582\) 0 0
\(583\) 50500.0 + 50500.0i 0.148578 + 0.148578i
\(584\) 74700.0i 0.219026i
\(585\) 0 0
\(586\) 482150. 1.40406
\(587\) −112460. + 112460.i −0.326379 + 0.326379i −0.851208 0.524829i \(-0.824129\pi\)
0.524829 + 0.851208i \(0.324129\pi\)
\(588\) 0 0
\(589\) 30816.0i 0.0888271i
\(590\) 0 0
\(591\) 0 0
\(592\) −268780. + 268780.i −0.766926 + 0.766926i
\(593\) −398645. 398645.i −1.13364 1.13364i −0.989566 0.144078i \(-0.953978\pi\)
−0.144078 0.989566i \(-0.546022\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −856800. −2.41205
\(597\) 0 0
\(598\) 697000. + 697000.i 1.94908 + 1.94908i
\(599\) 336600.i 0.938124i 0.883165 + 0.469062i \(0.155408\pi\)
−0.883165 + 0.469062i \(0.844592\pi\)
\(600\) 0 0
\(601\) −352.000 −0.000974527 −0.000487263 1.00000i \(-0.500155\pi\)
−0.000487263 1.00000i \(0.500155\pi\)
\(602\) 488000. 488000.i 1.34656 1.34656i
\(603\) 0 0
\(604\) 776968.i 2.12975i
\(605\) 0 0
\(606\) 0 0
\(607\) 323840. 323840.i 0.878928 0.878928i −0.114496 0.993424i \(-0.536525\pi\)
0.993424 + 0.114496i \(0.0365253\pi\)
\(608\) −24480.0 24480.0i −0.0662223 0.0662223i
\(609\) 0 0
\(610\) 0 0
\(611\) 131200. 0.351440
\(612\) 0 0
\(613\) −267715. 267715.i −0.712446 0.712446i 0.254601 0.967046i \(-0.418056\pi\)
−0.967046 + 0.254601i \(0.918056\pi\)
\(614\) 537200.i 1.42495i
\(615\) 0 0
\(616\) −720000. −1.89745
\(617\) −34085.0 + 34085.0i −0.0895350 + 0.0895350i −0.750456 0.660921i \(-0.770166\pi\)
0.660921 + 0.750456i \(0.270166\pi\)
\(618\) 0 0
\(619\) 126072.i 0.329031i 0.986374 + 0.164516i \(0.0526061\pi\)
−0.986374 + 0.164516i \(0.947394\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 682000. 682000.i 1.76280 1.76280i
\(623\) −90000.0 90000.0i −0.231882 0.231882i
\(624\) 0 0
\(625\) 0 0
\(626\) −480650. −1.22654
\(627\) 0 0
\(628\) −45050.0 45050.0i −0.114229 0.114229i
\(629\) 354850.i 0.896899i
\(630\) 0 0
\(631\) 440372. 1.10601 0.553007 0.833176i \(-0.313480\pi\)
0.553007 + 0.833176i \(0.313480\pi\)
\(632\) −605880. + 605880.i −1.51688 + 1.51688i
\(633\) 0 0
\(634\) 124250.i 0.309113i
\(635\) 0 0
\(636\) 0 0
\(637\) −163795. + 163795.i −0.403666 + 0.403666i
\(638\) −225000. 225000.i −0.552766 0.552766i
\(639\) 0 0
\(640\) 0 0
\(641\) 90550.0 0.220380 0.110190 0.993911i \(-0.464854\pi\)
0.110190 + 0.993911i \(0.464854\pi\)
\(642\) 0 0
\(643\) −30760.0 30760.0i −0.0743985 0.0743985i 0.668928 0.743327i \(-0.266753\pi\)
−0.743327 + 0.668928i \(0.766753\pi\)
\(644\) 924800.i 2.22985i
\(645\) 0 0
\(646\) 169200. 0.405448
\(647\) 166600. 166600.i 0.397985 0.397985i −0.479537 0.877522i \(-0.659195\pi\)
0.877522 + 0.479537i \(0.159195\pi\)
\(648\) 0 0
\(649\) 630000.i 1.49572i
\(650\) 0 0
\(651\) 0 0
\(652\) 761600. 761600.i 1.79156 1.79156i
\(653\) 349945. + 349945.i 0.820679 + 0.820679i 0.986205 0.165526i \(-0.0529322\pi\)
−0.165526 + 0.986205i \(0.552932\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 338200. 0.785898
\(657\) 0 0
\(658\) 128000. + 128000.i 0.295637 + 0.295637i
\(659\) 407700.i 0.938793i −0.882987 0.469397i \(-0.844471\pi\)
0.882987 0.469397i \(-0.155529\pi\)
\(660\) 0 0
\(661\) −740992. −1.69594 −0.847970 0.530044i \(-0.822175\pi\)
−0.847970 + 0.530044i \(0.822175\pi\)
\(662\) 67640.0 67640.0i 0.154343 0.154343i
\(663\) 0 0
\(664\) 122400.i 0.277616i
\(665\) 0 0
\(666\) 0 0
\(667\) −153000. + 153000.i −0.343906 + 0.343906i
\(668\) −947920. 947920.i −2.12431 2.12431i
\(669\) 0 0
\(670\) 0 0
\(671\) −380800. −0.845769
\(672\) 0 0
\(673\) 258575. + 258575.i 0.570895 + 0.570895i 0.932379 0.361483i \(-0.117730\pi\)
−0.361483 + 0.932379i \(0.617730\pi\)
\(674\) 208150.i 0.458202i
\(675\) 0 0
\(676\) 1.88663e6 4.12850
\(677\) 499945. 499945.i 1.09080 1.09080i 0.0953562 0.995443i \(-0.469601\pi\)
0.995443 0.0953562i \(-0.0303990\pi\)
\(678\) 0 0
\(679\) 129200.i 0.280235i
\(680\) 0 0
\(681\) 0 0
\(682\) −214000. + 214000.i −0.460092 + 0.460092i
\(683\) −266840. 266840.i −0.572018 0.572018i 0.360674 0.932692i \(-0.382547\pi\)
−0.932692 + 0.360674i \(0.882547\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 640800. 1.36168
\(687\) 0 0
\(688\) −434320. 434320.i −0.917557 0.917557i
\(689\) 207050.i 0.436151i
\(690\) 0 0
\(691\) −141112. −0.295534 −0.147767 0.989022i \(-0.547209\pi\)
−0.147767 + 0.989022i \(0.547209\pi\)
\(692\) 679150. 679150.i 1.41825 1.41825i
\(693\) 0 0
\(694\) 1.58780e6i 3.29668i
\(695\) 0 0
\(696\) 0 0
\(697\) −223250. + 223250.i −0.459543 + 0.459543i
\(698\) 581760. + 581760.i 1.19408 + 1.19408i
\(699\) 0 0
\(700\) 0 0
\(701\) −708050. −1.44088 −0.720440 0.693517i \(-0.756060\pi\)
−0.720440 + 0.693517i \(0.756060\pi\)
\(702\) 0 0
\(703\) −54360.0 54360.0i −0.109994 0.109994i
\(704\) 229600.i 0.463262i
\(705\) 0 0
\(706\) −180850. −0.362835
\(707\) −544000. + 544000.i −1.08833 + 1.08833i
\(708\) 0 0
\(709\) 474912.i 0.944758i −0.881395 0.472379i \(-0.843395\pi\)
0.881395 0.472379i \(-0.156605\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −202500. + 202500.i −0.399452 + 0.399452i
\(713\) 145520. + 145520.i 0.286249 + 0.286249i
\(714\) 0 0
\(715\) 0 0
\(716\) 1.56060e6 3.04415
\(717\) 0 0
\(718\) −1.11600e6 1.11600e6i −2.16479 2.16479i
\(719\) 527400.i 1.02019i 0.860117 + 0.510097i \(0.170390\pi\)
−0.860117 + 0.510097i \(0.829610\pi\)
\(720\) 0 0
\(721\) −462400. −0.889503
\(722\) −625685. + 625685.i −1.20028 + 1.20028i
\(723\) 0 0
\(724\) 539852.i 1.02991i
\(725\) 0 0
\(726\) 0 0
\(727\) 315860. 315860.i 0.597621 0.597621i −0.342058 0.939679i \(-0.611124\pi\)
0.939679 + 0.342058i \(0.111124\pi\)
\(728\) 1.47600e6 + 1.47600e6i 2.78499 + 2.78499i
\(729\) 0 0
\(730\) 0 0
\(731\) 573400. 1.07306
\(732\) 0 0
\(733\) 325325. + 325325.i 0.605494 + 0.605494i 0.941765 0.336272i \(-0.109166\pi\)
−0.336272 + 0.941765i \(0.609166\pi\)
\(734\) 788800.i 1.46411i
\(735\) 0 0
\(736\) 231200. 0.426808
\(737\) −34000.0 + 34000.0i −0.0625956 + 0.0625956i
\(738\) 0 0
\(739\) 388008.i 0.710480i 0.934775 + 0.355240i \(0.115601\pi\)
−0.934775 + 0.355240i \(0.884399\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 202000. 202000.i 0.366896 0.366896i
\(743\) −256700. 256700.i −0.464995 0.464995i 0.435294 0.900289i \(-0.356645\pi\)
−0.900289 + 0.435294i \(0.856645\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 837250. 1.50445
\(747\) 0 0
\(748\) −799000. 799000.i −1.42805 1.42805i
\(749\) 1.02880e6i 1.83386i
\(750\) 0 0
\(751\) 532148. 0.943523 0.471762 0.881726i \(-0.343618\pi\)
0.471762 + 0.881726i \(0.343618\pi\)
\(752\) 113920. 113920.i 0.201449 0.201449i
\(753\) 0 0
\(754\) 922500.i 1.62265i
\(755\) 0 0
\(756\) 0 0
\(757\) −54685.0 + 54685.0i −0.0954281 + 0.0954281i −0.753209 0.657781i \(-0.771495\pi\)
0.657781 + 0.753209i \(0.271495\pi\)
\(758\) 506160. + 506160.i 0.880946 + 0.880946i
\(759\) 0 0
\(760\) 0 0
\(761\) −399200. −0.689321 −0.344660 0.938727i \(-0.612006\pi\)
−0.344660 + 0.938727i \(0.612006\pi\)
\(762\) 0 0
\(763\) −330480. 330480.i −0.567670 0.567670i
\(764\) 578000.i 0.990241i
\(765\) 0 0
\(766\) −1.42540e6 −2.42929
\(767\) 1.29150e6 1.29150e6i 2.19535 2.19535i
\(768\) 0 0
\(769\) 714528.i 1.20828i −0.796879 0.604139i \(-0.793517\pi\)
0.796879 0.604139i \(-0.206483\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 1.05485e6 1.05485e6i 1.76993 1.76993i
\(773\) 360055. + 360055.i 0.602573 + 0.602573i 0.940995 0.338421i \(-0.109893\pi\)
−0.338421 + 0.940995i \(0.609893\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −290700. −0.482749
\(777\) 0 0
\(778\) −504000. 504000.i −0.832667 0.832667i
\(779\) 68400.0i 0.112715i
\(780\) 0 0
\(781\) 340000. 0.557413
\(782\) −799000. + 799000.i −1.30657 + 1.30657i
\(783\) 0 0
\(784\) 284444.i 0.462769i
\(785\) 0 0
\(786\) 0 0
\(787\) 324200. 324200.i 0.523436 0.523436i −0.395171 0.918607i \(-0.629315\pi\)
0.918607 + 0.395171i \(0.129315\pi\)
\(788\) 22610.0 + 22610.0i 0.0364123 + 0.0364123i
\(789\) 0 0
\(790\) 0 0
\(791\) −1.31240e6 −2.09755
\(792\) 0 0
\(793\) 780640. + 780640.i 1.24138 + 1.24138i
\(794\) 1.23805e6i 1.96380i
\(795\) 0 0
\(796\) 1.04897e6 1.65553
\(797\) 743065. 743065.i 1.16980 1.16980i 0.187539 0.982257i \(-0.439949\pi\)
0.982257 0.187539i \(-0.0600511\pi\)
\(798\) 0 0
\(799\) 150400.i 0.235589i
\(800\) 0 0
\(801\) 0 0
\(802\) −128000. + 128000.i −0.199004 + 0.199004i
\(803\) −41500.0 41500.0i −0.0643601 0.0643601i
\(804\) 0 0
\(805\) 0 0
\(806\) 877400. 1.35060
\(807\) 0 0
\(808\) 1.22400e6 + 1.22400e6i 1.87482 + 1.87482i
\(809\) 772650.i 1.18055i −0.807201 0.590277i \(-0.799019\pi\)
0.807201 0.590277i \(-0.200981\pi\)
\(810\) 0 0
\(811\) −104992. −0.159630 −0.0798150 0.996810i \(-0.525433\pi\)
−0.0798150 + 0.996810i \(0.525433\pi\)
\(812\) −612000. + 612000.i −0.928195 + 0.928195i
\(813\) 0 0
\(814\) 755000.i 1.13946i
\(815\) 0 0
\(816\) 0 0
\(817\) 87840.0 87840.0i 0.131598 0.131598i
\(818\) −1.56969e6 1.56969e6i −2.34589 2.34589i
\(819\) 0 0
\(820\) 0 0
\(821\) 862750. 1.27997 0.639983 0.768389i \(-0.278941\pi\)
0.639983 + 0.768389i \(0.278941\pi\)
\(822\) 0 0
\(823\) −323980. 323980.i −0.478320 0.478320i 0.426274 0.904594i \(-0.359826\pi\)
−0.904594 + 0.426274i \(0.859826\pi\)
\(824\) 1.04040e6i 1.53231i
\(825\) 0 0
\(826\) 2.52000e6 3.69352
\(827\) 80920.0 80920.0i 0.118316 0.118316i −0.645470 0.763786i \(-0.723338\pi\)
0.763786 + 0.645470i \(0.223338\pi\)
\(828\) 0 0
\(829\) 1.10342e6i 1.60558i 0.596264 + 0.802788i \(0.296651\pi\)
−0.596264 + 0.802788i \(0.703349\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −470680. + 470680.i −0.679953 + 0.679953i
\(833\) −187765. 187765.i −0.270598 0.270598i
\(834\) 0 0
\(835\) 0 0
\(836\) −244800. −0.350267
\(837\) 0 0
\(838\) 985500. + 985500.i 1.40336 + 1.40336i
\(839\) 63000.0i 0.0894987i −0.998998 0.0447493i \(-0.985751\pi\)
0.998998 0.0447493i \(-0.0142489\pi\)
\(840\) 0 0
\(841\) 504781. 0.713692
\(842\) 556160. 556160.i 0.784469 0.784469i
\(843\) 0 0
\(844\) 2.64493e6i 3.71303i
\(845\) 0 0
\(846\) 0 0
\(847\) 185640. 185640.i 0.258765 0.258765i
\(848\) −179780. 179780.i −0.250006 0.250006i
\(849\) 0 0
\(850\) 0 0
\(851\) 513400. 0.708919
\(852\) 0 0
\(853\) 252365. + 252365.i 0.346842 + 0.346842i 0.858932 0.512090i \(-0.171129\pi\)
−0.512090 + 0.858932i \(0.671129\pi\)
\(854\) 1.52320e6i 2.08853i
\(855\) 0 0
\(856\) −2.31480e6 −3.15912
\(857\) −359195. + 359195.i −0.489067 + 0.489067i −0.908012 0.418945i \(-0.862400\pi\)
0.418945 + 0.908012i \(0.362400\pi\)
\(858\) 0 0
\(859\) 225288.i 0.305318i −0.988279 0.152659i \(-0.951216\pi\)
0.988279 0.152659i \(-0.0487835\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 757000. 757000.i 1.01878 1.01878i
\(863\) −402200. 402200.i −0.540033 0.540033i 0.383505 0.923539i \(-0.374717\pi\)
−0.923539 + 0.383505i \(0.874717\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −1.17215e6 −1.56296
\(867\) 0 0
\(868\) 582080. + 582080.i 0.772580 + 0.772580i
\(869\) 673200.i 0.891466i
\(870\) 0 0
\(871\) 139400. 0.183750
\(872\) −743580. + 743580.i −0.977901 + 0.977901i
\(873\) 0 0
\(874\) 244800.i 0.320471i
\(875\) 0 0
\(876\) 0 0
\(877\) −682675. + 682675.i −0.887595 + 0.887595i −0.994292 0.106697i \(-0.965973\pi\)
0.106697 + 0.994292i \(0.465973\pi\)
\(878\) 792540. + 792540.i 1.02809 + 1.02809i
\(879\) 0 0
\(880\) 0 0
\(881\) −1.22015e6 −1.57203 −0.786016 0.618206i \(-0.787860\pi\)
−0.786016 + 0.618206i \(0.787860\pi\)
\(882\) 0 0
\(883\) −401320. 401320.i −0.514718 0.514718i 0.401250 0.915968i \(-0.368576\pi\)
−0.915968 + 0.401250i \(0.868576\pi\)
\(884\) 3.27590e6i 4.19205i
\(885\) 0 0
\(886\) −1.42420e6 −1.81428
\(887\) −522920. + 522920.i −0.664642 + 0.664642i −0.956471 0.291828i \(-0.905736\pi\)
0.291828 + 0.956471i \(0.405736\pi\)
\(888\) 0 0
\(889\) 1.11520e6i 1.41107i
\(890\) 0 0
\(891\) 0 0
\(892\) −1.12132e6 + 1.12132e6i −1.40929 + 1.40929i
\(893\) 23040.0 + 23040.0i 0.0288921 + 0.0288921i
\(894\) 0 0
\(895\) 0 0
\(896\) −1.35360e6 −1.68607
\(897\) 0 0
\(898\) −1.83600e6 1.83600e6i −2.27677 2.27677i
\(899\) 192600.i 0.238307i
\(900\) 0 0
\(901\) 237350. 0.292375
\(902\) 475000. 475000.i 0.583822 0.583822i
\(903\) 0 0
\(904\) 2.95290e6i 3.61337i
\(905\) 0 0
\(906\) 0 0
\(907\) 1.09382e6 1.09382e6i 1.32963 1.32963i 0.423942 0.905689i \(-0.360646\pi\)
0.905689 0.423942i \(-0.139354\pi\)
\(908\) −705160. 705160.i −0.855295 0.855295i
\(909\) 0 0
\(910\) 0 0
\(911\) 321400. 0.387266 0.193633 0.981074i \(-0.437973\pi\)
0.193633 + 0.981074i \(0.437973\pi\)
\(912\) 0 0
\(913\) −68000.0 68000.0i −0.0815769 0.0815769i
\(914\) 2.78545e6i 3.33429i
\(915\) 0 0
\(916\) −871488. −1.03865
\(917\) −916000. + 916000.i −1.08932 + 1.08932i
\(918\) 0 0
\(919\) 1.28977e6i 1.52715i −0.645719 0.763575i \(-0.723442\pi\)
0.645719 0.763575i \(-0.276558\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −986000. + 986000.i −1.15989 + 1.15989i
\(923\) −697000. 697000.i −0.818143 0.818143i
\(924\) 0 0
\(925\) 0 0
\(926\) 1.01320e6 1.18161
\(927\) 0 0
\(928\) 153000. + 153000.i 0.177662 + 0.177662i
\(929\) 151200.i 0.175194i −0.996156 0.0875972i \(-0.972081\pi\)
0.996156 0.0875972i \(-0.0279188\pi\)
\(930\) 0 0
\(931\) −57528.0 −0.0663712
\(932\) −187850. + 187850.i −0.216262 + 0.216262i
\(933\) 0 0
\(934\) 1.22480e6i 1.40401i
\(935\) 0 0
\(936\) 0 0
\(937\) −401455. + 401455.i −0.457254 + 0.457254i −0.897753 0.440499i \(-0.854802\pi\)
0.440499 + 0.897753i \(0.354802\pi\)
\(938\) 136000. + 136000.i 0.154573 + 0.154573i
\(939\) 0 0
\(940\) 0 0
\(941\) −802400. −0.906174 −0.453087 0.891466i \(-0.649677\pi\)
−0.453087 + 0.891466i \(0.649677\pi\)
\(942\) 0 0
\(943\) −323000. 323000.i −0.363228 0.363228i
\(944\) 2.24280e6i 2.51679i
\(945\) 0 0
\(946\) −1.22000e6 −1.36326
\(947\) −484160. + 484160.i −0.539870 + 0.539870i −0.923491 0.383621i \(-0.874677\pi\)
0.383621 + 0.923491i \(0.374677\pi\)
\(948\) 0 0
\(949\) 170150.i 0.188929i
\(950\) 0 0
\(951\) 0 0
\(952\) −1.69200e6 + 1.69200e6i −1.86692 + 1.86692i
\(953\) 271765. + 271765.i 0.299232 + 0.299232i 0.840713 0.541481i \(-0.182136\pi\)
−0.541481 + 0.840713i \(0.682136\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −2.93760e6 −3.21423
\(957\) 0 0
\(958\) −72000.0 72000.0i −0.0784515 0.0784515i
\(959\) 634000.i 0.689369i
\(960\) 0 0
\(961\) −740337. −0.801646
\(962\) 1.54775e6 1.54775e6i 1.67244 1.67244i
\(963\) 0 0
\(964\) 1.11901e6i 1.20415i
\(965\) 0 0
\(966\) 0 0
\(967\) −2860.00 + 2860.00i −0.00305853 + 0.00305853i −0.708634 0.705576i \(-0.750688\pi\)
0.705576 + 0.708634i \(0.250688\pi\)
\(968\) −417690. 417690.i −0.445762 0.445762i
\(969\) 0 0
\(970\) 0 0
\(971\) 814300. 0.863666 0.431833 0.901954i \(-0.357867\pi\)
0.431833 + 0.901954i \(0.357867\pi\)
\(972\) 0 0
\(973\) 1.11168e6 + 1.11168e6i 1.17423 + 1.17423i
\(974\) 2.26700e6i 2.38965i
\(975\) 0 0
\(976\) 1.35565e6 1.42314
\(977\) 447685. 447685.i 0.469011 0.469011i −0.432583 0.901594i \(-0.642398\pi\)
0.901594 + 0.432583i \(0.142398\pi\)
\(978\) 0 0
\(979\) 225000.i 0.234756i
\(980\) 0 0
\(981\) 0 0
\(982\) −1.77050e6 + 1.77050e6i −1.83600 + 1.83600i
\(983\) 1.28038e6 + 1.28038e6i 1.32505 + 1.32505i 0.909631 + 0.415418i \(0.136365\pi\)
0.415418 + 0.909631i \(0.363635\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −1.05750e6 −1.08774
\(987\) 0 0
\(988\) 501840. + 501840.i 0.514104 + 0.514104i
\(989\) 829600.i 0.848157i
\(990\) 0 0
\(991\) −522988. −0.532530 −0.266265 0.963900i \(-0.585790\pi\)
−0.266265 + 0.963900i \(0.585790\pi\)
\(992\) 145520. 145520.i 0.147877 0.147877i
\(993\) 0 0
\(994\) 1.36000e6i 1.37647i
\(995\) 0 0
\(996\) 0 0
\(997\) −77395.0 + 77395.0i −0.0778615 + 0.0778615i −0.744965 0.667104i \(-0.767534\pi\)
0.667104 + 0.744965i \(0.267534\pi\)
\(998\) 1.13724e6 + 1.13724e6i 1.14180 + 1.14180i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 225.5.g.a.118.1 2
3.2 odd 2 225.5.g.c.118.1 2
5.2 odd 4 inner 225.5.g.a.82.1 2
5.3 odd 4 45.5.g.c.37.1 yes 2
5.4 even 2 45.5.g.c.28.1 yes 2
15.2 even 4 225.5.g.c.82.1 2
15.8 even 4 45.5.g.a.37.1 yes 2
15.14 odd 2 45.5.g.a.28.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
45.5.g.a.28.1 2 15.14 odd 2
45.5.g.a.37.1 yes 2 15.8 even 4
45.5.g.c.28.1 yes 2 5.4 even 2
45.5.g.c.37.1 yes 2 5.3 odd 4
225.5.g.a.82.1 2 5.2 odd 4 inner
225.5.g.a.118.1 2 1.1 even 1 trivial
225.5.g.c.82.1 2 15.2 even 4
225.5.g.c.118.1 2 3.2 odd 2