Properties

Label 228.3.l.a
Level 228228
Weight 33
Character orbit 228.l
Analytic conductor 6.2136.213
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [228,3,Mod(145,228)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(228, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 5]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("228.145");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: N N == 228=22319 228 = 2^{2} \cdot 3 \cdot 19
Weight: k k == 3 3
Character orbit: [χ][\chi] == 228.l (of order 66, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 6.212550027416.21255002741
Analytic rank: 00
Dimension: 22
Coefficient field: Q(3)\Q(\sqrt{-3})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+1 x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C6]\mathrm{SU}(2)[C_{6}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ6\zeta_{6}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(ζ6+1)q3+(6ζ66)q55q7+3ζ6q9+(11ζ622)q13+(6ζ612)q15+(6ζ66)q17+(16ζ65)q19+(5ζ65)q21++(76ζ676)q97+O(q100) q + (\zeta_{6} + 1) q^{3} + (6 \zeta_{6} - 6) q^{5} - 5 q^{7} + 3 \zeta_{6} q^{9} + (11 \zeta_{6} - 22) q^{13} + (6 \zeta_{6} - 12) q^{15} + (6 \zeta_{6} - 6) q^{17} + ( - 16 \zeta_{6} - 5) q^{19} + ( - 5 \zeta_{6} - 5) q^{21}+ \cdots + ( - 76 \zeta_{6} - 76) q^{97}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+3q36q510q7+3q933q1318q156q1726q1915q21+24q2311q25+54q29+30q3566q3972q41+25q4336q45+42q47+228q97+O(q100) 2 q + 3 q^{3} - 6 q^{5} - 10 q^{7} + 3 q^{9} - 33 q^{13} - 18 q^{15} - 6 q^{17} - 26 q^{19} - 15 q^{21} + 24 q^{23} - 11 q^{25} + 54 q^{29} + 30 q^{35} - 66 q^{39} - 72 q^{41} + 25 q^{43} - 36 q^{45} + 42 q^{47}+ \cdots - 228 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/228Z)×\left(\mathbb{Z}/228\mathbb{Z}\right)^\times.

nn 7777 9797 115115
χ(n)\chi(n) 11 ζ6\zeta_{6} 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
145.1
0.500000 0.866025i
0.500000 + 0.866025i
0 1.50000 0.866025i 0 −3.00000 5.19615i 0 −5.00000 0 1.50000 2.59808i 0
217.1 0 1.50000 + 0.866025i 0 −3.00000 + 5.19615i 0 −5.00000 0 1.50000 + 2.59808i 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
19.d odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 228.3.l.a 2
3.b odd 2 1 684.3.y.e 2
4.b odd 2 1 912.3.be.a 2
19.d odd 6 1 inner 228.3.l.a 2
57.f even 6 1 684.3.y.e 2
76.f even 6 1 912.3.be.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
228.3.l.a 2 1.a even 1 1 trivial
228.3.l.a 2 19.d odd 6 1 inner
684.3.y.e 2 3.b odd 2 1
684.3.y.e 2 57.f even 6 1
912.3.be.a 2 4.b odd 2 1
912.3.be.a 2 76.f even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S3new(228,[χ])S_{3}^{\mathrm{new}}(228, [\chi]):

T52+6T5+36 T_{5}^{2} + 6T_{5} + 36 Copy content Toggle raw display
T7+5 T_{7} + 5 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T23T+3 T^{2} - 3T + 3 Copy content Toggle raw display
55 T2+6T+36 T^{2} + 6T + 36 Copy content Toggle raw display
77 (T+5)2 (T + 5)^{2} Copy content Toggle raw display
1111 T2 T^{2} Copy content Toggle raw display
1313 T2+33T+363 T^{2} + 33T + 363 Copy content Toggle raw display
1717 T2+6T+36 T^{2} + 6T + 36 Copy content Toggle raw display
1919 T2+26T+361 T^{2} + 26T + 361 Copy content Toggle raw display
2323 T224T+576 T^{2} - 24T + 576 Copy content Toggle raw display
2929 T254T+972 T^{2} - 54T + 972 Copy content Toggle raw display
3131 T2+867 T^{2} + 867 Copy content Toggle raw display
3737 T2+3675 T^{2} + 3675 Copy content Toggle raw display
4141 T2+72T+1728 T^{2} + 72T + 1728 Copy content Toggle raw display
4343 T225T+625 T^{2} - 25T + 625 Copy content Toggle raw display
4747 T242T+1764 T^{2} - 42T + 1764 Copy content Toggle raw display
5353 T2108T+3888 T^{2} - 108T + 3888 Copy content Toggle raw display
5959 T2126T+5292 T^{2} - 126T + 5292 Copy content Toggle raw display
6161 T2+43T+1849 T^{2} + 43T + 1849 Copy content Toggle raw display
6767 T299T+3267 T^{2} - 99T + 3267 Copy content Toggle raw display
7171 T2108T+3888 T^{2} - 108T + 3888 Copy content Toggle raw display
7373 T2+11T+121 T^{2} + 11T + 121 Copy content Toggle raw display
7979 T23T+3 T^{2} - 3T + 3 Copy content Toggle raw display
8383 (T126)2 (T - 126)^{2} Copy content Toggle raw display
8989 T2+18T+108 T^{2} + 18T + 108 Copy content Toggle raw display
9797 T2+228T+17328 T^{2} + 228T + 17328 Copy content Toggle raw display
show more
show less