Properties

Label 2268.2.a.j
Level 22682268
Weight 22
Character orbit 2268.a
Self dual yes
Analytic conductor 18.11018.110
Analytic rank 00
Dimension 33
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2268,2,Mod(1,2268)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2268, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2268.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 2268=22347 2268 = 2^{2} \cdot 3^{4} \cdot 7
Weight: k k == 2 2
Character orbit: [χ][\chi] == 2268.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 18.110071178418.1100711784
Analytic rank: 00
Dimension: 33
Coefficient field: 3.3.321.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x3x24x+1 x^{3} - x^{2} - 4x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 3 3
Twist minimal: no (minimal twist has level 252)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β21,\beta_1,\beta_2 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β1+1)q5+q7+(β1+2)q11q13+(β2+β1)q17+(β2β1+1)q19+(β2+2)q23+(β22β1+2)q25++(β2+2β15)q97+O(q100) q + ( - \beta_1 + 1) q^{5} + q^{7} + (\beta_1 + 2) q^{11} - q^{13} + ( - \beta_{2} + \beta_1) q^{17} + ( - \beta_{2} - \beta_1 + 1) q^{19} + (\beta_{2} + 2) q^{23} + (\beta_{2} - 2 \beta_1 + 2) q^{25}+ \cdots + ( - \beta_{2} + 2 \beta_1 - 5) q^{97}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 3q+3q5+3q7+6q113q13+3q19+6q23+6q25+15q293q31+3q353q37+6q41+3q43+15q47+3q49+18q5312q55+3q59+15q97+O(q100) 3 q + 3 q^{5} + 3 q^{7} + 6 q^{11} - 3 q^{13} + 3 q^{19} + 6 q^{23} + 6 q^{25} + 15 q^{29} - 3 q^{31} + 3 q^{35} - 3 q^{37} + 6 q^{41} + 3 q^{43} + 15 q^{47} + 3 q^{49} + 18 q^{53} - 12 q^{55} + 3 q^{59}+ \cdots - 15 q^{97}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x3x24x+1 x^{3} - x^{2} - 4x + 1 : Copy content Toggle raw display

β1\beta_{1}== ν23 \nu^{2} - 3 Copy content Toggle raw display
β2\beta_{2}== ν2+3ν+2 -\nu^{2} + 3\nu + 2 Copy content Toggle raw display
ν\nu== (β2+β1+1)/3 ( \beta_{2} + \beta _1 + 1 ) / 3 Copy content Toggle raw display
ν2\nu^{2}== β1+3 \beta _1 + 3 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
2.46050
−1.69963
0.239123
0 0 0 −2.05408 0 1.00000 0 0 0
1.2 0 0 0 1.11126 0 1.00000 0 0 0
1.3 0 0 0 3.94282 0 1.00000 0 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 1 -1
33 1 -1
77 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2268.2.a.j 3
3.b odd 2 1 2268.2.a.g 3
4.b odd 2 1 9072.2.a.bz 3
9.c even 3 2 756.2.j.a 6
9.d odd 6 2 252.2.j.b 6
12.b even 2 1 9072.2.a.bt 3
36.f odd 6 2 3024.2.r.i 6
36.h even 6 2 1008.2.r.g 6
63.g even 3 2 5292.2.l.g 6
63.h even 3 2 5292.2.i.d 6
63.i even 6 2 1764.2.i.e 6
63.j odd 6 2 1764.2.i.f 6
63.k odd 6 2 5292.2.l.d 6
63.l odd 6 2 5292.2.j.e 6
63.n odd 6 2 1764.2.l.d 6
63.o even 6 2 1764.2.j.d 6
63.s even 6 2 1764.2.l.g 6
63.t odd 6 2 5292.2.i.g 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
252.2.j.b 6 9.d odd 6 2
756.2.j.a 6 9.c even 3 2
1008.2.r.g 6 36.h even 6 2
1764.2.i.e 6 63.i even 6 2
1764.2.i.f 6 63.j odd 6 2
1764.2.j.d 6 63.o even 6 2
1764.2.l.d 6 63.n odd 6 2
1764.2.l.g 6 63.s even 6 2
2268.2.a.g 3 3.b odd 2 1
2268.2.a.j 3 1.a even 1 1 trivial
3024.2.r.i 6 36.f odd 6 2
5292.2.i.d 6 63.h even 3 2
5292.2.i.g 6 63.t odd 6 2
5292.2.j.e 6 63.l odd 6 2
5292.2.l.d 6 63.k odd 6 2
5292.2.l.g 6 63.g even 3 2
9072.2.a.bt 3 12.b even 2 1
9072.2.a.bz 3 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(Γ0(2268))S_{2}^{\mathrm{new}}(\Gamma_0(2268)):

T533T526T5+9 T_{5}^{3} - 3T_{5}^{2} - 6T_{5} + 9 Copy content Toggle raw display
T1136T112+3T11+9 T_{11}^{3} - 6T_{11}^{2} + 3T_{11} + 9 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T3 T^{3} Copy content Toggle raw display
33 T3 T^{3} Copy content Toggle raw display
55 T33T2++9 T^{3} - 3 T^{2} + \cdots + 9 Copy content Toggle raw display
77 (T1)3 (T - 1)^{3} Copy content Toggle raw display
1111 T36T2++9 T^{3} - 6 T^{2} + \cdots + 9 Copy content Toggle raw display
1313 (T+1)3 (T + 1)^{3} Copy content Toggle raw display
1717 T333T9 T^{3} - 33T - 9 Copy content Toggle raw display
1919 T33T2++49 T^{3} - 3 T^{2} + \cdots + 49 Copy content Toggle raw display
2323 T36T2++99 T^{3} - 6 T^{2} + \cdots + 99 Copy content Toggle raw display
2929 T315T2++63 T^{3} - 15 T^{2} + \cdots + 63 Copy content Toggle raw display
3131 T3+3T2+53 T^{3} + 3 T^{2} + \cdots - 53 Copy content Toggle raw display
3737 T3+3T2+107 T^{3} + 3 T^{2} + \cdots - 107 Copy content Toggle raw display
4141 T36T2++9 T^{3} - 6 T^{2} + \cdots + 9 Copy content Toggle raw display
4343 T33T2++463 T^{3} - 3 T^{2} + \cdots + 463 Copy content Toggle raw display
4747 T315T2++81 T^{3} - 15 T^{2} + \cdots + 81 Copy content Toggle raw display
5353 T318T2++387 T^{3} - 18 T^{2} + \cdots + 387 Copy content Toggle raw display
5959 T33T2+81 T^{3} - 3 T^{2} + \cdots - 81 Copy content Toggle raw display
6161 T3+6T2++31 T^{3} + 6 T^{2} + \cdots + 31 Copy content Toggle raw display
6767 T3+6T2+59 T^{3} + 6 T^{2} + \cdots - 59 Copy content Toggle raw display
7171 T315T2++297 T^{3} - 15 T^{2} + \cdots + 297 Copy content Toggle raw display
7373 T39T2++79 T^{3} - 9 T^{2} + \cdots + 79 Copy content Toggle raw display
7979 T33T2++1363 T^{3} - 3 T^{2} + \cdots + 1363 Copy content Toggle raw display
8383 T318T2+27 T^{3} - 18 T^{2} + \cdots - 27 Copy content Toggle raw display
8989 T3+6T2+1089 T^{3} + 6 T^{2} + \cdots - 1089 Copy content Toggle raw display
9797 T3+15T2+23 T^{3} + 15 T^{2} + \cdots - 23 Copy content Toggle raw display
show more
show less