Properties

Label 2268.2.a.j
Level $2268$
Weight $2$
Character orbit 2268.a
Self dual yes
Analytic conductor $18.110$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2268,2,Mod(1,2268)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2268, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2268.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2268 = 2^{2} \cdot 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2268.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(18.1100711784\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.321.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 4x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 252)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_1 + 1) q^{5} + q^{7} + (\beta_1 + 2) q^{11} - q^{13} + ( - \beta_{2} + \beta_1) q^{17} + ( - \beta_{2} - \beta_1 + 1) q^{19} + (\beta_{2} + 2) q^{23} + (\beta_{2} - 2 \beta_1 + 2) q^{25}+ \cdots + ( - \beta_{2} + 2 \beta_1 - 5) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 3 q^{5} + 3 q^{7} + 6 q^{11} - 3 q^{13} + 3 q^{19} + 6 q^{23} + 6 q^{25} + 15 q^{29} - 3 q^{31} + 3 q^{35} - 3 q^{37} + 6 q^{41} + 3 q^{43} + 15 q^{47} + 3 q^{49} + 18 q^{53} - 12 q^{55} + 3 q^{59}+ \cdots - 15 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 4x + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu^{2} - 3 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( -\nu^{2} + 3\nu + 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} + \beta _1 + 1 ) / 3 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta _1 + 3 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.46050
−1.69963
0.239123
0 0 0 −2.05408 0 1.00000 0 0 0
1.2 0 0 0 1.11126 0 1.00000 0 0 0
1.3 0 0 0 3.94282 0 1.00000 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2268.2.a.j 3
3.b odd 2 1 2268.2.a.g 3
4.b odd 2 1 9072.2.a.bz 3
9.c even 3 2 756.2.j.a 6
9.d odd 6 2 252.2.j.b 6
12.b even 2 1 9072.2.a.bt 3
36.f odd 6 2 3024.2.r.i 6
36.h even 6 2 1008.2.r.g 6
63.g even 3 2 5292.2.l.g 6
63.h even 3 2 5292.2.i.d 6
63.i even 6 2 1764.2.i.e 6
63.j odd 6 2 1764.2.i.f 6
63.k odd 6 2 5292.2.l.d 6
63.l odd 6 2 5292.2.j.e 6
63.n odd 6 2 1764.2.l.d 6
63.o even 6 2 1764.2.j.d 6
63.s even 6 2 1764.2.l.g 6
63.t odd 6 2 5292.2.i.g 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
252.2.j.b 6 9.d odd 6 2
756.2.j.a 6 9.c even 3 2
1008.2.r.g 6 36.h even 6 2
1764.2.i.e 6 63.i even 6 2
1764.2.i.f 6 63.j odd 6 2
1764.2.j.d 6 63.o even 6 2
1764.2.l.d 6 63.n odd 6 2
1764.2.l.g 6 63.s even 6 2
2268.2.a.g 3 3.b odd 2 1
2268.2.a.j 3 1.a even 1 1 trivial
3024.2.r.i 6 36.f odd 6 2
5292.2.i.d 6 63.h even 3 2
5292.2.i.g 6 63.t odd 6 2
5292.2.j.e 6 63.l odd 6 2
5292.2.l.d 6 63.k odd 6 2
5292.2.l.g 6 63.g even 3 2
9072.2.a.bt 3 12.b even 2 1
9072.2.a.bz 3 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(2268))\):

\( T_{5}^{3} - 3T_{5}^{2} - 6T_{5} + 9 \) Copy content Toggle raw display
\( T_{11}^{3} - 6T_{11}^{2} + 3T_{11} + 9 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} \) Copy content Toggle raw display
$3$ \( T^{3} \) Copy content Toggle raw display
$5$ \( T^{3} - 3 T^{2} + \cdots + 9 \) Copy content Toggle raw display
$7$ \( (T - 1)^{3} \) Copy content Toggle raw display
$11$ \( T^{3} - 6 T^{2} + \cdots + 9 \) Copy content Toggle raw display
$13$ \( (T + 1)^{3} \) Copy content Toggle raw display
$17$ \( T^{3} - 33T - 9 \) Copy content Toggle raw display
$19$ \( T^{3} - 3 T^{2} + \cdots + 49 \) Copy content Toggle raw display
$23$ \( T^{3} - 6 T^{2} + \cdots + 99 \) Copy content Toggle raw display
$29$ \( T^{3} - 15 T^{2} + \cdots + 63 \) Copy content Toggle raw display
$31$ \( T^{3} + 3 T^{2} + \cdots - 53 \) Copy content Toggle raw display
$37$ \( T^{3} + 3 T^{2} + \cdots - 107 \) Copy content Toggle raw display
$41$ \( T^{3} - 6 T^{2} + \cdots + 9 \) Copy content Toggle raw display
$43$ \( T^{3} - 3 T^{2} + \cdots + 463 \) Copy content Toggle raw display
$47$ \( T^{3} - 15 T^{2} + \cdots + 81 \) Copy content Toggle raw display
$53$ \( T^{3} - 18 T^{2} + \cdots + 387 \) Copy content Toggle raw display
$59$ \( T^{3} - 3 T^{2} + \cdots - 81 \) Copy content Toggle raw display
$61$ \( T^{3} + 6 T^{2} + \cdots + 31 \) Copy content Toggle raw display
$67$ \( T^{3} + 6 T^{2} + \cdots - 59 \) Copy content Toggle raw display
$71$ \( T^{3} - 15 T^{2} + \cdots + 297 \) Copy content Toggle raw display
$73$ \( T^{3} - 9 T^{2} + \cdots + 79 \) Copy content Toggle raw display
$79$ \( T^{3} - 3 T^{2} + \cdots + 1363 \) Copy content Toggle raw display
$83$ \( T^{3} - 18 T^{2} + \cdots - 27 \) Copy content Toggle raw display
$89$ \( T^{3} + 6 T^{2} + \cdots - 1089 \) Copy content Toggle raw display
$97$ \( T^{3} + 15 T^{2} + \cdots - 23 \) Copy content Toggle raw display
show more
show less